Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions

VII.2. Spaces of Analytic Functions—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

2 Theorem VII.2.5. Hurwitz's Theorem.

3 Theorem VII.2.9. Montel's Theorem

4 Corollary VII.2.10

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof. First, we show that f is analytic using Morera's Theorem (Theorem IV.5.10). Let T be a triangle contained inside a disk $D \subset G$. Since T is a compact set and $\{f_n\} \to f$ by hypothesis, then $\{f_n\}$ converges to f uniformly on T by Proposition VII.1.10(b).

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof. First, we show that f is analytic using Morera's Theorem (Theorem IV.5.10). Let T be a triangle contained inside a disk $D \subset G$. Since T is a compact set and $\{f_n\} \rightarrow f$ by hypothesis, then $\{f_n\}$ converges to f uniformly on T by Proposition VII.1.10(b). Since each f_n is analytic and T is closed, $\int_T f_n = 0$ by Cauchy's Theorem–Second Version (Theorem VI.6.6). Since the convergence on T is uniform then by Lemma IV.2.7

$$0 = \lim_{n \to \infty} \left(\int_{\mathcal{T}} f_n \right) = \int_{\mathcal{T}} \left(\lim_{n \to \infty} f_n \right) = \int_{\mathcal{T}} f.$$

So by Morera's Theorem, f is analytic in every disk $D \subset G$ and so f is analytic in G.

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof. First, we show that f is analytic using Morera's Theorem (Theorem IV.5.10). Let T be a triangle contained inside a disk $D \subset G$. Since T is a compact set and $\{f_n\} \rightarrow f$ by hypothesis, then $\{f_n\}$ converges to f uniformly on T by Proposition VII.1.10(b). Since each f_n is analytic and T is closed, $\int_T f_n = 0$ by Cauchy's Theorem–Second Version (Theorem VI.6.6). Since the convergence on T is uniform then by Lemma IV.2.7

$$0 = \lim_{n \to \infty} \left(\int_{\mathcal{T}} f_n \right) = \int_{\mathcal{T}} \left(\lim_{n \to \infty} f_n \right) = \int_{\mathcal{T}} f.$$

So by Morera's Theorem, f is analytic in every disk $D \subset G$ and so f is analytic in G.

Theorem VII.1.2 (continued 1)

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof (continued). Now for the derivatives. Let $D = \overline{B}(a; r) \subset G$. Then there is R > r such that $\overline{B}(a; R) \subset G$. If γ is the circle $z = a + Re^{it}$, $t \in [0, 2\pi]$, then by Cauchy's Integral Formula (actually, Corollary IV.5.9) for $z \in D$ we have

$$f_n^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f_n(w)}{(w-z)^{k+1}} \, dw, \ f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \, dw,$$

and so
$$f_n^{(k)}(z) - f^{(k)}(z) = rac{k!}{2\pi i} \int_\gamma rac{f_n(w) - f(w)}{(w - z)^{k+1}} \, dw.$$

Let $M_n = \max\{|f_n(w) - f(w)| \mid |w - a| = R\}.$

Theorem VII.1.2 (continued 1)

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof (continued). Now for the derivatives. Let $D = \overline{B}(a; r) \subset G$. Then there is R > r such that $\overline{B}(a; R) \subset G$. If γ is the circle $z = a + Re^{it}$, $t \in [0, 2\pi]$, then by Cauchy's Integral Formula (actually, Corollary IV.5.9) for $z \in D$ we have

$$f_n^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f_n(w)}{(w-z)^{k+1}} \, dw, \ f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \, dw,$$

and so
$$f_n^{(k)}(z) - f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f_n(w) - f(w)}{(w - z)^{k+1}} dw.$$

Let $M_n = \max\{|f_n(w) - f(w)| \mid |w - a| = R\}.$

Theorem VII.1.2 (continued 2)

