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Theorem VII.1.2

Theorem VII.1.2. If G is open in C then there is a sequence {K,} of
compact subsets of G such that G = US2; K,. moreover, the sets K, can
be chosen to satisfy the following conditions:

(a) Kn Cint(Knt1);
(b) K C G and K compact imply K C K,, for some n;
(c) Every component of C \ K, contains a component of

Coo\ G
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Theorem VII.1.2

Theorem VII.1.2. If G is open in C then there is a sequence {K,} of
compact subsets of G such that G = US2; K,. moreover, the sets K, can
be chosen to satisfy the following conditions:

(a) Kn Cint(Knt1);

(b) K C G and K compact imply K C K,, for some n;

(c) Every component of C \ K, contains a component of

Coo\ G

Proof. Foreach ne N, let K, ={z | |z| < n}N{z|d(z,C\ G) > 1/n}.
Since K, is bounded (in modulus be n) and is closed (it's the intersection
of two closed subsets of C, then K, is compact by the Heine-Borel
Theorem (Theorem 11.4.10).
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- 000 @ viemVilia|
Theorem VII.1.2

Theorem VII.1.2. If G is open in C then there is a sequence {K,} of
compact subsets of G such that G = US2; K,. moreover, the sets K, can
be chosen to satisfy the following conditions:

(a) Kn Cint(Knt1);

(b) K C G and K compact imply K C K,, for some n;

(c) Every component of C \ K, contains a component of

Coo\ G

Proof. Foreach ne N, let K, ={z | |z| < n}N{z|d(z,C\ G) > 1/n}.
Since K, is bounded (in modulus be n) and is closed (it's the intersection
of two closed subsets of C, then K, is compact by the Heine-Borel
Theorem (Theorem 11.4.10). Also, the set

{z||z]| <n+1}n{z|d(z,C\ G) >1/(n+ 1)} is open (the intersection
of two open sets), contains K,, (the parts of K, are subsets of the
corresponding parts of this set), and is contained in K1 (consider the
corresponding parts again). So (a) follows.
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Theorem VII.1.2 (continued 1)

Proof (continued). As n — oo, {z | |z| < n} — C and

{z|d(z,C\ G)>1/n} — G, so G =U% K, and also G = U2 ;int(K),)
(notice G is open). If K is a compact subset of G, then the sets int(K})
form an open cover of K and so has some finite subcover. Since the K,

are nested, then K C K, for some n and (b) follows.

Complex Analysis September 11, 2017 4 / 32



Theorem VII.1.2 (continued 1)

Proof (continued). As n — oo, {z | |z| < n} — C and

{z|d(z,C\ G)>1/n} — G, so G =U% K, and also G = U2 ;int(K),)
(notice G is open). If K is a compact subset of G, then the sets int(K})
form an open cover of K and so has some finite subcover. Since the K,
are nested, then K C K, for some n and (b) follows.

For part (c), since K, is bounded (in modulus by n), then C\ K, has an
unbounded component (notice that K, may not be connected) which must
contain oo (treated as a subset of C,) and since K, C G for all n then
Coo \ K D Cx \ G must be contained in the unbounded component of
Coo \ K.
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Theorem VII.1.2 (continued 1)

Proof (continued). As n — oo, {z | |z| < n} — C and

{z|d(z,C\ G)>1/n} — G, so G =U% K, and also G = U2 ;int(K),)
(notice G is open). If K is a compact subset of G, then the sets int(K})
form an open cover of K and so has some finite subcover. Since the K,
are nested, then K C K, for some n and (b) follows.

For part (c), since K, is bounded (in modulus by n), then C\ K, has an
unbounded component (notice that K, may not be connected) which must
contain oo (treated as a subset of C,) and since K, C G for all n then
Coo \ K D Cx \ G must be contained in the unbounded component of
Coo \ K. So (c) holds for the unbounded component of C, \ K, for all n.
Since K, C {z | |z| < n}, then the unbounded component of C, \ Kj
contains {z | |z| > n}. So if D is a bounded component of C \ K, and
z € D then |z| < n. Since this z is not in K, then for this z we must have
d(z,C\ G) < 1/n (by the definition of Kj,).
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Theorem VII.1.2 (continued 2)

Proof (continued). So, by the definition of d(z,C\ G) in terms of an
infimum, there must be w € C\ G with |w —z| < 1/n. SO z € B(w; 1/n).
Now if 2’ € K, then d(2/,C\ G) > 1/n and since w € C\ G, we have
d(z',w) > 1/n; hence B(w,1/n) contains no z’ € K,,. That is,
B(w,1/n)N K, =@ and B(w,1/n) C Cx \ K.

W d(z,w) <%

; 1
‘ R
F \‘\
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Theorem VII.1.2 (continued 2)

Proof (continued). So, by the definition of d(z,C\ G) in terms of an
infimum, there must be w € C\ G with |w —z| < 1/n. SO z € B(w; 1/n).
Now if 2’ € K, then d(2/,C\ G) > 1/n and since w € C\ G, we have
d(z',w) > 1/n; hence B(w,1/n) contains no z’ € K,,. That is,
B(w,1/n)N K, =@ and B(w,1/n) C Cx \ K.

1
’W d(Z,W) <E

; 1
‘ R
l’ \\\

Since disk B(w, 1/n) is connected, z € B(w,1/n), z€ D, and D is a

connected component of C, \ K, then B(w,1/n) C D. If Dy is the

component of C, \ G that contains w, then D; C D (since G = UK,

then Cx \ G C C \ K, for each n). So component D of Cy \ K,

contains component D; of C, \ G and (c) holds for bounded component

of Coo \ Kp. O
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Proposition VII.1.6

Proposition VII.1.6. (C(G,Q), p) is a metric space.
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Proposition VII.1.6

Proposition VII.1.6

Proposition VII.1.6. (C(G,Q), p) is a metric space.

