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Chapter VII. Compactness and Convergence in the Space of
Analytic Functions

VII.1. The Space of Continuous Functions C (G ,Ω)—Proofs of Theorems
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Theorem VII.1.2

Theorem VII.1.2

Theorem VII.1.2. If G is open in C then there is a sequence {Kn} of
compact subsets of G such that G = ∪∞n=1Kn. moreover, the sets Kn can
be chosen to satisfy the following conditions:

(a) Kn ⊂ int(Kn+1);

(b) K ⊂ G and K compact imply K ⊂ Kn for some n;

(c) Every component of C∞ \ Kn contains a component of
C∞ \ G .

Proof. For each n ∈ N, let Kn = {z | |z | ≤ n} ∩ {z | d(z , C \ G ) ≥ 1/n}.
Since Kn is bounded (in modulus be n) and is closed (it’s the intersection
of two closed subsets of C, then Kn is compact by the Heine-Borel
Theorem (Theorem II.4.10).

Also, the set
{z | |z | < n + 1} ∩ {z | d(z , C \ G ) > 1/(n + 1)} is open (the intersection
of two open sets), contains Kn (the parts of Kn are subsets of the
corresponding parts of this set), and is contained in Kn+1 (consider the
corresponding parts again). So (a) follows.
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Theorem VII.1.2

Theorem VII.1.2 (continued 1)

Proof (continued). As n →∞, {z | |z | ≤ n} → C and
{z | d(z , C \ G ) ≥ 1/n} → G , so G = ∪∞n=1Kn and also G = ∪∞n=1int(Kn)
(notice G is open). If K is a compact subset of G , then the sets int(Kn)
form an open cover of K and so has some finite subcover. Since the Kn

are nested, then K ⊂ Kn for some n and (b) follows.

For part (c), since Kn is bounded (in modulus by n), then C \ Kn has an
unbounded component (notice that Kn may not be connected) which must
contain ∞ (treated as a subset of C∞) and since Kn ⊂ G for all n then
C∞ \ K ⊃ C∞ \ G must be contained in the unbounded component of
C∞ \Kn.

So (c) holds for the unbounded component of C∞ \Kn for all n.
Since Kn ⊂ {z | |z | ≤ n}, then the unbounded component of C∞ \ Kn

contains {z | |z | > n}. So if D is a bounded component of C∞ \ Kn and
z ∈ D then |z | ≤ n. Since this z is not in Kn then for this z we must have
d(z , C \ G ) < 1/n (by the definition of Kn).
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Theorem VII.1.2

Theorem VII.1.2 (continued 2)

Proof (continued). So, by the definition of d(z , C \ G ) in terms of an
infimum, there must be w ∈ C \G with |w − z | < 1/n. S0 z ∈ B(w ; 1/n).
Now if z ′ ∈ Kn then d(z ′, C \ G ) ≥ 1/n and since w ∈ C \ G , we have
d(z ′,w) ≥ 1/n; hence B(w , 1/n) contains no z ′ ∈ Kn. That is,
B(w , 1/n) ∩ Kn = ∅ and B(w , 1/n) ⊂ C∞ \ Kn.

Since disk B(w , 1/n) is connected, z ∈ B(w , 1/n), z ∈ D, and D is a
connected component of C∞ \ Kn then B(w , 1/n) ⊂ D. If D1 is the
component of C∞ \ G that contains w , then D1 ⊂ D (since G = ∪Kn

then C∞ \ G ⊂ C∞ \ Kn for each n). So component D of C∞ \ Kn

contains component D1 of C∞ \ G and (c) holds for bounded component
of C∞ \ Kn.
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Proposition VII.1.6

Proposition VII.1.6

Proposition VII.1.6. (C (G ,Ω), ρ) is a metric space.

Proof. Since d is a metric,

ρn(f , g) = sup{d(f (z), g(z)) | z ∈ Kn}

= sup{d(g(z), f (z)) | z ∈ Kn} = ρn(g , f )

and so

ρ(f , g) =
∞∑

n=1

(
1

2

)n ρn(f , g)

1 + ρn(f , g)
=

∞∑
n=1

(
1

2

)2 ρn(g , f )

1 + ρn(g , f )
= ρ(g , f ).