Proof (continued). By Proposition IV.1.17(b),

$$\begin{aligned} |f_n^{(k)}(z) - f^{(k)}(z)| &= \frac{k!}{2\pi} \left| \int_{\gamma} \frac{f_n(w) - f(w)}{(w - z)^{k+1}} \, dw \right| \\ &\leq \frac{k!}{2\pi} \int_{\gamma} \frac{|f_n(w) - f(w)|}{|w - z|^{k+1}} \, |dw| \\ &\leq \frac{k!}{2\pi} \frac{M_n 2\pi R}{(R - r)^{k+1}} \text{ for } |z - a| \leq r * \\ &= \frac{M_n k! R}{(R - r)^{k+1}}. \end{aligned}$$

$$\begin{aligned} |z - a| \leq r \text{ and } |w - a| = R \text{ we have } |w - z| \geq R - r, \text{ or } \end{aligned}$$

*With $|z - a| \le r$ and |w - a| = R we have $|w - z| \ge R - r$, or $1/|w - z| \le 1/(R - r)$:

Theorem VII.1.2 (continued 3)

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof (continued). Since $f_n \to f$ in $C(G, \mathbb{C})$, then by Proposition VII.1.10(b), $f_n \to f$ uniformly on compact set $\overline{B}(a; R)$ and so $\lim M_n = 0$. So by (2.2), we have that $f_n^{(k)} \to f^{(k)}$ uniformly on $\overline{B}(a; r) \subset \overline{B}(a; R)$. Now if K is an arbitrary compact (closed and bounded) subset of $G \subset \mathbb{C}$ and $0 < r < d(K, \partial G)$ then there are (finitely many) $a_1, a_2, \ldots, a_n \in K$ such that $K \subset \bigcup_{j=1}^n B(a_j; r)$ since K is compact. Since $f_n^{(k)} \to f^{(k)}$ uniformly on each $B(a_j; r) \subset \overline{B}(a_j; r)$ for $j = 1, 2, \ldots, n$, then the convergence is uniform on K.

Theorem VII.1.2 (continued 3)

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof (continued). Since $f_n \to f$ in $C(G, \mathbb{C})$, then by Proposition VII.1.10(b), $f_n \to f$ uniformly on compact set $\overline{B}(a; R)$ and so lim $M_n = 0$. So by (2.2), we have that $f_n^{(k)} \to f^{(k)}$ uniformly on $\overline{B}(a; r) \subset \overline{B}(a; R)$. Now if K is an arbitrary compact (closed and bounded) subset of $G \subset \mathbb{C}$ and $0 < r < d(K, \partial G)$ then there are (finitely many) $a_1, a_2, \ldots, a_n \in K$ such that $K \subset \cup_{j=1}^{n} B(a_j; r)$ since K is compact. Since $f_n^{(k)} \to f^{(k)}$ uniformly on each $B(a_i; r) \subset \overline{B}(a_i; r)$ for j = 1, 2, ..., n, then the convergence is uniform on K. Since uniform convergence implies convergence with respect to ρ as commented above, then $f_n^{(k)} \to f^{(k)}$ is $C(G,\mathbb{C})$ for each $k \geq 1$.

Theorem VII.1.2 (continued 3)

Theorem VII.2.1. If $\{f_n\}$ is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $\lim_{n\to\infty} f_n = f$, then f is analytic and the derivatives satisfy $\lim_{n\to\infty} f_n^{(k)} = f^{(k)}$ for each $k \in \mathbb{N}$.

Proof (continued). Since $f_n \to f$ in $C(G, \mathbb{C})$, then by Proposition VII.1.10(b), $f_n \to f$ uniformly on compact set $\overline{B}(a; R)$ and so lim $M_n = 0$. So by (2.2), we have that $f_n^{(k)} \to f^{(k)}$ uniformly on $\overline{B}(a; r) \subset \overline{B}(a; R)$. Now if K is an arbitrary compact (closed and bounded) subset of $G \subset \mathbb{C}$ and $0 < r < d(K, \partial G)$ then there are (finitely many) $a_1, a_2, \ldots, a_n \in K$ such that $K \subset \bigcup_{i=1}^{n} B(a_i; r)$ since K is compact. Since $f_n^{(k)} \to f^{(k)}$ uniformly on each $B(a_i; r) \subset \overline{B}(a_i; r)$ for j = 1, 2, ..., n, then the convergence is uniform on K. Since uniform convergence implies convergence with respect to ρ as commented above, then $f_n^{(k)} \to f^{(k)}$ is $C(G,\mathbb{C})$ for each $k \geq 1$.