Proof. Since d is a metric,

pn(f,g) = sup{d(f(2),8(2)) | z € Kn}

= sup{d(g(z), f(z)) | PALS Kn} = pn(g7 f)

and so
(1" pnl(fg) (1) palgf)
p(f’g)_;<2> 1+ pa(f,g) _§(2> T+ palg F) - &)
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Proposition VII.1.6

Proposition VII.1.6. (C(G,Q), p) is a metric space.
Proof. Since d is a metric,
pn(f,g) = sup{d(f(z),&(2)) | z € Kn}

= sup{d(g(z), f(z)) | PALS Kn} = pn(g7 f)

and so
(1" pnl(fg) (1) palgf)
lf.8) = ;_31 <2> 1+pa(f.8) ;1 (2> T+ palg F) - &)

For the Triangle Inequality, let f, g, h € C(G,Q). Since d is a metric, for
each z € K, we have

d(f(z2), &(2)) < d(f(2), h(2)) + d(h(2), &(2)),
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Proposition VII.1.6 (continued 1)

Proof (continued). ...so
sup {d(f(2),8(2))} < sup {d(f(2), h(2)) + d(h(z),&(2))}
< sup {d(F(2), h(2))} + sup {d(h(2).8(2)}

or pn(f,g) < pn(f, h) + pn(h,g). So p, is a metric on C(G,Q).
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Proposition VII.1.6 (continued 1)

Proof (continued). ...so

sup {d(f(z),&(2))} < sup{d(f(z), h(z)) + d(h(z),&(2))}

zeK, zeK,
< sup {d(f(2), h(z))} + sup {d(h(2),&(2)}
or pn(f,g) < pn(f, h) + pn(h,g). So p, is a metricon C(G,Q2). B
f
Lemma VII.1.5, ﬂ is also a metric on C(G,Q) and so
Pn(f g)
po(f.g) _ _palf,h) pn(h, g)
14 pn(f,g) = 14 pa(f,h) 1+ pa(h, g)
Hence
= (1)° pn(f,g)
f.g) = Z) P\ E)
p( g) ;(2) 1+pn(f7g)
Complex Analysis September 11, 2017
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Proposition VII.1.6 (continued 2)

Proof (continued). ...or

p(f.g) < i G)Z <1 i",(),f,if,)h) 1 —in;()féi)g)>

n=1

- S0 it 26 s

n=1 n=

N

by the absolute convergence
= p(f,h) + p(h, g).

So the Triangle Inequality holds for p.
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Proposition VII.1.6

Proposition VII.1.6 (continued 2)

Proof (continued). ...or

p(f.g) < i G)Z <1 i",(),f,iﬁ,)h) 1 —in;()féi)g)>

n=1

- (L) S (L) e

n=1 n=1

by the absolute convergence
= p(f,h) + p(h, g).

So the Triangle Inequality holds for p.

Finally, since G = US2; K, and pp(f,g) = 0 if and only if f(z) = g(z) for
all z € K,, then p(f,g) =0 if and only if f(z) = g(z) for all z € G (i.e.,
f =g on G). So pis a metric (of course, p is nonnegative real

valued). O
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Lemma VII.1.7

Lemma VII.1.7. Let the metric p be defined as above:

_ - 1 ! pn(fvg)
p(f’g)—,;l(2> 1+ pn(f, &)

for f,g € C(G,Q) where G = U2, K, for compact K, with

K, C int(Kpt1) and po(f,g) = sup{d(f(z),g(z)) | z € Kp}. If e >0 is
given then there is § > 0 and a compact set K C G such that for

f,g € C(G,Q),

sup{d(f(z),g(z)) | z€e K} < d = p(f,g) < e.

Conversely, if 6 > 0 and a compact set K are given then there is e > 0
such that for f, g € C(G,Q),

p(f,g) <e = sup{d(f(z),g(z)) | z€ K} <.
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Lemma VII1.1.7 (continued 1)

Proof (continued). Let £ > 0 be fixed. Choose p € N such that
— (1\" 1

> (3) <3 (*)
n=p+1

and put K = K.
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Lemma VII.1.7

Lemma VII1.1.7 (continued 1)

Proof (continued). Let £ > 0 be fixed. Choose p € N such that
= /1\" 1

> (3) <3 (*)
n=p+1

and put K = K,. Choose § > 0 such that for all 0 < t < ¢ we have

t 1
Suppose f,g € C(G,Q) satisfy sup{d(f(z),g(z)) | z€ K} < 4. Since
Kn C Kp = K for 1 < n < p then
pn(f,g) =sup{d(f(z),g(z)) | z € Kp} <9 forall 1 <n < p. This gives
pn(f, 8) 1
— =7 < —¢b forl1 < n<np.
T+ po(Fg) = 5€ by (xx) for 1< n<p
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Lemma VII1.1.7 (continued 2)

Proof (continued). Therefore

() a2 () () 2 ()
fg) = 2) L8 (2 () + -
w9 = 2) thin =2 () () 2,6

1 1
< 55 + 56 by (*)

= E&.
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Lemma VII1.1.7 (continued 2)

Proof (continued). Therefore

o = S (3) 2SS () (3)+ 5 (3)

n=1

1 1
< 55 + 56 by (*)

= E&.

Now suppose compact set K and § > 0 are given. Since
G =UX K, =UxX int(Ky,) and K is compact, then there is p € N such

that K C K, (since K C G is compact and {int(K,) | n € N} is an open
cover of K). This gives

pp(f.g) = sup{d(f(2),8(2)) | z € Kp} > sup{d(f(2),8(2)) | z € K}. (wxx)

Let € > 0 be such that 0 < s < 2P¢ implies s/(1 —s) < 4.
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Lemma VII.1.7

Lemma VII.1.7 (continued 3)

Proof (continued). Then t/(1+ t) < 2Pc implies (with s = t/(1 + t))

that

t/(L+t) t
—at G-t (°% ()

So if p(f.g) = >0, (3)" £n(f8) -~ ¢ then with n = p we have

1+pn(f.g)
1\* f f
<> _relfo8) <egor _oolf-8) < 2Pe.
2) 1+pp(f,e) 1+ pp(f.8)
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Lemma VII.1.7 (continued 3)

Proof (continued). Then t/(1+ t) < 2Pc implies (with s = t/(1 + t))

that N .
—at G-t (°% ()

So if p(f.g) = >0, (3)" £n(f8) -~ ¢ then with n = p we have

1+pn(f,8)
1\? pp(f.g) pp(f,8)
- S A A < € or L AR AR < 2p€.
<2> 1+ pp(f, g) L+ pp(f, g)

With t = pp(f,g) in (* * *x) we get that p,(f,g) < 6. Then by (x * x) we
have sup{d(f(z),g(z)) | z € K} < pp(f,g) < 6, as required. O
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Proposition VII1.1.10

Proposition VI1.1.10.