For the Triangle Inequality, let f , g , h ∈ C (G ,Ω). Since d is a metric, for
each z ∈ Kn we have

d(f (z), g(z)) ≤ d(f (z), h(z)) + d(h(z), g(z)),
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Proposition VII.1.6

Proposition VII.1.6 (continued 1)

Proof (continued). . . . so

sup
z∈Kn

{d(f (z), g(z))} ≤ sup
z∈Kn

{d(f (z), h(z)) + d(h(z), g(z))}

≤ sup
z∈Kn

{d(f (z), h(z))}+ sup
z∈Kn

{d(h(z), g(z)}

or ρn(f , g) ≤ ρn(f , h) + ρn(h, g). So ρn is a metric on C (G ,Ω). By

Lemma VII.1.5,
ρn(f , g)

1 + ρn(f , g)
is also a metric on C (G ,Ω) and so

ρn(f , g)

1 + ρn(f , g)
≤ ρn(f , h)

1 + ρn(f , h)
+

ρn(h, g)

1 + ρn(h, g)
.

Hence

ρ(f , g) =
∞∑

n=1

(
1

2

)2 ρn(f , g)

1 + ρn(f , g)
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Proposition VII.1.6

Proposition VII.1.6 (continued 2)

Proof (continued). . . . or

ρ(f , g) ≤
∞∑

n=1

(
1

2

)2 (
ρn(f , h)

1 + ρn(f , h)
+

ρn(h, g)

1 + ρn(h, g)

)

=
∞∑

n=1

(
1

2

)2 ρn(f , h)

1 + ρn(f , h)
+

∞∑
n=1

(
1

2

)2 ρn(h, g)

1 + ρn(h, g)

by the absolute convergence

= ρ(f , h) + ρ(h, g).

So the Triangle Inequality holds for ρ.

Finally, since G = ∪∞n=1Kn and ρn(f , g) = 0 if and only if f (z) = g(z) for
all z ∈ Kn, then ρ(f , g) = 0 if and only if f (z) = g(z) for all z ∈ G (i.e.,
f ≡ g on G ). So ρ is a metric (of course, ρ is nonnegative real
valued).
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Lemma VII.1.7

Lemma VII.1.7

Lemma VII.1.7. Let the metric ρ be defined as above:

ρ(f , g) =
∞∑

n=1

(
1

2

)n ρn(f , g)

1 + ρn(f , g)

for f , g ∈ C (G ,Ω) where G = ∪∞n=1Kn for compact Kn with
Kn ⊂ int(Kn+1) and ρn(f , g) = sup{d(f (z), g(z)) | z ∈ Kn}. If ε > 0 is
given then there is δ > 0 and a compact set K ⊂ G such that for
f , g ∈ C (G ,Ω),

sup{d(f (z), g(z)) | z ∈ K} < δ =⇒ ρ(f , g) < ε.

Conversely, if δ > 0 and a compact set K are given then there is ε > 0
such that for f , g ∈ C (G ,Ω),

ρ(f , g) < ε =⇒ sup{d(f (z), g(z)) | z ∈ K} < δ.
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Lemma VII.1.7

Lemma VII.1.7 (continued 1)

Proof (continued). Let ε > 0 be fixed. Choose p ∈ N such that

∞∑
n=p+1

(
1

2

)n

<
1

2
ε (∗)

and put K = Kp. Choose δ > 0 such that for all 0 ≤ t < δ we have

t

1 + t
<

1

2
ε. (∗∗)

Suppose f , g ∈ C (G ,Ω) satisfy sup{d(f (z), g(z)) | z ∈ K} < δ. Since
Kn ⊂ Kp = K for 1 ≤ n ≤ p then
ρn(f , g) = sup{d(f (z), g(z)) | z ∈ Kn} ≤ δ for all 1 ≤ n ≤ p. This gives

ρn(f , g)

1 + ρn(f , g)
≤ 1

2
ε by (∗∗) for 1 ≤ n ≤ p.
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Lemma VII.1.7

Lemma VII.1.7 (continued 2)

Proof (continued). Therefore

ρ(f , g) =
∞∑

n=1

(
1

2

)n ρn(f , g)

1 + ρn(f , g)
≤

p∑
n=1

(
1

2

)n (
1

2
ε

)
+

∞∑
n=p+1

(
1

2

)n

<
1

2
ε +

1

2
ε by (∗)

= ε.

