Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions
VII.3. Spaces of Meromorphic Functions-Proofs of Theorems

Table of contents

(1) Theorem VII.3.4
(2) Theorem VII.3.8

Theorem VII.3.4

Theorem VII.3.4. Let $\left\{f_{n}\right\}$ be a sequence in $M(G)$ and suppose $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Then either f is meromorphic or $f \equiv \infty$. If each f_{n} is analytic then either f is analytic on $f \equiv \infty$.

Proof. (I) Let $a \in G$ with $f(a) \neq \infty$. Set $M=|f(a)|$. By Proposition VII.3.3(a), there is $\rho>0$ such that $B_{\infty}(f(a) ; \rho) \subset B(f(z) ; M)$.

Theorem VII.3.4

Theorem VII.3.4. Let $\left\{f_{n}\right\}$ be a sequence in $M(G)$ and suppose $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Then either f is meromorphic or $f \equiv \infty$. If each f_{n} is analytic then either f is analytic on $f \equiv \infty$.

Proof. (I) Let $a \in G$ with $f(a) \neq \infty$. Set $M=|f(a)|$. By Proposition VII.3.3(a), there is $\rho>0$ such that $B_{\infty}(f(a) ; \rho) \subset B(f(z) ; M)$. Since $f_{n} \rightarrow f$ then there is $n_{0} \in \mathbb{N}$ such that $d\left(f_{n}(a), f(a)\right)<\rho / 2$ for all $n \geq n_{0}$ (since convergence in $C\left(G, \mathbb{C}_{\infty}\right)$ implies convergence on compact subsets of G and so implies pointwise convergence since $\{a\} \subset G \subset \mathbb{C}$ is compact). Now $\left\{f-, f_{1}, f_{2}, \ldots\right\} \subset C\left(G, \mathbb{C}_{\infty}\right)$ is compact since any open cover must include an open set containing f and this open set contains all by finitely many of the other elements of the set.

Theorem VII.3.4

Theorem VII.3.4. Let $\left\{f_{n}\right\}$ be a sequence in $M(G)$ and suppose $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Then either f is meromorphic or $f \equiv \infty$. If each f_{n} is analytic then either f is analytic on $f \equiv \infty$.

Proof. (I) Let $a \in G$ with $f(a) \neq \infty$. Set $M=|f(a)|$. By Proposition VII.3.3(a), there is $\rho>0$ such that $B_{\infty}(f(a) ; \rho) \subset B(f(z) ; M)$. Since $f_{n} \rightarrow f$ then there is $n_{0} \in \mathbb{N}$ such that $d\left(f_{n}(a), f(a)\right)<\rho / 2$ for all $n \geq n_{0}$ (since convergence in $C\left(G, \mathbb{C}_{\infty}\right)$ implies convergence on compact subsets of G and so implies pointwise convergence since $\{a\} \subset G \subset \mathbb{C}$ is compact). Now $\left\{f-, f_{1}, f_{2}, \ldots\right\} \subset C\left(G, \mathbb{C}_{\infty}\right)$ is compact since any open cover must include an open set containing f and this open set contains all by finitely many of the other elements of the set.
compact closure and by Proposition VII.1.15 it is normal. By the
Arzela-Ascoli Theorem (Theorem VII.1.23(b)) $\left\{f, f_{1}, f_{2}, \ldots\right\}$ is
equicontinuous. So by the definition of equicontinuity, there is $r_{1}>0$ such that $|z-a|<r_{1}$ implies $d\left(f_{n}(z), f_{n}(z)\right)<\rho / 2$.

Theorem VII.3.4

Theorem VII.3.4. Let $\left\{f_{n}\right\}$ be a sequence in $M(G)$ and suppose $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Then either f is meromorphic or $f \equiv \infty$. If each f_{n} is analytic then either f is analytic on $f \equiv \infty$.