(a) Aset O C (C(G,Q),p) is open if and only if for each f € O
there is a compact set K and a § > 0 such that
O>{g|d(f(z),g(z)) <9 for ze K}.

(b) A sequence {f,} in (C(G,Q),p) converges to f if and only if
{fa} converges to f uniformly on all compact subsets of G.
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Proposition VII1.1.10

Proposition VI1.1.10.

(a) Aset O C (C(G,Q),p) is open if and only if for each f € O
there is a compact set K and a § > 0 such that
O>{g|d(f(z),g(z)) <9 for ze K}.

(b) A sequence {f,} in (C(G,Q),p) converges to f if and only if
{fa} converges to f uniformly on all compact subsets of G.

Proof of (a). Set O in metric space (C(G, (), p) is open if for each

{g | p(f,g) <e} C O. By Lemma VII.1.7, there is 6 > 0 and a compact
K such that for f, g € C(G,Q) we have that

sup{d(f(z),g(z)) | z € K} < § implies p(f, g) < e.

Complex Analysis September 11, 2017 13 / 32



Proposition VII1.1.10

Proposition VI1.1.10.

(a) Aset O C (C(G,Q),p) is open if and only if for each f € O
there is a compact set K and a § > 0 such that
O>{g|d(f(z),g(z)) <9 for ze K}.

(b) A sequence {f,} in (C(G,Q),p) converges to f if and only if
{fa} converges to f uniformly on all compact subsets of G.

Proof of (a). Set O in metric space (C(G, (), p) is open if for each

{g | p(f,g) <e} C O. By Lemma VII.1.7, there is 6 > 0 and a compact
K such that for f, g € C(G,Q) we have that

sup{d(f(z),g(z)) | z € K} < ¢ implies p(f,g) < . Now for the given
feC(G,Q),if g e C(G,Q) satisfies d(f(z),g(z)) < ¢ for all z € K then
sup{d(f(z),g(z)) | z € K} < § (the inequality is still strict since K is
compact) and then p(f,g) < e. That is,

{g | d(f(z2),g(z)) <o forze K} CO.
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Proposition VII.1.10 (continued)

Proposition VI1.1.10.

(a) Aset O C (C(G,Q),p) is open if and only if for each f € O
there is a compact set K and a > 0 such that
O>{g|d(f(z),g(z)) <9 for ze K}.

(b) A sequence {f,} in (C(G,Q),p) converges to f if and only if
{fa} converges to f uniformly on all compact subsets of G.

Proof of (a), continued. Now suppose for each f € O there is compact
set K and § > 0 as stated. Then by the second part of Lemma VII.1.7,
there is an € > 0 such that for g € C(G, Q) we have that p(f,g) < ¢
implies that sup{d(f(z),g(z)) |z € K} <é.
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Proposition VII.1.10 (continued)

Proposition VI1.1.10.

(a) Aset O C (C(G,Q),p) is open if and only if for each f € O
there is a compact set K and a > 0 such that
O>{g|d(f(z),g(z)) <9 for ze K}.

(b) A sequence {f,} in (C(G,Q),p) converges to f if and only if
{fa} converges to f uniformly on all compact subsets of G.

Proof of (a), continued. Now suppose for each f € O there is compact
set K and § > 0 as stated. Then by the second part of Lemma VII.1.7,
there is an € > 0 such that for g € C(G, Q) we have that p(f,g) < ¢
implies that sup{d(f(z),g(z)) |z€ K} <. So g € {g | p(f,g) < ¢}
implies d(f(z),g(z)) < ¢ for all z € K and so all such g € O by
hypothesis. That is, {g | p)g,f) < e} C O and so O is open. O
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Proposition VII.1.12

Proposition VII.1.12. If metric space (€2, d) is complete, then metric
space C(G,Q) is complete.

Complex Analysis September 11, 2017 15 / 32



Proposition VII.1.12

Proposition VII.1.12

Proposition VII.1.12. If metric space (€2, d) is complete, then metric
space C(G,Q) is complete.

Proof. Suppose {f,} is a Cauchy sequence in C(G, Q). For each
component set K C G the restrictions of the functions f, to K gives a
Cauchy sequence in C(K,Q):

pn(f,g) = sup{d(f(2),8(2)) | z € Kn} = pn(f|k, glk) = sup{d(f(z),&(2)) |
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Proposition VII.1.12

Proposition VII.1.12. If metric space (€2, d) is complete, then metric

space C(G,Q) is complete.

Proof. Suppose {f,} is a Cauchy sequence in C(G, Q). For each

component set K C G the restrictions of the functions f, to K gives a

Cauchy sequence in C(K,Q):

pn(f,g) = sup{d(f(2),8(2)) | z € Kn} = pn(f|k, glk) = sup{d(f(z),&(2)) |

o0

so p(f,g) = 2(1/2)"M < & implies

1+ pn(f,8)

n=1

= (1" palflk, glk)
p(fK,gK):Z(> 1+pn(f|K7g|K

2

n=1

1
(since q = > 0).
dt |1+t (1+1)

Complex Analysis

] <p(f,g)<e
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Proposition VII.1.12

Proposition VII.1.12 (continued 1)

Proof (continued). Now for any § > 0 and the given compact set K, by

Lemma VII.1.7 part 2, there is ¢ > 0 such that for all f,g € C(G,Q) we
have

p(f,g) < € implies sup{d(f(z),g(z)) | z € K} <. (1.13)

Since {f,} is a Cauchy sequence in C(G, ), there exists N = N(¢) € N
such that for all n,m > N we have p(f,g) < € and so
sup{d(fn(2),fm(2)) | z € K} < 6.
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Proposition VII.1.12 (continued 1)