Now suppose compact set K and δ > 0 are given. Since
G = ∪∞n=1Kn = ∪∞n=1int(Kn) and K is compact, then there is p ∈ N such
that K ⊂ Kp (since K ⊂ G is compact and {int(Kn) | n ∈ N} is an open
cover of K ). This gives

ρp(f , g) = sup{d(f (z), g(z)) | z ∈ Kp} ≥ sup{d(f (z), g(z)) | z ∈ K}. (∗∗∗)

Let ε > 0 be such that 0 ≤ s < 2pε implies s/(1− s) < δ.
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Lemma VII.1.7

Lemma VII.1.7 (continued 3)

Proof (continued). Then t/(1 + t) < 2pε implies (with s = t/(1 + t))
that

t/(1 + t)

1− t/(1 + t)
=

t

(1 + t)− t
= t < δ. (∗ ∗ ∗∗)

So if ρ(f , g) =
∑∞

n=1

(
1
2

)n ρn(f ,g)
1+ρn(f ,g) < ε, then with n = p we have(

1

2

)p ρp(f , g)

1 + ρp(f , g)
< ε or

ρp(f , g)

1 + ρp(f , g)
< 2pε.

With t = ρp(f , g) in (∗ ∗ ∗∗) we get that ρp(f , g) < δ. Then by (∗ ∗ ∗) we
have sup{d(f (z), g(z)) | z ∈ K} ≤ ρp(f , g) < δ, as required.
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Proposition VII.1.10

Proposition VII.1.10

Proposition VII.1.10.

(a) A set O ⊂ (C (G ,Ω), ρ) is open if and only if for each f ∈ O
there is a compact set K and a δ > 0 such that
O ⊃ {g | d(f (z), g(z)) < δ for z ∈ K}.

(b) A sequence {fn} in (C (G ,Ω), ρ) converges to f if and only if
{fn} converges to f uniformly on all compact subsets of G .

Proof of (a). Set O in metric space (C (G ,Ω), ρ) is open if for each
{g | ρ(f , g) < ε} ⊂ O. By Lemma VII.1.7, there is δ > 0 and a compact
K such that for f , g ∈ C (G ,Ω) we have that
sup{d(f (z), g(z)) | z ∈ K} < δ implies ρ(f , g) < ε.

Now for the given
f ∈ C (G ,Ω), if g ∈ C (G ,Ω) satisfies d(f (z), g(z)) < δ for all z ∈ K then
sup{d(f (z), g(z)) | z ∈ K} < δ (the inequality is still strict since K is
compact) and then ρ(f , g) < ε. That is,
{g | d(f (z), g(z)) < δ for z ∈ K} ⊂ O.
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Proposition VII.1.12

Proposition VII.1.12. If metric space (Ω, d) is complete, then metric
space C (G ,Ω) is complete.

Proof. Suppose {fn} is a Cauchy sequence in C (G ,Ω). For each
component set K ⊂ G the restrictions of the functions fn to K gives a
Cauchy sequence in C (K ,Ω):

ρn(f , g) = sup{d(f (z), g(z)) | z ∈ Kn} ≥ ρn(f |K , g |k) = sup{d(f (z), g(z)) | z ∈ Kn∩J},

so ρ(f , g) =
∞∑

n=1

(1/2)n
ρn(f , g)

1 + ρn(f , g)
< ε implies

ρ(f |K , g |K ) =
∞∑

n=1

(
1

2

)n ρn(f |K , g |K )

1 + ρn(f |K , g |K )
< ρ(f , g) < ε

(since
d

dt

[
t

1 + t

]
=

1

(1 + t)2
> 0).
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Proposition VII.1.12

Proposition VII.1.12 (continued 1)

Proof (continued). Now for any δ > 0 and the given compact set K , by
Lemma VII.1.7 part 2, there is ε > 0 such that for all f , g ∈ C (G ,Ω) we
have

ρ(f , g) < ε implies sup{d(f (z), g(z)) | z ∈ K} < δ. (1.13)

Since {fn} is a Cauchy sequence in C (G ,Ω), there exists N = N(ε) ∈ N
such that for all n,m ≥ N we have ρ(f , g) < ε and so
sup{d(fn(z), fm(z)) | z ∈ K} < δ. In particular, for each fixed z ∈ K ,
{fn(z)} is a Cauchy sequence in (Ω, d). Since (Ω, d) is complete, then
{fn(z)} converges to some point in Ω; denote this point as f (z). Then
function f is defined on K .