Theorem VII.2.5. Hurwitz's Theorem. Let G be a region and suppose the sequence $\{f_n\}$ in H(G) converges to f. If $f \neq 0$, $\overline{B}(a; R) \subset G$, and $f(z) \neq 0$ for |z - a| = R then there is an integer N such that for $n \ge N$, f and f_n have the same number of zeros in B(a; R).

Proof. Since $f(z) \neq 0$ for |z - z| = R, then

$$\delta = \inf\{|f(z)| \mid |z - a| = R\} > 0$$

since this is the distance between the compact set of real numbers $\{|f(z)| \mid |z - a| = R\}$ and the closed set $\{0\} \subset \mathbb{R}$. By Theorem II.5.17.

Theorem VII.2.5. Hurwitz's Theorem. Let G be a region and suppose the sequence $\{f_n\}$ in H(G) converges to f. If $f \neq 0$, $\overline{B}(a; R) \subset G$, and $f(z) \neq 0$ for |z - a| = R then there is an integer N such that for $n \ge N$, f and f_n have the same number of zeros in B(a; R).

Proof. Since $f(z) \neq 0$ for |z - z| = R, then

$$\delta = \inf\{|f(z)| \mid |z-a| = R\} > 0$$

since this is the distance between the compact set of real numbers $\{|f(z)| \mid |z - a| = R\}$ and the closed set $\{0\} \subset \mathbb{R}$. By Theorem II.5.17. Since |z - a| = R is a compact set, then by Proposition VII.1.10(b) $f_n \rightarrow f$ uniformly on |z - a| = R so there is $N \in \mathbb{N}$ such that if $n \ge N$ and |z - a| = R then $f_n(z) \ne 0$, or $|f(z) - f_n(z)| < \delta/2 < |f(z)| + |f_n(z)|$. So by Rouche's Theorem (Theorem V.3.8), f and f_n have the same number of zeros in B(a; R).

Theorem VII.2.5. Hurwitz's Theorem. Let G be a region and suppose the sequence $\{f_n\}$ in H(G) converges to f. If $f \neq 0$, $\overline{B}(a; R) \subset G$, and $f(z) \neq 0$ for |z - a| = R then there is an integer N such that for $n \ge N$, f and f_n have the same number of zeros in B(a; R).

Proof. Since $f(z) \neq 0$ for |z - z| = R, then

$$\delta = \inf\{|f(z)| \mid |z - a| = R\} > 0$$

since this is the distance between the compact set of real numbers $\{|f(z)| \mid |z - a| = R\}$ and the closed set $\{0\} \subset \mathbb{R}$. By Theorem II.5.17. Since |z - a| = R is a compact set, then by Proposition VII.1.10(b) $f_n \to f$ uniformly on |z - a| = R so there is $N \in \mathbb{N}$ such that if $n \ge N$ and |z - a| = R then $f_n(z) \ne 0$, or $|f(z) - f_n(z)| < \delta/2 < |f(z)| + |f_n(z)|$. So by Rouche's Theorem (Theorem V.3.8), f and f_n have the same number of zeros in B(a; R).

Theorem VII.2.9. Montel's Theorem. A family $\mathcal{F} \subset H(G)$ if normal if and only if \mathcal{F} is locally bounded.

Proof. Let \mathcal{F} be normal. ASSUME \mathcal{F} is not locally bounded.

Theorem VII.2.9. Montel's Theorem. A family $\mathcal{F} \subset H(G)$ if normal if and only if \mathcal{F} is locally bounded.

