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Theorem VII.2.1

Theorem VII.1.2

Theorem VII.2.1. If {fn} is a sequence in H(G ) and f belongs to
C (G , C) such that limn→∞ fn = f , then f is analytic and the derivatives

satisfy limn→∞ f
(k)
n = f (k) for each k ∈ N.

Proof. First, we show that f is analytic using Morera’s Theorem (Theorem
IV.5.10). Let T be a triangle contained inside a disk D ⊂ G . Since T is a
compact set and {fn} → f by hypothesis, then {fn} converges to f
uniformly on T by Proposition VII.1.10(b).

Since each fn is analytic and T
is closed,

∫
T fn = 0 by Cauchy’s Theorem–Second Version (Theorem

VI.6.6). Since the convergence on T is uniform then by Lemma IV.2.7

0 = lim
n→∞

(∫
T

fn

)
=

∫
T

(
lim

n→∞
fn

)
=

∫
T

f .

So by Morera’s Theorem, f is analytic in every disk D ⊂ G and so f is
analytic in G .
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Theorem VII.2.1

Theorem VII.1.2 (continued 1)

Theorem VII.2.1. If {fn} is a sequence in H(G ) and f belongs to
C (G , C) such that limn→∞ fn = f , then f is analytic and the derivatives

satisfy limn→∞ f
(k)
n = f (k) for each k ∈ N.

Proof (continued). Now for the derivatives. Let D = B(a; r) ⊂ G . Then
there is R > r such that B(a;R) ⊂ G . If γ is the circle z = a + Re it ,
t ∈ [0, 2π], then by Cauchy’s Integral Formula (actually, Corollary IV.5.9)
for z ∈ D we have

f
(k)
n (z) =

k!

2πi

∫
γ

fn(w)

(w − z)k+1
dw , f (k)(z) =

k!

2πi

∫
γ

f (w)

(w − z)k+1
dw ,

and so f
(k)
n (z)− f (k)(z) =

k!

2πi

∫
γ

fn(w)− f (w)

(w − z)k+1
dw .

Let Mn = max{|fn(w)− f (w)| | |w − a| = R}.
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Theorem VII.2.1

Theorem VII.1.2 (continued 2)

Proof (continued). By Proposition IV.1.17(b),

|f (k)
n (z)− f (k)(z)| =

k!

2π

∣∣∣∣∫
γ

fn(w)− f (w)

(w − z)k+1
dw

∣∣∣∣
≤ k!

2π

∫
γ

|fn(w)− f (w)|
|w − z |k+1

|dw |

≤ k!

2π

Mn2πR

(R − r)k+1
for |z − a| ≤ r ∗

=
Mnk!R

(R − r)k+1
. (2.2)

*With |z − a| ≤ r and |w − a| = R we have |w − z | ≥ R − r , or
1/|w − z | ≤ 1/(R − r):

() Complex Analysis July 8, 2017 5 / 12



Theorem VII.2.1

Theorem VII.1.2 (continued 3)

Theorem VII.2.1. If {fn} is a sequence in H(G ) and f belongs to
C (G , C) such that limn→∞ fn = f , then f is analytic and the derivatives

satisfy limn→∞ f
(k)
n = f (k) for each k ∈ N.

Proof (continued). Since fn → f in C (G , C), then by Proposition
VII.1.10(b), fn → f uniformly on compact set B(a;R) and so lim Mn = 0.

So by (2.2), we have that f
(k)
n → f (k) uniformly on B(a; r) ⊂ B(a;R).

Now if K is an arbitrary compact (closed and bounded) subset of G ⊂ C
and 0 < r < d(K , ∂G ) then there are (finitely many) a1, a2, . . . , an ∈ K

such that K ⊂ ∪n
j=1B(aj ; r) since K is compact. Since f

(k)
n → f (k)

uniformly on each B(aj ; r) ⊂ B(aj ; r) for j = 1, 2, . . . , n, then the
convergence is uniform on K .

Since uniform convergence implies

convergence with respect to ρ as commented above, then f
(k)
n → f (k) is

C (G , C) for each k ≥ 1.
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Theorem VII.2.5. Hurwitz’s Theorem.

Theorem VII.2.5

Theorem VII.2.5. Hurwitz’s Theorem. Let G be a region and suppose
the sequence {fn} in H(G ) converges to f . If f 6≡ 0, B(a;R) ⊂ G , and
f (z) 6= 0 for |z − a| = R then there is an integer N such that for n ≥ N, f
and fn have the same number of zeros in B(a;R).

Proof. Since f (z) 6= 0 for |z − z | = R, then

δ = inf{|f (z)| | |z − a| = R} > 0

since this is the distance between the compact set of real numbers
{|f (z)| | |z − a| = R} and the closed set {0} ⊂ R. By Theorem II.5.17.

Since |z − a| = R is a compact set, then by Proposition VII.1.10(b) fn → f
uniformly on |z − a| = R so there is N ∈ N such that if n ≥ N and
|z − a| = R then fn(z) 6= 0, or |f (z)− fn(z)| < δ/2 < |f (z)|+ |fn(z)|. So
by Rouche’s Theorem (Theorem V.3.8), f and fn have the same number of
zeros in B(a;R).
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Theorem VII.2.9. Montel’s Theorem

Theorem VII.2.9. Montel’s Theorem

Theorem VII.2.9. Montel’s Theorem. A family F ⊂ H(G ) if normal if
and only if F is locally bounded.