Proof (continued). Now for any § > 0 and the given compact set K, by
Lemma VII.1.7 part 2, there is ¢ > 0 such that for all f,g € C(G,Q) we
have

p(f,g) < € implies sup{d(f(z),g(z)) | z € K} <. (1.13)

Since {f,} is a Cauchy sequence in C(G, ), there exists N = N(¢) € N
such that for all n,m > N we have p(f,g) < € and so
sup{d(fn(z),fm(z)) | z € K} < 6. In particular, for each fixed z € K,
{fa(2)} is a Cauchy sequence in (€2, d). Since (£, d) is complete, then
{fs(z)} converges to some point in Q; denote this point as f(z). Then
function f is defined on K.
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Proposition VII.1.12 (continued 1)

Proof (continued). Now for any § > 0 and the given compact set K, by
Lemma VII.1.7 part 2, there is ¢ > 0 such that for all f,g € C(G,Q) we
have

p(f,g) < € implies sup{d(f(z),g(z)) | z € K} <. (1.13)

Since {f,} is a Cauchy sequence in C(G, ), there exists N = N(¢) € N
such that for all n,m > N we have p(f,g) < € and so

sup{d(fn(z),fm(z)) | z € K} < 6. In particular, for each fixed z € K,
{fa(2)} is a Cauchy sequence in (€2, d). Since (£, d) is complete, then
{fs(z)} converges to some point in Q; denote this point as f(z). Then
function f is defined on K. Since G = sup{2 K, for compact K, then f
can be defined on all of G. Now we need to show lim,_.. p(fn, f) = 0 and
hence {f,} — f. (Notice that f(z) is defined using the completeness of
space (€2, d) and does not depend on set K.)
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Proposition VII.1.12

Proposition VII.1.12 (continued 2)

Proposition VI1.1.12. If metric space (2, d) is complete, then metric
space C(G,Q) is complete.

Proof (continued). Let K be compact and fix § > 0. Choose N € N such

that for all n,m > N we have sup{d(f,(2), fm(z)) | z € K} < 6 which can
be done by (1.13). Let z € K be fixed.
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Proposition VII.1.12

Proposition VII.1.12 (continued 2)

Proposition VI1.1.12. If metric space (2, d) is complete, then metric
space C(G,Q) is complete.

Proof (continued). Let K be compact and fix § > 0. Choose N € N such
that for all n,m > N we have sup{d(f,(2), fm(z)) | z € K} < 6 which can
be done by (1.13). Let z € K be fixed. Since {f,(z)} — f(z) as n — o0
(by choice of f(z) in the first paragraph) then there is some m € N with
m > N such that d(f(z), fm(z)) < 0. But then for all n > N we have

d((2), F(2)) < d(F(2), fin(2)) + d(Fin(2), Fu(2)) < 6 + 6 = 20.
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Proposition VII.1.12 (continued 2)

Proposition VI1.1.12. If metric space (2, d) is complete, then metric
space C(G,Q) is complete.

Proof (continued). Let K be compact and fix § > 0. Choose N € N such
that for all n,m > N we have sup{d(f,(2), fm(z)) | z € K} < 6 which can
be done by (1.13). Let z € K be fixed. Since {f,(z)} — f(z) as n — o0
(by choice of f(z) in the first paragraph) then there is some m € N with
m > N such that d(f(z), fm(z)) < 0. But then for all n > N we have

d((2), F(2)) < d(F(2), fin(2)) + d(Fin(2), Fu(2)) < 6 + 6 = 20.

Since N does not depend on z (but does depend on K), this gives that
sup{d(f(z),fn(2)) | z€ K} — 0 as n — co. That is, {f,} converges to f
uniformly on every compact set in G. So, in particular, {f,} converges to
f uniformly on all closed balls contained in G. By Theorem 11.6.1, f is
continuous at each point of G. By Proposition VI1.1.10(b), {f,} converges
to f. O
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Proposition VII.1.16

Proposition VII.1.16

Proposition VII.1.16. A set 7 C C(G,Q) is normal if and only if for
every compact set K C G and every 6 > 0, there are functions
fi,f,...f, € F such that for f € F there is at least one k, 1 < k < n,
with

sup{d(f(z),f(z)) | z € K} <.
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Proposition VII.1.16

Proposition VII.1.16. A set 7 C C(G,Q) is normal if and only if for
every compact set K C G and every 6 > 0, there are functions
fi,f,...f, € F such that for f € F there is at least one k, 1 < k < n,
with

sup{d(f(z),f(z)) | z € K} < 6.
Proof of “only if” part. Suppose F is normal and let compact K C G
and § > 0 be given. By Lemma VII.1.7 part 2, there exists € > 0 such that
for f,g € C(G,Q) we have

p(f,g) < e implies sup{d(f(z),g(z)) | z € K} <. (%)
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Proposition VII.1.16

Proposition VII.1.16. A set 7 C C(G,Q) is normal if and only if for
every compact set K C G and every 6 > 0, there are functions
fi,f,...f, € F such that for f € F there is at least one k, 1 < k < n,
with

sup{d(f(z),f(z)) | z € K} < 6.

Proof of “only if” part. Suppose F is normal and let compact K C G
and § > 0 be given. By Lemma VII.1.7 part 2, there exists € > 0 such that
for f,g € C(G,Q) we have

p(f,g) < e implies sup{d(f(z),g(z)) | z € K} <. (%)

But since F~ (F closure) is compact by Proposition VII.1.15, then F is
totally bounded. (Actually, 7~ is totally bounded by Theorem 11.4.9; to
show that F itself is totally bounded, GET THIS, Conway says “actually
there are a few details to fill in here”! We move on and take this as given.)
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Proposition VII.1.16 (continued)
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Proposition VII.1.16 (continued)

Proof (continued). So, by the definition of totally bounded (see page 22)
there are fi, f,...,f, € F such that F C U]_,{f | p(f, fc) < e}. From
(x), for each f, we have

{f | p(f,f) <e} C{f|d(f(z2),(z)) <0 for z € K}.
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Proposition VII.1.16 (continued)

Proof (continued). So, by the definition of totally bounded (see page 22)
there are fi, f,...,f, € F such that F C U]_,{f | p(f, fc) < e}. From
(x), for each f, we have

{f | p(f,f) <e} C{f|d(f(z),f(z)) <0 for z € K}. That is,
F C U {f | d(f(2),f(z)) < for z € K}.