Proof. Let \mathcal{F} be normal. ASSUME \mathcal{F} is not locally bounded. By Lemma VII.2.8, there is a compact set $K \subset G$ such that $\sup\{|f(z)| \mid z \in K, f \in \mathcal{F}\} = \infty$. That is, there is a sequence $\{f_n\} \subset \mathcal{F}$ such that $\sup\{|f_n(z)| \mid z \in z \in K\} = \infty$. That is, there is a sequence $\{f_n\} \subset \mathcal{F}$ such that $\sup\{|f_n(z)| \mid z \in K\} \ge n$. Since \mathcal{F} is normal then (by definition of normal) there is $f \in H(G)$ and a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \to f$ (with respect to the metric ρ on $C(G, \mathbb{C})$ and so by Theorem VII.1.10(b), $f_{n_k} \to f$ uniformly on K.

Theorem VII.2.9. Montel's Theorem. A family $\mathcal{F} \subset H(G)$ if normal if and only if \mathcal{F} is locally bounded.

Proof. Let \mathcal{F} be normal. ASSUME \mathcal{F} is not locally bounded. By Lemma VII.2.8, there is a compact set $K \subset G$ such that $\sup\{|f(z)| \mid z \in K, f \in \mathcal{F}\} = \infty$. That is, there is a sequence $\{f_n\} \subset \mathcal{F}$ such that $\sup\{|f_n(z)| \mid z \in z \in K\} = \infty$. That is, there is a sequence $\{f_n\} \subset \mathcal{F}$ such that $\sup\{|f_n(z)| \mid z \in K\} \geq n$. Since \mathcal{F} is normal then (by definition of normal) there is $f \in H(G)$ and a subsequence $\{f_{n_k}\}$ such that $f_{n_{k}} \to f$ (with respect to the metric ρ on $C(G, \mathbb{C})$ and so by Theorem VII.1.10(b), $f_{n_k} \rightarrow f$ uniformly on K. Therefore $\sup\{|f_{n_k}(z) - f(z)| \mid z \in K\} \to 0 \text{ as } k \to \infty.$ Since f is continuous and K is compact then there exists $M \ge 0$ such that $|f(z)| \le M$ for all $z \in K$. Now for all $z \in K$ we have

 $|f_{n_k}(z)| = |f_{n_k}(z) - f(z) + f(z)| \le |f_{n_k}(z) - f(z)| + |f(z)| \le |f_{n_k}(z) - f(z)| + M,$

Theorem VII.2.9. Montel's Theorem. A family $\mathcal{F} \subset H(G)$ if normal if and only if \mathcal{F} is locally bounded.

Proof. Let \mathcal{F} be normal. ASSUME \mathcal{F} is not locally bounded. By Lemma VII.2.8, there is a compact set $K \subset G$ such that $\sup\{|f(z)| \mid z \in K, f \in \mathcal{F}\} = \infty$. That is, there is a sequence $\{f_n\} \subset \mathcal{F}$ such that $\sup\{|f_n(z)| \mid z \in z \in K\} = \infty$. That is, there is a sequence $\{f_n\} \subset \mathcal{F}$ such that $\sup\{|f_n(z)| \mid z \in K\} \geq n$. Since \mathcal{F} is normal then (by definition of normal) there is $f \in H(G)$ and a subsequence $\{f_{n_k}\}$ such that $f_{n_{k}} \to f$ (with respect to the metric ρ on $C(G, \mathbb{C})$ and so by Theorem VII.1.10(b), $f_{n_k} \rightarrow f$ uniformly on K. Therefore $\sup\{|f_{n_{\iota}}(z) - f(z)| \mid z \in K\} \to 0 \text{ as } k \to \infty.$ Since f is continuous and K is compact then there exists $M \ge 0$ such that $|f(z)| \le M$ for all $z \in K$. Now for all $z \in K$ we have

 $|f_{n_k}(z)| = |f_{n_k}(z) - f(z) + f(z)| \le |f_{n_k}(z) - f(z)| + |f(z)| \le |f_{n_k}(z) - f(z)| + M,$

. . .