Proof. (I) Let $a \in G$ with $f(a) \neq \infty$. Set $M=|f(a)|$. By Proposition VII.3.3(a), there is $\rho>0$ such that $B_{\infty}(f(a) ; \rho) \subset B(f(z) ; M)$. Since $f_{n} \rightarrow f$ then there is $n_{0} \in \mathbb{N}$ such that $d\left(f_{n}(a), f(a)\right)<\rho / 2$ for all $n \geq n_{0}$ (since convergence in $C\left(G, \mathbb{C}_{\infty}\right)$ implies convergence on compact subsets of G and so implies pointwise convergence since $\{a\} \subset G \subset \mathbb{C}$ is compact). Now $\left\{f-, f_{1}, f_{2}, \ldots\right\} \subset C\left(G, \mathbb{C}_{\infty}\right)$ is compact since any open cover must include an open set containing f and this open set contains all by finitely many of the other elements of the set. So $\left\{f, f_{1}, f_{2}, \ldots\right\}$ has compact closure and by Proposition VII.1.15 it is normal. By the Arzela-Ascoli Theorem (Theorem VII.1.23(b)) $\left\{f, f_{1}, f_{2}, \ldots\right\}$ is equicontinuous. So by the definition of equicontinuity, there is $r_{1}>0$ such that $|z-a|<r_{1}$ implies $d\left(f_{n}(z), f_{n}(z)\right)<\rho / 2$.

Theorem VII.3.4 (continued 1)

Proof (continued). So for $|z-a| \leq r<r_{1}$ and $n \geq n_{0}$ we have

$$
d\left(f_{n}(z), f(a)\right) \leq d\left(f_{n}(z), f_{n}(a)\right)+d\left(f_{n}(a), f(a)\right)<\rho / 2+\rho / 2=\rho .
$$

By the choice of $\rho, B_{\infty}(f(a) ; \rho) \subset B(f(a) ; M)$, so $d\left(f_{n}(z), f(a)\right)<\rho$ implies $f_{n}(z) \in B_{\infty}(f(a) ; \rho) \subset B(f(a) ; M)$ and so $\left|f_{n}(z)-f(a)\right|<M$. So for $z \in \bar{B}(a ; r)$ and $n \geq n_{0}$ we have

$$
\left|f_{n}(z)\right|=\left|f_{n}(z)-f(a)+f(a)\right| \leq\left|f_{n}(z)-f(a)\right|+|f(a)|<M+M=2 M .
$$

Since $f_{n}(z) \rightarrow f(z)$, then $f(z) \leq 2 M$ for all $z \in \bar{B}(a ; r)$. So

$$
\begin{aligned}
& d\left(f_{n}(z), f(z)\right)=\frac{2\left|f_{n}(z)-f(z)\right|}{\left\{\left(1+\left|f_{n}(z)\right|^{2}\right)\left(1+|f(z)|^{2}\right)\right\}^{1 / 2}} \\
& \geq \frac{2\left|f_{n}(z)-f(z)\right|}{\left\{\left(1+(2 M)^{2}\right)\left(1+(2 M)^{2}\right)\right\}^{1 / 2}}=\frac{2\left|f_{n}(z)-f(z)\right|}{1+4 M^{2}}
\end{aligned}
$$

Theorem VII.3.4 (continued 1)

Proof (continued). So for $|z-a| \leq r<r_{1}$ and $n \geq n_{0}$ we have

$$
d\left(f_{n}(z), f(a)\right) \leq d\left(f_{n}(z), f_{n}(a)\right)+d\left(f_{n}(a), f(a)\right)<\rho / 2+\rho / 2=\rho .
$$

By the choice of $\rho, B_{\infty}(f(a) ; \rho) \subset B(f(a) ; M)$, so $d\left(f_{n}(z), f(a)\right)<\rho$ implies $f_{n}(z) \in B_{\infty}(f(a) ; \rho) \subset B(f(a) ; M)$ and so $\left|f_{n}(z)-f(a)\right|<M$. So for $z \in \bar{B}(a ; r)$ and $n \geq n_{0}$ we have

$$
\left|f_{n}(z)\right|=\left|f_{n}(z)-f(a)+f(a)\right| \leq\left|f_{n}(z)-f(a)\right|+|f(a)|<M+M=2 M .
$$

Since $f_{n}(z) \rightarrow f(z)$, then $f(z) \leq 2 M$ for all $z \in \bar{B}(a ; r)$. So

$$
\begin{aligned}
& d\left(f_{n}(z), f(z)\right)=\frac{2\left|f_{n}(z)-f(z)\right|}{\left\{\left(1+\left|f_{n}(z)\right|^{2}\right)\left(1+|f(z)|^{2}\right)\right\}^{1 / 2}} \\
& \geq \frac{2\left|f_{n}(z)-f(z)\right|}{\left\{\left(1+(2 M)^{2}\right)\left(1+(2 M)^{2}\right)\right\}^{1 / 2}}=\frac{2\left|f_{n}(z)-f(z)\right|}{1+4 M^{2}}
\end{aligned}
$$

for $z \in \bar{B}(a ; r)$ and $n \geq n_{0}$.