So for any f € F, f must be in one of these sets on the right, say for
k =j and d(f(z),fi(z)) < 0 for all z € K. Since K is compact,

sup{d(f(z),fi(z)) < 0,z € K} = max{d(f(z),fj(z)) < d,z€ K} <.

So F satisfies the claimed condition. O
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Proposition VII.1.18

Proposition VI1.1.18. The space ([[,2; X», d) of the previous definition
is a metric space. If €K = {x¥}°2 isin X =[]0, X, then ¢k — & = {x,}
if and only if x¥ — x — n for all n € N. also, if each (X, d) is compact
then X is compact.
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Proposition VI1.1.18

Proposition VII1.1.18

Proposition VI1.1.18. The space ([[,2; X», d) of the previous definition
is a metric space. If €K = {x¥}°2 isin X =[]0, X, then ¢k — & = {x,}
if and only if x¥ — x — n for all n € N. also, if each (X, d) is compact
then X is compact.

Proof.

Claim 1. d is a metric. This proof is “left to the reader” (Exercise VII.1.3).
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Proposition VII.1.18

Proposition VII.1.18. The space (IT521 Xn, d) of the previous definition
is a metric space If ¢k = {xk1o0, isin X = [[22; X, then &k — ¢ = {x,}
if and only if x — x — n for aII n € N. also, if each (X, d) is compact
then X is compact.

Proof.

Claim 1. d is a metric. This proof is “left to the reader” (Exercise VII.1.3).
Claim 2. If ¢k — ¢ then x¥ — x, for each n € N.

Suppose d(£¥,£) — 0. Then

(xK, xn) 1\ dn(x, x,)
—> = T\ 7> 7n) Il
() T+ do(xk )—<2> T+ dalooxe) 02 TN

d,,(xk Xn) P
v mr L f Il N.
1+ dp(xk, xp) — (£7,€) for all n €

n=1

or
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Proposition VI1.1.18

Proposition VII.1.18 (continued 1)

k
Proof (continued). So I|m m < k||_>ngo 2"d(£k,€) = 0 and so
k
leoo m = 0 for all n € N. Hence limy_.o dn(xX, x,) = 0 for

all n €N, or x* — x, for all n € N.
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Proposition VI1.1.18

Proposition VII.1.18 (continued 1)

k
dh (X, Xn) < lim 2"d(¢X,€) =0 and so

Proof (CO"t'nUed) SO Ilm m = m

k
leoo m = 0 for all n € N. Hence limy_.o dn(xX, x,) = 0 for

all n €N, or x* — x, for all n € N.

Claim 3. If x¥ — x, for all n € N then ¢k — £. The proof is “left to the
reader” in Exercise VII.1.13.
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Proposition VII.1.18 (continued 1)

d(xkx,,)
1+d( Xn» n)

= 0 for all n € N. Hence limy_.o dn(xX, x,) = 0 for

Proof (continued). So I|m

im dn (Xk X,,)
all n e N, orx,’,‘—>x,, for all n € N.

Claim 3. If x¥ — x, for all n € N then ¢k — £. The proof is “left to the
reader” in Exercise VII.1.13.

Claim 4. If each (X,, d,) is compact then X is compact. Suppose each
(Xn, dn) is compact. To show that (X, d) is compact it suffices to show
that every sequence in X has a convergent subsequence (that is, it suffices
to show that (X, d) is sequentially compact (see page 21) since this is

equivalent to (X, d) being compact by Theorem 11.4.9).

< klim 27d(¢%,¢) =0 and so
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Proposition VII.1.18 (continued 1)

d(xkx,,)
1+d( Xn» n)

= 0 for all n € N. Hence limy_.o dn(xX, x,) = 0 for

Proof (continued). So I|m

im dn (Xk X,,)
all n e N, orx,’,‘—>x,, for all n € N.

Claim 3. If x¥ — x, for all n € N then ¢k — £. The proof is “left to the
reader” in Exercise VII.1.13.

Claim 4. If each (X,, d,) is compact then X is compact. Suppose each
(Xn, dn) is compact. To show that (X, d) is compact it suffices to show
that every sequence in X has a convergent subsequence (that is, it suffices
to show that (X, d) is sequentially compact (see page 21) since this is
equivalent to (X, d) being compact by Theorem 11.4.9). We do so by the
Cantor diagonalization process. Let £ = {xX} € X for k € N. Consider
the sequence of the first entries of the &, that is {xf}iozl C Xi. Since X
is compact, and hence sequentially compact by Theorem 11.4.9, there is a
point x; € X1 and a subsequence of {xf} which converges to x;.
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Proposition VI1.1.18

Proposition VII.1.18 (continued 2)

Proof (continued). To avoid a notational “Pandora’s Box" (Conway,
page 147) we denote this subsequence as {x{ | k € Ny} where Nj is the

appropriate infinite subset of N. Consider the sequence of second entries
of the sequence {¢¥ | k € Ny }.
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Proposition VII.1.18 (continued 2)

Proof (continued). To avoid a notational “Pandora’s Box" (Conway,
page 147) we denote this subsequence as {x{ | k € Ny} where Nj is the
appropriate infinite subset of N. Consider the sequence of second entries
of the sequence {¢¥ | k € N1}. Then by the sequential compactness there
is xo € Xo> and infinite subset Ny C Nj such that {xé‘ | k € No} — xo.
Notice that since {x{ | k € N1} is convergent we still have

{x}'| k € N3} — x;. Continuing this process gives a decreasing sequence
of infinite subsets of N, N; D Ny D -+ and points x, € X, such that

{xa | k € No} — xn. (%)
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Proposition VII.1.18 (continued 2)

Proof (continued). To avoid a notational “Pandora’s Box" (Conway,
page 147) we denote this subsequence as {x{ | k € Ny} where Nj is the
appropriate infinite subset of N. Consider the sequence of second entries
of the sequence {¢¥ | k € N1}. Then by the sequential compactness there
is xo € Xo> and infinite subset Ny C Nj such that {xé‘ | k € No} — xo.
Notice that since {x{ | k € N1} is convergent we still have