Proof (continued). ... and so

 $n_k \leq \sup\{|f_{n_k}(z)| \mid z \in K\} \leq \sup\{|f_{n_k}(z) - f(z)| \mid z \in K\} + M.$ (*)

Now $n_k \to \infty$ as $k \to \infty$, but this implies that the limit as $k \to \infty$ in the left had side of (*) is ∞ while the limit of the right hand side is M, a CONTRADICTION. So the assumption is false and f is locally bounded.

Proof (continued). ... and so

 $n_k \leq \sup\{|f_{n_k}(z)| \mid z \in K\} \leq \sup\{|f_{n_k}(z) - f(z)| \mid z \in K\} + M.$ (*)

Now $n_k \to \infty$ as $k \to \infty$, but this implies that the limit as $k \to \infty$ in the left had side of (*)is ∞ while the limit of the right hand side is M, a CONTRADICTION. So the assumption is false and f is locally bounded.

Let \mathcal{F} be locally bounded. We will use the Arzela-Ascoli Theorem (Theorem VII.1.23) to prove that \mathcal{F} is normal. Let $a \in G$. Then the local boundedness of \mathcal{F} implies that for some $M \ge 0$ and some $r \ge 0$ we have $|f(z)| \le M$ for |z - a| < r and for all $f \in \mathcal{F}$.

Proof (continued). ... and so

 $n_k \leq \sup\{|f_{n_k}(z)| \mid z \in K\} \leq \sup\{|f_{n_k}(z) - f(z)| \mid z \in K\} + M.$ (*)

Now $n_k \to \infty$ as $k \to \infty$, but this implies that the limit as $k \to \infty$ in the left had side of (*)is ∞ while the limit of the right hand side is M, a CONTRADICTION. So the assumption is false and f is locally bounded.

Let \mathcal{F} be locally bounded. We will use the Arzela-Ascoli Theorem (Theorem VII.1.23) to prove that \mathcal{F} is normal. Let $a \in G$. Then the local boundedness of \mathcal{F} implies that for some $M \ge 0$ and some $r \ge 0$ we have $|f(z)| \le M$ for |z - a| < r and for all $f \in \mathcal{F}$. So, in particular, $\{f(z) \mid f \in \mathcal{F}\}$ is bounded and so has compact closure (by Heine-Borel). That is, part (a) of the Arzela-Ascoli Theorem is satisfied. Again, fix $a \in G$ and let $\varepsilon > 0$.

Proof (continued). ... and so

 $n_k \leq \sup\{|f_{n_k}(z)| \mid z \in K\} \leq \sup\{|f_{n_k}(z) - f(z)| \mid z \in K\} + M.$ (*)

Now $n_k \to \infty$ as $k \to \infty$, but this implies that the limit as $k \to \infty$ in the left had side of (*)is ∞ while the limit of the right hand side is M, a CONTRADICTION. So the assumption is false and f is locally bounded.

Let \mathcal{F} be locally bounded. We will use the Arzela-Ascoli Theorem (Theorem VII.1.23) to prove that \mathcal{F} is normal. Let $a \in G$. Then the local boundedness of \mathcal{F} implies that for some $M \ge 0$ and some $r \ge 0$ we have $|f(z)| \le M$ for |z - a| < r and for all $f \in \mathcal{F}$. So, in particular, $\{f(z) \mid f \in \mathcal{F}\}$ is bounded and so has compact closure (by Heine-Borel). That is, part (a) of the Arzela-Ascoli Theorem is satisfied. Again, fix $a \in G$ and let $\varepsilon > 0$. The local boundedness of \mathcal{F} implies that there is r > 0 and M > 0 such that $\overline{B}(a; r) \subset G$ and $|f(z)| \le M$ for all $z \in \overline{B}(a; r)$ and for all $f \in \mathcal{F}$ (technically, we should have $B(a; r) \subset G$, but we can still draw our conclusion by adjusting r to r/2, say).