Theorem VII.3.4 (continued 2)

Proof (continued). By Proposition VII.1.10, $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$ implies that $d\left(f_{n}(z), f(z)\right) \rightarrow 0$ uniformly on cmpact set $\bar{B}(a ; r)$. So the above inequality implies that $\left|f_{n}(z)-f(z)\right| \rightarrow 0$ uniformly in $\bar{B}(a ; r)$. Now for $n \geq n_{0},\left|f_{n}(z)\right| \leq 2 M$ for all $z \in \bar{B}(a ; r)$ so for $n \geq n_{0}$ each meromorphic f_{n} must be analytic on $B(a ; r)$ (since bounded f_{n} cannot have a pole in $B(a ; r)$). So $\left\{f_{n}\right\}_{n \geq n_{0}}$ is a sequence of analytic functions which converges uniformly on $\bar{B}(a ; r)$ (and so converges uniformly on any compact subset of $\bar{B}(a ; r))$ and then by Proposition VII.1.10 $\left\{f_{n}\right\}_{n \geq n_{0}}$ converges in $C\left(B(a ; r), \mathbb{C}_{\infty}\right)$. By Theorem VII.2.1, the limit function f is analytic on $B(a ; r)$. That is, if $f(a) \neq \infty$ then f is analytic in some neighborhood of a.

Theorem VII.3.4 (continued 2)

Proof (continued). By Proposition VII.1.10, $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$ implies that $d\left(f_{n}(z), f(z)\right) \rightarrow 0$ uniformly on cmpact set $\bar{B}(a ; r)$. So the above inequality implies that $\left|f_{n}(z)-f(z)\right| \rightarrow 0$ uniformly in $\bar{B}(a ; r)$. Now for $n \geq n_{0},\left|f_{n}(z)\right| \leq 2 M$ for all $z \in B(a ; r)$ so for $n \geq n_{0}$ each meromorphic f_{n} must be analytic on $B(a ; r)$ (since bounded f_{n} cannot have a pole in $B(a ; r)$). So $\left\{f_{n}\right\}_{n \geq n_{0}}$ is a sequence of analytic functions which converges uniformly on $\bar{B}(a ; r)$ (and so converges uniformly on any compact subset of $\bar{B}(a ; r)$) and then by Proposition VII.1.10 $\left\{f_{n}\right\}_{n \geq n_{0}}$ converges in $C\left(B(a ; r), \mathbb{C}_{\infty}\right)$. By Theorem VII.2.1, the limit function f is analytic on $B(a ; r)$. That is, if $f(a) \neq \infty$ then f is analytic in some neighborhood of a.
(II) Now suppose there is $a \in G$ with $f(a)=\infty$. For $g \in C\left(G, \mathbb{C}_{\infty}\right)$,

Theorem VII.3.4 (continued 2)

Proof (continued). By Proposition VII.1.10, $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$ implies that $d\left(f_{n}(z), f(z)\right) \rightarrow 0$ uniformly on cmpact set $\bar{B}(a ; r)$. So the above inequality implies that $\left|f_{n}(z)-f(z)\right| \rightarrow 0$ uniformly in $\bar{B}(a ; r)$. Now for $n \geq n_{0},\left|f_{n}(z)\right| \leq 2 M$ for all $z \in B(a ; r)$ so for $n \geq n_{0}$ each meromorphic f_{n} must be analytic on $B(a ; r)$ (since bounded f_{n} cannot have a pole in $B(a ; r)$). So $\left\{f_{n}\right\}_{n \geq n_{0}}$ is a sequence of analytic functions which converges uniformly on $\bar{B}(a ; r)$ (and so converges uniformly on any compact subset of $\bar{B}(a ; r)$) and then by Proposition VII.1.10 $\left\{f_{n}\right\}_{n \geq n_{0}}$ converges in $C\left(B(a ; r), \mathbb{C}_{\infty}\right)$. By Theorem VII.2.1, the limit function f is analytic on $B(a ; r)$. That is, if $f(a) \neq \infty$ then f is analytic in some neighborhood of a.
(II) Now suppose there is $a \in G$ with $f(a)=\infty$. For $g \in C\left(G, \mathbb{C}_{\infty}\right)$,
define $\left(\frac{1}{g}\right)=\left\{\begin{array}{cl}1 / g(z) & \text { if } g(z) \notin\{0, \infty\} \\ 0 & \text { if } g(z)=\infty \\ \infty & \text { if } g(z)=0 .\end{array}\right.$
Then $1 / g \in C\left(G, \mathbb{C}_{\infty}\right)$.