{x}'| k € N3} — x;. Continuing this process gives a decreasing sequence
of infinite subsets of N, N; D Ny D -+ and points x, € X, such that

{xa | k € No} — xn. (%)
Let k; be the jth integer in N; and consider {¢5}. We claim
{€K} — ¢ = {x,} as j — oo. To show this, by Claim 3, it suffices to show
that x, = limy 00 x,’,(j for all n € N. But since N; C N, for j > n then
{x,/,(j | j > n} is a subsequence of {xX | k inN,}. So (*) then implies

ki | . i k;:
{xa | j = n} = xn, or x5 = limy, 00 Xn'-
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Proposition VII.1.18 (continued 3)

Proposition VI1.1.18. The space ([[,2; X», d) of the previous definition
is a metric space. If £¥ = {xk}°° isin X =[]0, X, then £k — &€ = {x,}
if and only if x¥ — x — n for all n € N. also, if each (X, d) is compact
then X is compact.
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Proposition VII.1.18 (continued 3)

Proposition VI1.1.18. The space ([[,2; X», d) of the previous definition
is a metric space. If £¥ = {xk}°° isin X =[]0, X, then £k — &€ = {x,}
if and only if x¥ — x — n for all n € N. also, if each (X, d) is compact
then X is compact.

Proof (continued). Therefore {¢5} — & = {x,} and {¢N} is a

convergent subsequence of {£K}. Therefore (X, d) is sequentially compact
and, by Lemma 11.4.9, compact. O
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Proposition VII1.1.22

Proposition VI1.1.22. Suppose F C C(G, Q) is equicontinuous at each
point of G. Then F is equicontinuous over each compact subset of G.
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Proposition VII.1.22

Proposition VII1.1.22

Proposition VI1.1.22. Suppose F C C(G, Q) is equicontinuous at each
point of G. Then F is equicontinuous over each compact subset of G.

Proof. Let K C G be compact and fix € > 0. Then by the definition of
equicontinuous, for each w € K there is a d,, > 0 such that

lw — w| < &, implies d(f(w), f(w)) < &/2 (%)
for all f € F.
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Proposition VII1.1.22

Proposition VI1.1.22. Suppose F C C(G, Q) is equicontinuous at each
point of G. Then F is equicontinuous over each compact subset of G.

Proof. Let K C G be compact and fix € > 0. Then by the definition of
equicontinuous, for each w € K there is a d,, > 0 such that

lw — w| < &, implies d(f(w), f(w)) < &/2 (%)

for all f € F. Now {B(w;dw) | w € K} is an open cover of K. Since K is
compact, it is sequentially compact (Theorem 11.4.9) and so by the
Lebesgue Covering Lemma (Lemma 11.4.8) there is 6 > 0 such that for
each z € K, B(z,0) is contained in one of the sets of this cover.
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Proposition VII1.1.22

Proposition VI1.1.22. Suppose F C C(G, Q) is equicontinuous at each
point of G. Then F is equicontinuous over each compact subset of G.

Proof. Let K C G be compact and fix € > 0. Then by the definition of
equicontinuous, for each w € K there is a d,, > 0 such that

lw — w| < &, implies d(f(w), f(w)) < &/2 (%)

for all f € F. Now {B(w;dw) | w € K} is an open cover of K. Since K is
compact, it is sequentially compact (Theorem 11.4.9) and so by the
Lebesgue Covering Lemma (Lemma 11.4.8) there is 6 > 0 such that for
each z € K, B(z,0) is contained in one of the sets of this cover. That is,
if z,z € K an d|z — Z/| < 0 then there is w € K with

7z € B(z;9) C B(w;dw). So |z — w| < dy, an d|z/ — w| < d,. But by (*)
this implies that d(f(z), f(w)) < &/2 and d(f(Z’), f(w)) < &/2 for all
feF.
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Proposition VII.1.22 (continued)

Proposition VI1.1.22. Suppose F C C(G, Q) is equicontinuous at each
point of G. Then F is equicontinuous over each compact subset of G.

Proof (continued). So by the Triangle Inequality
d(f(z),f(Z')) < d(f(2), f(w)) +d(f(w),f(Z)) <e/2+e/2=¢

for |z — 2| < 6 and for all f € F. So F is equicontinuous over K. O]
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Theorem VI1.1.23.

Theorem VI1.1.23. Arzela-Ascoli Theorem
A set F C C(G,Q) is normal if and only if the following two conditions
are satisfied:

(a) For each z € G, we have that {f(z) | f € F} has compact
closure in Q;

(b) F is equicontinuous at each point of G.
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Theorem VI1.1.23.

Theorem VI1.1.23. Arzela-Ascoli Theorem

A set F C C(G,Q) is normal if and only if the following two conditions
are satisfied:

(a) For each z € G, we have that {f(z) | f € F} has compact
closure in Q;

(b) F is equicontinuous at each point of G.

Proof. (1) Suppose that F is normal. Notice that for each z € G, the
map of C(G, Q) given by f — f(z) is continuous: Let € > 0 and let
K = {z} be a compact subset of G.
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Theorem VI1.1.23.

Theorem VI1.1.23. Arzela-Ascoli Theorem
A set F C C(G,Q) is normal if and only if the following two conditions
are satisfied:

(a) For each z € G, we have that {f(z) | f € F} has compact
closure in Q;

(b) F is equicontinuous at each point of G.

Proof. (1) Suppose that F is normal. Notice that for each z € G, the
map of C(G, Q) given by f — f(z) is continuous: Let € > 0 and let

K = {z} be a compact subset of G. Then by Lemma VII.1.7 part 2 (with
e an dd interchanged) there is a § > 0 such that for any f, g € C(G,Q)
we have that p(f, g) < ¢ implies sup{d(f(z),g(z)) | z € K} < or,
equivalently for the given z € G we have d(f(z),g(z)) < d. So the
mapping f — f(z) as described is continuous.
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Theorem VII.1.23 (continued 1).

Proof (continued). Since F~ is compact by Proposition VII.1.15, its
image is compact in £ under the mapping described. Now if g is a limit

point of the image of F, {f(z) | f € F}, since the mapping is continuous.
So the image of F~ is a subset of {f(z) | f € F}~.
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Theorem VII.1.23 (continued 1).