Since G = sup∞n=1 Kn for compact Kn, then f
can be defined on all of G . Now we need to show limn→∞ ρ(fn, f ) = 0 and
hence {fn} → f . (Notice that f (z) is defined using the completeness of
space (Ω, d) and does not depend on set K .)
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Proposition VII.1.12

Proposition VII.1.12 (continued 2)

Proposition VII.1.12. If metric space (Ω, d) is complete, then metric
space C (G ,Ω) is complete.

Proof (continued). Let K be compact and fix δ > 0. Choose N ∈ N such
that for all n,m ≥ N we have sup{d(fn(z), fm(z)) | z ∈ K} < δ which can
be done by (1.13). Let z ∈ K be fixed. Since {fn(z)} → f (z) as n →∞
(by choice of f (z) in the first paragraph) then there is some m ∈ N with
m ≥ N such that d(f (z), fm(z)) < δ. But then for all n ≥ N we have

d(f (z), fn(z)) ≤ d(f (z), fm(z)) + d(fm(z), fn(z)) < δ + δ = 2δ.

Since N does not depend on z (but does depend on K ), this gives that
sup{d(f (z), fn(z)) | z ∈ K} → 0 as n →∞. That is, {fn} converges to f
uniformly on every compact set in G . So, in particular, {fn} converges to
f uniformly on all closed balls contained in G . By Theorem II.6.1, f is
continuous at each point of G . By Proposition VII.1.10(b), {fn} converges
to f .
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Proposition VII.1.16

Proposition VII.1.16

Proposition VII.1.16. A set F ⊂ C (G ,Ω) is normal if and only if for
every compact set K ⊂ G and every δ > 0, there are functions
f1, f2, . . . fn ∈ F such that for f ∈ F there is at least one k, 1 ≤ k ≤ n,
with

sup{d(f (z), fk(z)) | z ∈ K} < δ.

Proof of “only if” part. Suppose F is normal and let compact K ⊂ G
and δ > 0 be given. By Lemma VII.1.7 part 2, there exists ε > 0 such that
for f , g ∈ C (G ,Ω) we have

ρ(f , g) < ε implies sup{d(f (z), g(z)) | z ∈ K} < δ. (∗)

But since F− (F closure) is compact by Proposition VII.1.15, then F is
totally bounded. (Actually, F− is totally bounded by Theorem II.4.9; to
show that F itself is totally bounded, GET THIS, Conway says “actually
there are a few details to fill in here”! We move on and take this as given.)
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Proposition VII.1.16

Proposition VII.1.16 (continued)

Proof (continued). So, by the definition of totally bounded (see page 22)
there are f1, f2, . . . , fn ∈ F such that F ⊂ ∪n

k=1{f | ρ(f , fk) < ε}. From
(∗), for each fk we have
{f | ρ(f , fk) < ε} ⊂ {f | d(f (z), fk(z)) < δ for z ∈ K}.

That is,

F ⊂ ∪n
k=1{f | d(f (z), fk(z)) < δ for z ∈ K}.

So for any f ∈ F , f must be in one of these sets on the right, say for
k = j and d(f (z), fj(z)) < δ for all z ∈ K . Since K is compact,

sup{d(f (z), fj(z)) < δ, z ∈ K} = max{d(f (z), fj(z)) < δ, z ∈ K} < δ.

So F satisfies the claimed condition.
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Proposition VII.1.18

Proposition VII.1.18

Proposition VII.1.18. The space (
∏∞

n=1 Xn, d) of the previous definition
is a metric space. If ξk = {xk

n }∞n=1 is in X =
∏∞

n=1 Xn then ξk → ξ = {xn}
if and only if xk

n → x − n for all n ∈ N. also, if each (Xn, d) is compact
then X is compact.