Theorem VII.3.4 (continued 3)

Proof (continued). Since, as observed above, $d\left(z_{1}, z_{2}\right)=d\left(1 / z_{1}, 1 / z_{2}\right)$ and $d(z, 0)=d(1 / z, \infty)$ for $z \neq 0$, then $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$ implies $1 / f_{n} \rightarrow 1 / f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Since each f_{n} is meromorphic on G, then each $1 / f_{n}$ is meromorphic on G. Since $(1 / f)(z)=0 \neq \infty$, by Part I there is $r>0$ and $n_{0} \in \mathbb{N}$ such that $1 / f$ and $1 / f_{n}$ are analytic on $B(a ; r)$ for $n \geq n_{0}$, and $1 / f_{n} \rightarrow 1 / f$ uniformly on $B(a ; r)$. So by Proposition VII.1.10(b), $1 / f_{n} \rightarrow 1 / f$ in $H(G) \subset C(G, \mathbb{C})$.

Theorem VII.3.4 (continued 3)

Proof (continued). Since, as observed above, $d\left(z_{1}, z_{2}\right)=d\left(1 / z_{1}, 1 / z_{2}\right)$ and $d(z, 0)=d(1 / z, \infty)$ for $z \neq 0$, then $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$ implies $1 / f_{n} \rightarrow 1 / f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Since each f_{n} is meromorphic on G, then each $1 / f_{n}$ is meromorphic on G. Since $(1 / f)(z)=0 \neq \infty$, by Part I there is $r>0$ and $n_{0} \in \mathbb{N}$ such that $1 / f$ and $1 / f_{n}$ are analytic on $B(a ; r)$ for $n \geq n_{0}$, and $1 / f_{n} \rightarrow 1 / f$ uniformly on $B(a ; r)$. So by Proposition VII.1.10(b), $1 / f_{n} \rightarrow 1 / f$ in $H(G) \subset C(G, \mathbb{C})$. So the hypotheses of Hurwitz's Theorem (Theorem VII.2.5) and the corollary to Hurwitz's Theorem, Corollary VII.2.6, are satisfied. Since $1 / f$ is analytic on $B(a ; r)$ and $(1 / f)(a)=0$, then by Corollary IV.3.10 then either $1 / f \equiv 0$ or there is $R>0$ such that $B(a ; R) \subset G$ and $(1 / f)(z) \neq 0$ for $0<|z-a|<R$; that is, either $a / f \equiv 0$ or $z=a$ is an isolated zero of $1 / f$. Therefore, either $f \equiv 0$ or f is meromorphic on $B(a ; R)$. (Conway uses Hurwitz's Theorem to reach this conclusion.)

Theorem VII.3.4 (continued 3)

Proof (continued). Since, as observed above, $d\left(z_{1}, z_{2}\right)=d\left(1 / z_{1}, 1 / z_{2}\right)$ and $d(z, 0)=d(1 / z, \infty)$ for $z \neq 0$, then $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$ implies $1 / f_{n} \rightarrow 1 / f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Since each f_{n} is meromorphic on G, then each $1 / f_{n}$ is meromorphic on G. Since $(1 / f)(z)=0 \neq \infty$, by Part I there is $r>0$ and $n_{0} \in \mathbb{N}$ such that $1 / f$ and $1 / f_{n}$ are analytic on $B(a ; r)$ for $n \geq n_{0}$, and $1 / f_{n} \rightarrow 1 / f$ uniformly on $B(a ; r)$. So by Proposition VII.1.10(b), $1 / f_{n} \rightarrow 1 / f$ in $H(G) \subset C(G, \mathbb{C})$. So the hypotheses of Hurwitz's Theorem (Theorem VII.2.5) and the corollary to Hurwitz's Theorem, Corollary VII.2.6, are satisfied. Since $1 / f$ is analytic on $B(a ; r)$ and $(1 / f)(a)=0$, then by Corollary IV.3.10 then either $1 / f \equiv 0$ or there is $R>0$ such that $B(a ; R) \subset G$ and $(1 / f)(z) \neq 0$ for $0<|z-a|<R$; that is, either $a / f \equiv 0$ or $z=a$ is an isolated zero of $1 / f$. Therefore, either $f \equiv 0$ or f is meromorphic on $B(a ; R)$. (Conway uses Hurwitz's Theorem to reach this conclusion.)