Proof (continued). ... and so

 $n_k \leq \sup\{|f_{n_k}(z)| \mid z \in K\} \leq \sup\{|f_{n_k}(z) - f(z)| \mid z \in K\} + M.$ (*)

Now $n_k \to \infty$ as $k \to \infty$, but this implies that the limit as $k \to \infty$ in the left had side of (*) is ∞ while the limit of the right hand side is M, a CONTRADICTION. So the assumption is false and f is locally bounded.

Let \mathcal{F} be locally bounded. We will use the Arzela-Ascoli Theorem (Theorem VII.1.23) to prove that \mathcal{F} is normal. Let $a \in G$. Then the local boundedness of \mathcal{F} implies that for some $M \ge 0$ and some $r \ge 0$ we have $|f(z)| \le M$ for |z - a| < r and for all $f \in \mathcal{F}$. So, in particular, $\{f(z) \mid f \in \mathcal{F}\}$ is bounded and so has compact closure (by Heine-Borel). That is, part (a) of the Arzela-Ascoli Theorem is satisfied. Again, fix $a \in G$ and let $\varepsilon > 0$. The local boundedness of \mathcal{F} implies that there is r > 0 and M > 0 such that $\overline{B}(a; r) \subset G$ and $|f(z)| \le M$ for all $z \in \overline{B}(a; r)$ and for all $f \in \mathcal{F}$ (technically, we should have $B(a; r) \subset G$, but we can still draw our conclusion by adjusting r to r/2, say).

Proof (continued). Let |z - a| < r/2 and $f \in \mathcal{F}$. Set $\gamma(t) = a + re^{it}$, $t \in [0, 2\pi]$. By Cauchy's Integral Formula (first version, Theorem IV.5.4) applied to f(a) and f(z) we have:

$$\begin{aligned} f(a) - f(z)| &= \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} dw - \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw \right| \\ &= \frac{1}{2\pi} \left| \int_{\gamma} \frac{f(w)(w - z) - f(w)(w - a)}{(w - a)(w - z)} dw \right| \\ &= \frac{1}{2\pi} \int_{\gamma} \left| \frac{f(w)(a - z)}{(w - a)(w - z)} \right| |dw| \\ &\leq \frac{M|a - z|}{2\pi} \int_{\gamma} \frac{|dw|}{|w - a||w - z|} \\ &\leq \frac{M|a - z|}{2\pi} \frac{2\pi r}{r(r/2)} \operatorname{since} |w - z| = |w - a + a - z| \\ &\geq |w - a| - |a - z| = r - \frac{r}{2} = \frac{r}{2} \operatorname{because} |z - a| < \frac{r}{2} \end{aligned}$$

Proof (continued). Let |z - a| < r/2 and $f \in \mathcal{F}$. Set $\gamma(t) = a + re^{it}$, $t \in [0, 2\pi]$. By Cauchy's Integral Formula (first version, Theorem IV.5.4) applied to f(a) and f(z) we have:

$$\begin{aligned} f(a) - f(z)| &= \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} dw - \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw \right| \\ &= \frac{1}{2\pi} \left| \int_{\gamma} \frac{f(w)(w - z) - f(w)(w - a)}{(w - a)(w - z)} dw \right| \\ &= \frac{1}{2\pi} \int_{\gamma} \left| \frac{f(w)(a - z)}{(w - a)(w - z)} \right| |dw| \\ &\leq \frac{M|a - z|}{2\pi} \int_{\gamma} \frac{|dw|}{|w - a||w - z|} \\ &\leq \frac{M|a - z|}{2\pi} \frac{2\pi r}{r(r/2)} \operatorname{since} |w - z| = |w - a + a - z| \\ &\geq |w - a| - |a - z| = r - \frac{r}{2} = \frac{r}{2} \operatorname{because} |z - a| < \frac{r}{2} \end{aligned}$$