Proof.
Claim 1. d is a metric. This proof is “left to the reader” (Exercise VII.1.3).

Claim 2. If ξk → ξ then xk
n → xn for each n ∈ N.

Suppose d(ξk , ξ) → 0. Then

d(ξk , ξ) =
∞∑

n=1

(
1

2

)n dn(x
k
n , xn)

1 + dn(xk
n , xn)

≥
(

1

2

)n dn(x
k
n , xn)

1 + dn(xk
n , xn)

for all n ∈ N

or
dn(x

k
n , xn)

1 + dn(xk
n , xn)

≤ 2nd(ξk , ξ) for all n ∈ N.
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Proposition VII.1.18

Proposition VII.1.18 (continued 1)

Proof (continued). So lim
k→∞

dn(x
k
n , xn)

1 + dn(xk
n , xn)

≤ lim
k→∞

2nd(ξk , ξ) = 0 and so

lim
k→∞

dn(x
k
n , xn)

1 + dx(xk
n , xn)

= 0 for all n ∈ N. Hence limk→∞ dn(x
k
n , xn) = 0 for

all n ∈ N, or xk
n → xn for all n ∈ N.

Claim 3. If xk
n → xn for all n ∈ N then ξk → ξ. The proof is “left to the

reader” in Exercise VII.1.13.

Claim 4. If each (Xn, dn) is compact then X is compact. Suppose each
(Xn, dn) is compact. To show that (X , d) is compact it suffices to show
that every sequence in X has a convergent subsequence (that is, it suffices
to show that (X , d) is sequentially compact (see page 21) since this is
equivalent to (X , d) being compact by Theorem II.4.9). We do so by the
Cantor diagonalization process. Let ξk = {xk

n } ∈ X for k ∈ N. Consider
the sequence of the first entries of the ξk , that is {xk

1 }∞k=1 ⊂ X1. Since X1

is compact, and hence sequentially compact by Theorem II.4.9, there is a
point x1 ∈ X1 and a subsequence of {xk

1 } which converges to x1.
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n , xn)

1 + dx(xk
n , xn)

= 0 for all n ∈ N. Hence limk→∞ dn(x
k
n , xn) = 0 for

all n ∈ N, or xk
n → xn for all n ∈ N.

Claim 3. If xk
n → xn for all n ∈ N then ξk → ξ. The proof is “left to the

reader” in Exercise VII.1.13.
Claim 4. If each (Xn, dn) is compact then X is compact. Suppose each
(Xn, dn) is compact. To show that (X , d) is compact it suffices to show
that every sequence in X has a convergent subsequence (that is, it suffices
to show that (X , d) is sequentially compact (see page 21) since this is
equivalent to (X , d) being compact by Theorem II.4.9).

We do so by the
Cantor diagonalization process. Let ξk = {xk

n } ∈ X for k ∈ N. Consider
the sequence of the first entries of the ξk , that is {xk

1 }∞k=1 ⊂ X1. Since X1

is compact, and hence sequentially compact by Theorem II.4.9, there is a
point x1 ∈ X1 and a subsequence of {xk

1 } which converges to x1.
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Proposition VII.1.18

Proposition VII.1.18 (continued 2)

Proof (continued). To avoid a notational “Pandora’s Box” (Conway,
page 147) we denote this subsequence as {xk

1 | k ∈ N1} where N1 is the
appropriate infinite subset of N. Consider the sequence of second entries
of the sequence {ξk | k ∈ N1}. Then by the sequential compactness there
is x2 ∈ X2 and infinite subset N2 ⊂ N1 such that {xk

2 | k ∈ N2} → x2.
Notice that since {xk

1 | k ∈ N1} is convergent we still have
{xk

1 | k ∈ N2} → x1. Continuing this process gives a decreasing sequence
of infinite subsets of N, N1 ⊃ N2 ⊃ · · · and points xn ∈ Xn such that

{xk
n | k ∈ Nn} → xn. (∗)