Proof. Let F be normal. ASSUME F is not locally bounded.

By Lemma
VII.2.8, there is a compact set K ⊂ G such that
sup{|f (z)| | z ∈ K , f ∈ F} = ∞. That is, there is a sequence {fn} ⊂ F
such that sup{|fn(z)| | z ∈ z ∈ K} = ∞. That is, there is a sequence
{fn} ⊂ F such that sup{|fn(z)| | z ∈ K} ≥ n. Since F is normal then (by
definition of normal) there is f ∈ H(G ) and a subsequence {fnk

} such that
fnk

→ f (with respect to the metric ρ on C (G , C) and so by Theorem
VII.1.10(b), fnk

→ f uniformly on K . Therefore
sup{|fnk

(z)− f (z)| | z ∈ K} → 0 as k →∞. Since f is continuous and K
is compact then there exists M ≥ 0 such that |f (z)| ≤ M for all z ∈ K .
Now for all z ∈ K we have

|fnk
(z)| = |fnk

(z)−f (z)+f (z)| ≤ |fnk
(z)−f (z)|+|f (z)| ≤ |fnk

(z)−f (z)|+M,

. . .
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Theorem VII.2.9. Montel’s Theorem

Theorem VII.2.9. Montel’s Theorem (continued 1)

Proof (continued). . . . and so

nk ≤ sup{|fnk
(z)| | z ∈ K} ≤ sup{|fnk

(z)− f (z)| | z ∈ K}+ M. (∗)
Now nk →∞ as k →∞, but this implies that the limit as k →∞ in the
left had side of (∗)is ∞ while the limit of the right hand side is M, a
CONTRADICTION. So the assumption is false and f is locally bounded.

Let F be locally bounded. We will use the Arzela-Ascoli Theorem
(Theorem VII.1.23) to prove that F is normal. Let a ∈ G . Then the local
boundedness of F implies that for some M ≥ 0 and some r ≥ 0 we have
|f (z)| ≤ M for |z − a| < r and for all f ∈ F . So, in particular,
{f (z) | f ∈ F} is bounded and so has compact closure (by Heine-Borel).
That is, part (a) of the Arzela-Ascoli Theorem is satisfied. Again, fix
a ∈ G and let ε > 0. The local boundedness of F implies that there is
r > 0 and M > 0 such that B(a; r) ⊂ G and |f (z)| ≤ M for all z ∈ B(a; r)
and for all f ∈ F (technically, we should have B(a; r) ⊂ G , but we can
still draw our conclusion by adjusting r to r/2, say).
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still draw our conclusion by adjusting r to r/2, say).
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Theorem VII.2.9. Montel’s Theorem

Theorem VII.2.9. Montel’s Theorem (continued 1)

Proof (continued). Let |z − a| < r/2 and f ∈ F . Set γ(t) = a + re it ,
t ∈ [0, 2π]. By Cauchy’s Integral Formula (first version, Theorem IV.5.4)
applied to f (a) and f (z) we have:

|f (a)− f (z)| =

∣∣∣∣ 1

2πi

∫
γ

f (w)

w − a
dw − 1

2πi

∫
γ

f (w)

w − z
dw

∣∣∣∣
=

1

2π

∣∣∣∣∫
γ

f (w)(w − z)− f (w)(w − a)

(w − a)(w − z)
dw

∣∣∣∣
=

1

2π

∫
γ

∣∣∣∣ f (w)(a− z)

(w − a)(w − z)

∣∣∣∣ |dw |

≤ M|a− z |
2π

∫
γ

|dw |
|w − a||w − z |

≤ M|a− z |
2π

2πr

r(r/2)
since |w − z | = |w − a + a− z |

≥ |w − a| − |a− z | = r − r

2
=

r

2
because |z − a| < r

2

=
2M

r
|a− z |
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Theorem VII.2.9. Montel’s Theorem

Theorem VII.2.9. Montel’s Theorem (continued 2)

Proof (continued). . . . and so

|f (a)− f (z)| ≤ 2M

r
|a− z |.

Let δ < min{r/2, rε/(4M)}. Then |a− z | < δ implies

|f (a)− f (z)| ≤ 2M|a− z |/r since |a− z | < r/2

< (2M/r)(rε/(4M)) since |a− z | < rε/(4M)

= ε/2 < ε.

Since f ∈ F was arbitrary, we have that F is equicontinuous at point a.
Since a is an arbitrary point of G , then part (b) of the Arzela-Ascoli
Theorem is satisfied. The Arzela-Ascoli Theorem then implies that F is
normal, as claimed.
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Corollary VII.2.10

Corollary VII.2.10

Corollary VII.2.10. A set F ⊂ H(G ) is compact if and only if it is closed
and locally bounded.

Proof. Let F ⊂ H(G ) be closed and locally bounded. By Montel’s
Theorem (Theorem VII.2.9), F is normal. So for any sequence {fn} ⊂ F ,
there is (by the definition of normal) a subsequence {fnk

} of {fn} which
converges in H(G ) to, say, f . Since F is closed, the first limit function
f ∈ F . So F is sequentially compact. By Theorem II.4.9, F is compact.

Let F be compact. Then F is closed by Theorem II.4.3(a). So F has
compact closure and so by Proposition VII.1.15 F is normal. By Montel’s
Theorem, F is locally bounded.
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