Combining Parts I and II, either $f \equiv \infty$ or f is meromorphic in G; that is,

Theorem VII.3.4 (continued 3)

Proof (continued). Since, as observed above, $d\left(z_{1}, z_{2}\right)=d\left(1 / z_{1}, 1 / z_{2}\right)$ and $d(z, 0)=d(1 / z, \infty)$ for $z \neq 0$, then $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$ implies $1 / f_{n} \rightarrow 1 / f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Since each f_{n} is meromorphic on G, then each $1 / f_{n}$ is meromorphic on G. Since $(1 / f)(z)=0 \neq \infty$, by Part I there is $r>0$ and $n_{0} \in \mathbb{N}$ such that $1 / f$ and $1 / f_{n}$ are analytic on $B(a ; r)$ for $n \geq n_{0}$, and $1 / f_{n} \rightarrow 1 / f$ uniformly on $B(a ; r)$. So by Proposition VII.1.10(b), $1 / f_{n} \rightarrow 1 / f$ in $H(G) \subset C(G, \mathbb{C})$. So the hypotheses of Hurwitz's Theorem (Theorem VII.2.5) and the corollary to Hurwitz's Theorem, Corollary VII.2.6, are satisfied. Since $1 / f$ is analytic on $B(a ; r)$ and $(1 / f)(a)=0$, then by Corollary IV.3.10 then either $1 / f \equiv 0$ or there is $R>0$ such that $B(a ; R) \subset G$ and $(1 / f)(z) \neq 0$ for $0<|z-a|<R$; that is, either $a / f \equiv 0$ or $z=a$ is an isolated zero of $1 / f$. Therefore, either $f \equiv 0$ or f is meromorphic on $B(a ; R)$. (Conway uses Hurwitz's Theorem to reach this conclusion.)
Combining Parts I and II, either $f \equiv \infty$ or f is meromorphic in G; that is, $f \in M(G) \cup\{\infty\}$.

Theorem VII.3.4 (continued 4)

Theorem VII.3.4. Let $\left\{f_{n}\right\}$ be a sequence in $M(G)$ and suppose $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Then either f is meromorphic or $f \equiv \infty$. If each f_{n} is analytic then either f is analytic on $f \equiv \infty$.

Proof (continued). (III) If each f_{n} is analytic in G then each f_{n} is finite in G and so $1 / f_{n}$ has no zeros in G. So for any $a \in G$ and $B(a ; r) \subset G$, $1 / f_{n}$ has no zeros in $B(a ; r)$ and so by Corollary VII.2.6, either $1 / f \equiv 0$ or $1 / f$ never vanishes on $B(a ; r)$. That is, either $f \equiv \infty$ or f is analytic on $B(a ; r)$. Combining this with Part I we have that either $f \equiv \infty$ or f is analytic on G.

Theorem VII.3.4 (continued 4)

Theorem VII.3.4. Let $\left\{f_{n}\right\}$ be a sequence in $M(G)$ and suppose $f_{n} \rightarrow f$ in $C\left(G, \mathbb{C}_{\infty}\right)$. Then either f is meromorphic or $f \equiv \infty$. If each f_{n} is analytic then either f is analytic on $f \equiv \infty$.

Proof (continued). (III) If each f_{n} is analytic in G then each f_{n} is finite in G and so $1 / f_{n}$ has no zeros in G. So for any $a \in G$ and $B(a ; r) \subset G$, $1 / f_{n}$ has no zeros in $B(a ; r)$ and so by Corollary VII.2.6, either $1 / f \equiv 0$ or $1 / f$ never vanishes on $B(a ; r)$. That is, either $f \equiv \infty$ or f is analytic on $B(a ; r)$. Combining this with Part I we have that either $f \equiv \infty$ or f is analytic on G.

Theorem VII.3.8

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof of locally bounded implies normal. Let $\mathcal{F} \subset M(G)$ with $\mu(\mathcal{F})$ locally bounded. Notice that $\mu(f) \in C(G, \mathbb{R}) \subset C(G, \mathbb{C})$ so "locally bounded" in this context means that for each $a \in G$ there are constants M and $r>0$ such that for all $f \in \mathcal{F}$ we have $|\mu(f)(z)| \leq M$ for all $|z-a|<r$ (technically, "uniformly bounded" is only defined for functions in $H(G)$ in Section VII.2).