Let kj be the jth integer in Nj and consider {ξkj}. We claim
{ξkj} → ξ = {xn} as j →∞. To show this, by Claim 3, it suffices to show

that xn = limkj→∞ x
kj
n for all n ∈ N. But since Nj ⊂ Nn for j ≥ n then

{xkj
n | j ≥ n} is a subsequence of {xk

n | k inNn}. So (∗) then implies

{xkj
n | j ≥ n} → xn, or xn = limkj→∞ x

kj
n .
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Proposition VII.1.18

Proposition VII.1.18 (continued 3)

Proposition VII.1.18. The space (
∏∞

n=1 Xn, d) of the previous definition
is a metric space. If ξk = {xk

n }∞n=1 is in X =
∏∞

n=1 Xn then ξk → ξ = {xn}
if and only if xk

n → x − n for all n ∈ N. also, if each (Xn, d) is compact
then X is compact.

Proof (continued). Therefore {ξkj} → ξ = {xn} and {ξkj} is a
convergent subsequence of {ξk}. Therefore (X , d) is sequentially compact
and, by Lemma II.4.9, compact.
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Proposition VII.1.22

Proposition VII.1.22

Proposition VII.1.22. Suppose F ⊂ C (G ,Ω) is equicontinuous at each
point of G . Then F is equicontinuous over each compact subset of G .

Proof. Let K ⊂ G be compact and fix ε > 0. Then by the definition of
equicontinuous, for each w ∈ K there is a δw > 0 such that

|w − w ′| < δw implies d(f (w ′), f (w)) < ε/2 (∗)

for all f ∈ F .

Now {B(w ; δw ) | w ∈ K} is an open cover of K . Since K is
compact, it is sequentially compact (Theorem II.4.9) and so by the
Lebesgue Covering Lemma (Lemma II.4.8) there is δ > 0 such that for
each z ∈ K , B(z , δ) is contained in one of the sets of this cover. That is,
if z , z ′ ∈ K an d|z − z ′| < δ then there is w ∈ K with
z ′ ∈ B(z ; δ) ⊂ B(w ; δw ). So |z − w | < δw an d|z ′ − w | < δw . But by (∗)
this implies that d(f (z), f (w)) < ε/2 and d(f (z ′), f (w)) < ε/2 for all
f ∈ F .
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Proposition VII.1.22

Proposition VII.1.22 (continued)

Proposition VII.1.22. Suppose F ⊂ C (G ,Ω) is equicontinuous at each
point of G . Then F is equicontinuous over each compact subset of G .

Proof (continued). So by the Triangle Inequality

d(f (z), f (z ′)) ≤ d(f (z), f (w)) + d(f (w), f (z ′)) < ε/2 + ε/2 = ε

for |z − z ′| < δ and for all f ∈ F . So F is equicontinuous over K .
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Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23.

Theorem VII.1.23. Arzela-Ascoli Theorem
A set F ⊂ C (G ,Ω) is normal if and only if the following two conditions
are satisfied:

(a) For each z ∈ G , we have that {f (z) | f ∈ F} has compact
closure in Ω;

(b) F is equicontinuous at each point of G .

Proof. (1) Suppose that F is normal. Notice that for each z ∈ G , the
map of C (G ,Ω) given by f → f (z) is continuous: Let ε > 0 and let
K = {z} be a compact subset of G .

Then by Lemma VII.1.7 part 2 (with
ε an dδ interchanged) there is a δ > 0 such that for any f , g ∈ C (G ,Ω)
we have that ρ(f , g) < δ implies sup{d(f (z), g(z)) | z ∈ K} < δ or,
equivalently for the given z ∈ G we have d(f (z), g(z)) < δ. So the
mapping f → f (z) as described is continuous.
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Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 1).

Proof (continued). Since F− is compact by Proposition VII.1.15, its
image is compact in Ω under the mapping described. Now if g is a limit
point of the image of F , {f (z) | f ∈ F}, since the mapping is continuous.
So the image of F− is a subset of {f (z) | f ∈ F}−. The only points not
in the image of F would have to be limit points of {f (z) | f ∈ F}−. But a
limit point of {f (z) | f ∈ F}−. is also a limit point of F− and since F− is
closed, then F− must also contain such points. Hence the image of
F− = {f (z) | f ∈ F}− an d{f (z) | f ∈ F} has a compact closure. This
gives (a).