Proof (continued). Since F~ is compact by Proposition VII.1.15, its
image is compact in £ under the mapping described. Now if g is a limit
point of the image of F, {f(z) | f € F}, since the mapping is continuous.
So the image of F~ is a subset of {f(z) | f € F}~. The only points not
in the image of F would have to be limit points of {f(z) | f € F}~. Buta
limit point of {f(z) | f € F}~. is also a limit point of 7~ and since F~ is
closed, then F~ must also contain such points. Hence the image of
F~=A{f(z)| f € F}~ and{f(z) | f € F} has a compact closure. This

gives (a).
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Theorem VII.1.23 (continued 1).

Proof (continued). Since F~ is compact by Proposition VII.1.15, its
image is compact in £ under the mapping described. Now if g is a limit
point of the image of F, {f(z) | f € F}, since the mapping is continuous.
So the image of F~ is a subset of {f(z) | f € F}~. The only points not
in the image of F would have to be limit points of {f(z) | f € F}~. Buta
limit point of {f(z) | f € F}~. is also a limit point of 7~ and since F~ is
closed, then F~ must also contain such points. Hence the image of
F~=A{f(z)| f € F}~ and{f(z) | f € F} has a compact closure. This
gives (a).

Now for (b). Fix a point zyp € G and let ¢ > 0. Choose R > 0 so that
K = B(zo; R) C G. Then K is compact (by Heine-Borel; remember,
G cC).

Complex Analysis September 11, 2017 27 / 32



Theorem VII.1.23 (continued 1).

Proof (continued). Since F~ is compact by Proposition VII.1.15, its
image is compact in £ under the mapping described. Now if g is a limit
point of the image of F, {f(z) | f € F}, since the mapping is continuous.
So the image of F~ is a subset of {f(z) | f € F}~. The only points not
in the image of F would have to be limit points of {f(z) | f € F}~. Buta
limit point of {f(z) | f € F}~. is also a limit point of 7~ and since F~ is
closed, then F~ must also contain such points. Hence the image of
F~=A{f(z)| f € F}~ and{f(z) | f € F} has a compact closure. This

gives (a).
Now for (b). Fix a point zyp € G and let ¢ > 0. Choose R > 0 so that

K = B(zo; R) C G. Then K is compact (by Heine-Borel; remember,
G C C). Since F is normal (by hypothesis) so Proposition VII.1.16 (with

0 = ¢/3) implies that there are functions f1, f,...,f, € F such that there
for each f € F there is at lease one f; with
sup{f(f(z),f(z)) | z€ K} < ¢/3. (1.24)
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Theorem VII.1.23 (continued 2).

Proof (continued). But since each fy € C(G, Q) is continuous, then
there is a §, 0 < § < R, such that |z — z| < ¢ implies that

d(f(z), f(z0)) < e/3 for all 1 < k < n. Therefore if |z —z| <, f € F
an dk is chosen so that (1.24) holds, then by the Triangle Inequality

d(f(z), f(20)) < d(f(2), fu(2)) + d(fi(2), fu(20)) + d(fi(20), f(20))

<Stiti=c
373737 °
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Theorem VII.1.23 (continued 2).

Proof (continued). But since each fy € C(G, Q) is continuous, then
there is a §, 0 < § < R, such that |z — z| < ¢ implies that
d(f(z), f(z0)) < e/3 for all 1 < k < n. Therefore if |z —z| <, f € F
an dk is chosen so that (1.24) holds, then by the Triangle Inequality
d(f(z), f(20)) < d(f(2), fu(2)) + d(fi(2), fu(20)) + d(fi(20), f(20))
e € €
< 3 + 3 + 3= E.

So F is equicontinuous at the point zy. Since zj is arbitrary, F is
equicontinuous at each point of G and (b) holds.
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Theorem VII.1.23 (continued 2).

Proof (continued). But since each fy € C(G, Q) is continuous, then
there is a §, 0 < § < R, such that |z — z| < ¢ implies that

d(f(z), f(z0)) < e/3 for all 1 < k < n. Therefore if |z —z| <, f € F
an dk is chosen so that (1.24) holds, then by the Triangle Inequality

d(f(z), f(20)) < d(f(2), fu(2)) + d(fi(2), fu(20)) + d(fi(20), f(20))

<Stiti=c
33 3 7
So F is equicontinuous at the point zy. Since zj is arbitrary, F is

equicontinuous at each point of G and (b) holds.

(2) Now suppose F satisfies conditions (a) and (b). Let {z,} be an
enumeration of all the points in G with rational real and imaginary parts
(so the points form a sequence). Then for any z € G an dJ > 0 there is
zp € {zp} with |z — z,| < 0. For each n > 1 let

Xn={f(z,) | f € F}~ C Q. From hypothesis (a), (Xp, d) is a compact
metric space.
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Theorem VII.1.23 (continued 3).

Proof (continued). So by Proposition VII1.1.18 Claim 1, X = []°

is a compact metric space. Fro f € F define f € X by
f ={f(z1),f(z),...}. Let {fx} be a sequence in F.

n—l
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Theorem VII.1.23 (continued 3).

Proof (continued). So by Proposition VI1.1.18 Claim 1, X =[* _; X

is a compact metric space. Fro f € F define f € X by
f={f(z1),f(2z2),...}. Let {fc} be a sequence in F. We will show that
{fx} has a convergent subsequence and hence conclude that F is normal
(actually, we will conclude that {f} itself is convergent, so under (a) and
(b), every sequence in F is convergent!). So {f} is a sequence in the
compact metric space X. Thus, by Corollary 11.4.6, there is £ € X and a
subsequence of {fx} which converges to &.
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Theorem VII.1.23 (continued 3).