Proof (continued). ... and so

$$|f(a)-f(z)| \leq \frac{2M}{r}|a-z|.$$

Let $\delta < \min\{r/2, r\varepsilon/(4M)\}$. Then $|a - z| < \delta$ implies

$$\begin{aligned} |f(a) - f(z)| &\leq 2M|a - z|/r \text{ since } |a - z| < r/2 \\ &< (2M/r)(r\varepsilon/(4M)) \text{ since } |a - z| < r\varepsilon/(4M) \\ &= \varepsilon/2 < \varepsilon. \end{aligned}$$

Since $f \in \mathcal{F}$ was arbitrary, we have that \mathcal{F} is equicontinuous at point *a*. Since *a* is an arbitrary point of *G*, then part (b) of the Arzela-Ascoli Theorem is satisfied. The Arzela-Ascoli Theorem then implies that \mathcal{F} is normal, as claimed.

Proof (continued). ... and so

$$|f(a)-f(z)| \leq \frac{2M}{r}|a-z|.$$

Let $\delta < \min\{r/2, r\varepsilon/(4M)\}$. Then $|a - z| < \delta$ implies

$$\begin{aligned} |f(a) - f(z)| &\leq 2M|a - z|/r \text{ since } |a - z| < r/2 \\ &< (2M/r)(r\varepsilon/(4M)) \text{ since } |a - z| < r\varepsilon/(4M) \\ &= \varepsilon/2 < \varepsilon. \end{aligned}$$

Since $f \in \mathcal{F}$ was arbitrary, we have that \mathcal{F} is equicontinuous at point *a*. Since *a* is an arbitrary point of *G*, then part (b) of the Arzela-Ascoli Theorem is satisfied. The Arzela-Ascoli Theorem then implies that \mathcal{F} is normal, as claimed.

Corollary VII.2.10

Corollary VII.2.10. A set $\mathcal{F} \subset H(G)$ is compact if and only if it is closed and locally bounded.

Proof. Let $\mathcal{F} \subset H(G)$ be closed and locally bounded. By Montel's Theorem (Theorem VII.2.9), \mathcal{F} is normal. So for any sequence $\{f_n\} \subset \mathcal{F}$, there is (by the definition of normal) a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ which converges in H(G) to, say, f. Since \mathcal{F} is closed, the first limit function $f \in \mathcal{F}$. So \mathcal{F} is sequentially compact. By Theorem II.4.9, \mathcal{F} is compact.

Corollary VII.2.10. A set $\mathcal{F} \subset H(G)$ is compact if and only if it is closed and locally bounded.

Proof. Let $\mathcal{F} \subset H(G)$ be closed and locally bounded. By Montel's Theorem (Theorem VII.2.9), \mathcal{F} is normal. So for any sequence $\{f_n\} \subset \mathcal{F}$, there is (by the definition of normal) a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ which converges in H(G) to, say, f. Since \mathcal{F} is closed, the first limit function $f \in \mathcal{F}$. So \mathcal{F} is sequentially compact. By Theorem II.4.9, \mathcal{F} is compact.

Let \mathcal{F} be compact. Then \mathcal{F} is closed by Theorem II.4.3(a). So \mathcal{F} has compact closure and so by Proposition VII.1.15 \mathcal{F} is normal. By Montel's Theorem, \mathcal{F} is locally bounded.

Corollary VII.2.10. A set $\mathcal{F} \subset H(G)$ is compact if and only if it is closed and locally bounded.

Proof. Let $\mathcal{F} \subset H(G)$ be closed and locally bounded. By Montel's Theorem (Theorem VII.2.9), \mathcal{F} is normal. So for any sequence $\{f_n\} \subset \mathcal{F}$, there is (by the definition of normal) a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ which converges in H(G) to, say, f. Since \mathcal{F} is closed, the first limit function $f \in \mathcal{F}$. So \mathcal{F} is sequentially compact. By Theorem II.4.9, \mathcal{F} is compact.

Let \mathcal{F} be compact. Then \mathcal{F} is closed by Theorem II.4.3(a). So \mathcal{F} has compact closure and so by Proposition VII.1.15 \mathcal{F} is normal. By Montel's Theorem, \mathcal{F} is locally bounded.