Now for (b). Fix a point z0 ∈ G and let ε > 0. Choose R > 0 so that
K = B(zo ;R) ⊂ G . Then K is compact (by Heine-Borel; remember,
G ⊂ C). Since F is normal (by hypothesis) so Proposition VII.1.16 (with
δ = ε/3) implies that there are functions f1, f2, . . . , fn ∈ F such that there
for each f ∈ F there is at lease one fk with

sup{f (f (z), fk(z)) | z ∈ K} < ε/3. (1.24)
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Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 2).

Proof (continued). But since each fk ∈ C (G ,Ω) is continuous, then
there is a δ, 0 < δ < R, such that |z − z0| < δ implies that
d(fk(z), fk(z0)) < ε/3 for all 1 ≤ k ≤ n. Therefore if |z − z0| < δ, f ∈ F
an dk is chosen so that (1.24) holds, then by the Triangle Inequality

d(f (z), f (z0)) ≤ d(f (z), fk(z)) + d(fk(z), fk(z0)) + d(fk(z0), f (z0))

<
ε

3
+

ε

3
+

ε

3
= ε.

So F is equicontinuous at the point z0. Since z0 is arbitrary, F is
equicontinuous at each point of G and (b) holds.

(2) Now suppose F satisfies conditions (a) and (b). Let {zn} be an
enumeration of all the points in G with rational real and imaginary parts
(so the points form a sequence). Then for any z ∈ G an dδ > 0 there is
zn ∈ {zn} with |z − zn| < δ. For each n ≥ 1 let
Xn = {f (zn) | f ∈ F}− ⊂ Ω. From hypothesis (a), (Xn, d) is a compact
metric space.
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ε

3
+

ε

3
+

ε

3
= ε.
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Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 3).

Proof (continued). So by Proposition VII.1.18 Claim 1, X =
∏∞

n−=1 Xn

is a compact metric space. Fro f ∈ F define f̃ ∈ X by
f = {f (z1), f (z2), . . .}. Let {fk} be a sequence in F . We will show that
{fk} has a convergent subsequence and hence conclude that F is normal
(actually, we will conclude that {fk} itself is convergent, so under (a) and
(b), every sequence in F is convergent!). So {f̃k} is a sequence in the
compact metric space X . Thus, by Corollary II.4.6, there is ξ ∈ X and a
subsequence of {fk} which converges to ξ.

“For the sake of convenient
notation” we eliminate the layer of subscripts denoting this subsequence of
{f̃k} simply as {f̃k} and so we notationally have ξ = lim f̃k . Thus, by
Proposition VII.1.18 Claim 2,

lim
k→∞

fk(zn) = ωn (1.25)

where ξ = {ωn}. We’ll show sequence {fn} is Cauchy in C (G ,Ω) and,
since C (G ,Ω) is complete by Proposition VII.1.12, the existence of f is
guaranteed.
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Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 4).

Proof (continued). Let K be a compact subset of G and let ε > 0. By
Lemma VII.1.10(b) it suffices to show that {fn} converges to f on K
uniformly. That is, we need J ∈ N such that for j , k ≥ J we have

sup{d(fk(z), fj(z)) | z ∈ K} < ε (1.26)

(here we are using “uniformly Cauchy” but the Cauchyness implies
[pointwise] convergence and then uniform convergence). Since K is
compact an d∂G = G− ∩ (C \ G )− is closed, then by Theorem II.5.17,
R = d(K , ∂G ) > 0. Let K1 = {z | d(z ,K ) ≤ R/2}. Since K is a compact
subset of C then K1 is compact and K ⊂ int(K1) ⊂ K1 ⊂ G . Since F is
equicontinuous at each point of G by hypothesis (b) and so F is
equicontinuous on K1 by Proposition VII.1.22.

So choose δ, 0 < δ < R/2,
such that if z , z ′ ∈ K and |z − z ′| < δ then

d(f (z), f (z ′)) < ε/3 for all f ∈ F . (1.27)

() Complex Analysis September 11, 2017 30 / 32



Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 4).