Proof (continued). So by Proposition VII1.1.18 Claim 1, X = []°
is a compact metric space. Fro f € F define f € X by
f={f(z1),f(2z2),...}. Let {fc} be a sequence in F. We will show that
{fx} has a convergent subsequence and hence conclude that F is normal
(actually, we will conclude that {f} itself is convergent, so under (a) and
(b), every sequence in F is convergent!). So {f} is a sequence in the
compact metric space X. Thus, by Corollary 11.4.6, there is £ € X and a
subsequence of {fx} which converges to £. “For the sake of convenient
notation” we eliminate the layer of subscripts denoting this subsequence of
{f} simply as {f} and so we notationally have ¢ = lim f,. Thus, by
Proposition VI1.1.18 Claim 2,

lim fi(zp) = wn (1.25)

k—o0
where £ = {w,}. We'll show sequence {f,} is Cauchy in C(G,Q) and,
since C(G, Q) is complete by Proposition VII.1.12, the existence of f is
guaranteed.
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Theorem VII.1.23 (continued 4).

Proof (continued). Let K be a compact subset of G and let ¢ > 0. By
Lemma VII.1.10(b) it suffices to show that {f,} converges to f on K
uniformly. That is, we need J € N such that for j, kK > J we have

sup{d(f(2),fj(z)) | ze K} < ¢ (1.26)

(here we are using “uniformly Cauchy” but the Cauchyness implies
[pointwise| convergence and then uniform convergence).
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Theorem VII.1.23 (continued 4).

Proof (continued). Let K be a compact subset of G and let ¢ > 0. By
Lemma VII.1.10(b) it suffices to show that {f,} converges to f on K
uniformly. That is, we need J € N such that for j, kK > J we have

sup{d(f(2),fj(z)) | ze K} < ¢ (1.26)

(here we are using “uniformly Cauchy” but the Cauchyness implies
[pointwise] convergence and then uniform convergence). Since K is
compact an d0G = G~ N (C\ G)~ is closed, then by Theorem 11.5.17,
R=d(K,0G) > 0. Let K1 ={z | d(z,K) < R/2}. Since K is a compact
subset of C then Kj is compact and K C int(K1) C K1 C G. Since F is
equicontinuous at each point of G by hypothesis (b) and so F is
equicontinuous on Ki by Proposition VII.1.22.
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Theorem VII.1.23 (continued 4).

Proof (continued). Let K be a compact subset of G and let ¢ > 0. By
Lemma VII.1.10(b) it suffices to show that {f,} converges to f on K
uniformly. That is, we need J € N such that for j, kK > J we have

sup{d(f(2),fj(z)) | ze K} < ¢ (1.26)

(here we are using “uniformly Cauchy” but the Cauchyness implies
[pointwise] convergence and then uniform convergence). Since K is
compact an d0G = G~ N (C\ G)~ is closed, then by Theorem 11.5.17,
R=d(K,0G) > 0. Let K1 ={z | d(z,K) < R/2}. Since K is a compact
subset of C then Kj is compact and K C int(K1) C K1 C G. Since F is
equicontinuous at each point of G by hypothesis (b) and so F is
equicontinuous on Kj by Proposition VI1.1.22. So choose 4, 0 < § < R/2,
such that if z,z' € K and |z — 2| < § then

d(f(z),f(Z')) <e/3 forall f € F. (1.27)
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Theorem VII.1.23 (continued 5).

Proof (continued). Now let D = {z,} N Ki. If z € K then there is a z,
with |z — z,| < 0 since {z,} is dense in G. But § < R/2 implies that
d(z,, K) < R/2, and so z, € K; (by the definition of Ki), or z, € D by
the definition of D. So every element z of K is within § of an element of
D. Hence {B(w;d) | w € D} is an open cover of K.
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Theorem VI1.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 5).

Proof (continued). Now let D = {z,} N Ki. If z € K then there is a z,
with |z — z,| < 0 since {z,} is dense in G. But § < R/2 implies that
d(z,, K) < R/2, and so z, € K; (by the definition of Ki), or z, € D by
the definition of D. So every element z of K is within § of an element of
D. Hence {B(w; ) | w € D} is an open cover of K. Since K is compact,
there are wi, wa, ..., w, € D such that K C U7_; B(w;; §). Since

limy_—oo fi(w;) exists for 1 < i < n by (1.25), there is J € N such that for
k,j > J we have

d(f(w;), fi(w;)) <e/3fori=1,2,...,n. (1.28)
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Theorem VII.1.23 (continued 5).

Proof (continued). Now let D = {z,} N Ki. If z € K then there is a z,
with |z — z,| < 0 since {z,} is dense in G. But § < R/2 implies that
d(z,, K) < R/2, and so z, € K; (by the definition of Ki), or z, € D by
the definition of D. So every element z of K is within § of an element of
D. Hence {B(w; ) | w € D} is an open cover of K. Since K is compact,
there are wi, wa, ..., w, € D such that K C U7_; B(w;; §). Since

limy_—oo fi(w;) exists for 1 < i < n by (1.25), there is J € N such that for
k,j > J we have

d(f(w;), fi(w;)) <e/3fori=1,2,...,n. (1.28)

Let z € K be arbitrary and let w; be such that |w; — z| < ¢ (remember
B(w;;d), i =1,2,...,nis a covering of K).
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Theorem VII.1.23 (continued 6).

Proof (continued). For j, k > J we have from (1.27) and (1.28) that
d(fi(2), 1i(2)) < d(f(2), (i) + d(f(wi), fi(wi)) + d(£i(wi), £i(2))

<€+€+E
S ¢
3 3 3

(the first inequality follows from (1.27) since (1.27) holds for all f € F
and f, € F; the second inequality holds from (1.28); the third inequality
follows as the first).
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Theorem VII.1.23 (continued 6).

Proof (continued). For j, k > J we have from (1.27) and (1.28) that

d(fi(2), fi(2)) < d(fu(2), fu(wi)) + d(fi(wi), fi(wi)) + d(£;(wi), £i(2))

€ € € _
< 3 + 3 + 3= €

(the first inequality follows from (1.27) since (1.27) holds for all f € F
and f, € F; the second inequality holds from (1.28); the third inequality
follows as the first). Since z was arbitrary, we have (1.26): for j, k > J,
sup{d(f(z),fj(z)) | z € K} < e (since K is compact, the “sup” can be
replaced with “max” and the strict inequality remains). So {f} is
uniformly continuous on K and by Lemma VI1.1.10(b), {f(} converges. [J
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