Proof (continued). Let K be a compact subset of G and let ε > 0. By
Lemma VII.1.10(b) it suffices to show that {fn} converges to f on K
uniformly. That is, we need J ∈ N such that for j , k ≥ J we have

sup{d(fk(z), fj(z)) | z ∈ K} < ε (1.26)

(here we are using “uniformly Cauchy” but the Cauchyness implies
[pointwise] convergence and then uniform convergence). Since K is
compact an d∂G = G− ∩ (C \ G )− is closed, then by Theorem II.5.17,
R = d(K , ∂G ) > 0. Let K1 = {z | d(z ,K ) ≤ R/2}. Since K is a compact
subset of C then K1 is compact and K ⊂ int(K1) ⊂ K1 ⊂ G . Since F is
equicontinuous at each point of G by hypothesis (b) and so F is
equicontinuous on K1 by Proposition VII.1.22. So choose δ, 0 < δ < R/2,
such that if z , z ′ ∈ K and |z − z ′| < δ then

d(f (z), f (z ′)) < ε/3 for all f ∈ F . (1.27)

() Complex Analysis September 11, 2017 30 / 32



Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 4).

Proof (continued). Let K be a compact subset of G and let ε > 0. By
Lemma VII.1.10(b) it suffices to show that {fn} converges to f on K
uniformly. That is, we need J ∈ N such that for j , k ≥ J we have

sup{d(fk(z), fj(z)) | z ∈ K} < ε (1.26)

(here we are using “uniformly Cauchy” but the Cauchyness implies
[pointwise] convergence and then uniform convergence). Since K is
compact an d∂G = G− ∩ (C \ G )− is closed, then by Theorem II.5.17,
R = d(K , ∂G ) > 0. Let K1 = {z | d(z ,K ) ≤ R/2}. Since K is a compact
subset of C then K1 is compact and K ⊂ int(K1) ⊂ K1 ⊂ G . Since F is
equicontinuous at each point of G by hypothesis (b) and so F is
equicontinuous on K1 by Proposition VII.1.22. So choose δ, 0 < δ < R/2,
such that if z , z ′ ∈ K and |z − z ′| < δ then

d(f (z), f (z ′)) < ε/3 for all f ∈ F . (1.27)

() Complex Analysis September 11, 2017 30 / 32



Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 5).

Proof (continued). Now let D = {zn} ∩ K1. If z ∈ K then there is a zn

with |z − zn| < δ since {zn} is dense in G . But δ < R/2 implies that
d(zn,K ) < R/2, and so zn ∈ K1 (by the definition of K1), or zn ∈ D by
the definition of D. So every element z of K is within δ of an element of
D. Hence {B(w ; δ) | w ∈ D} is an open cover of K . Since K is compact,
there are w1,w2, . . . ,wn ∈ D such that K ⊂ ∪n

i=1B(wi ; δ). Since
limk→∞ fk(wj) exists for 1 ≤ i ≤ n by (1.25), there is J ∈ N such that for
k, j ≥ J we have

d(fk(wi ), fj(wi )) < ε/3 for i = 1, 2, . . . , n. (1.28)

Let z ∈ K be arbitrary and let wi be such that |wi − z | < δ (remember
B(wi ; δ), i = 1, 2, . . . , n is a covering of K ).
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Theorem VII.1.23. Arzela-Ascoli Theorem

Theorem VII.1.23 (continued 6).

Proof (continued). For j , k ≥ J we have from (1.27) and (1.28) that

d(fk(z), fj(z)) ≤ d(fk(z), fk(wi )) + d(fk(wi ), fj(wi )) + d(fj(wi ), fj(z))

<
ε

3
+

ε

3
+

ε

3
= ε

(the first inequality follows from (1.27) since (1.27) holds for all f ∈ F
and fk ∈ F ; the second inequality holds from (1.28); the third inequality
follows as the first). Since z was arbitrary, we have (1.26): for j , k ≥ J,
sup{d(fk(z), fj(z)) | z ∈ K} < ε (since K is compact, the “sup” can be
replaced with “max” and the strict inequality remains). So {fk} is
uniformly continuous on K and by Lemma VII.1.10(b), {fk} converges.
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