Theorem VII.3.8

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof of locally bounded implies normal. Let $\mathcal{F} \subset M(G)$ with $\mu(\mathcal{F})$ locally bounded. Notice that $\mu(f) \in C(G, \mathbb{R}) \subset C(G, \mathbb{C})$ so "locally bounded" in this context means that for each $a \in G$ there are constants M and $r>0$ such that for all $f \in \mathcal{F}$ we have $|\mu(f)(z)| \leq M$ for all $|z-a|<r$ (technically, "uniformly bounded" is only defined for functions in $H(G)$ in Section VII.2). To show normality of \mathcal{F} in $C\left(G, \mathbb{C}_{\infty}\right)$, we apply the Arzela-Ascoli Theorem (Theorem VII.1.23). This requires that for each $z \in G,\{f(z) \mid f \in \mathcal{F}\}$ has compact closure in $\Omega=\mathbb{C}_{\infty}$. But \mathbb{C}_{∞} is compact (see the exercises for the supplement "The Extended Complex Plane") and a closed subset of a compact set is compact by Proposition II.4.3(b), so this condition is satisfied. We also need \mathcal{F} to be equicontinuous at each point of G, so we now show that.

Theorem VII.3.8

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof of locally bounded implies normal. Let $\mathcal{F} \subset M(G)$ with $\mu(\mathcal{F})$ locally bounded. Notice that $\mu(f) \in C(G, \mathbb{R}) \subset C(G, \mathbb{C})$ so "locally bounded" in this context means that for each $a \in G$ there are constants M and $r>0$ such that for all $f \in \mathcal{F}$ we have $|\mu(f)(z)| \leq M$ for all $|z-a|<r$ (technically, "uniformly bounded" is only defined for functions in $H(G)$ in Section VII.2). To show normality of \mathcal{F} in $C\left(G, \mathbb{C}_{\infty}\right)$, we apply the Arzela-Ascoli Theorem (Theorem VII.1.23). This requires that for each $z \in G,\{f(z) \mid f \in \mathcal{F}\}$ has compact closure in $\Omega=\mathbb{C}_{\infty}$. But \mathbb{C}_{∞} is compact (see the exercises for the supplement "The Extended Complex Plane") and a closed subset of a compact set is compact by Proposition II.4.3(b), so this condition is satisfied. We also need \mathcal{F} to be equicontinuous at each point of G, so we now show that.

Theorem VII.3.8 (continued 1)

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). As in Lemma VII. 2.8 (which is in the setting of $H(G))$, pointwise locally bounded implies locally bounded on compact sets. Let K be an arbitrary closed disk in G (so K is closed and bounded and by Heine-Borel Theorem is a compact set). Then the local
boundedness of $\mu(\mathcal{F})$ implies that there is M such that
$|\mu(f)(z)|=\mu(f)(z)=2\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$. Let $z_{1}, z^{\prime} \in K$.

Theorem VII.3.8 (continued 1)

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). As in Lemma VII. 2.8 (which is in the setting of $H(G)$), pointwise locally bounded implies locally bounded on compact sets. Let K be an arbitrary closed disk in G (so K is closed and bounded and by Heine-Borel Theorem is a compact set). Then the local boundedness of $\mu(\mathcal{F})$ implies that there is M such that $|\mu(f)(z)|=\mu(f)(z)=2\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$. Let $z_{1}, z^{\prime} \in K$.

Theorem VII.3.8 (continued 2)

Proof (continued). (I) Suppose neither z nor z^{\prime} are poles of a fixed function $f \in \mathcal{F}$. Let $\alpha>0$. Choose points $w_{0}=z, w_{1}, w_{2}, \ldots, w_{n}=z^{\prime}$ in K which satisfy the following:

Theorem VII.3.8 (continued 2)

Proof (continued). (I) Suppose neither z nor z^{\prime} are poles of a fixed function $f \in \mathcal{F}$. Let $\alpha>0$. Choose points $w_{0}=z, w_{1}, w_{2}, \ldots, w_{n}=z^{\prime}$ in K which satisfy the following:
(3.9) for $1 \leq k \leq n, w \in\left[w_{k-1}, w_{k}\right]$ implies w is not a pole of f;
(3.10) $\sum_{k=1}^{n}\left|w_{k}-w_{k-1}\right|<2\left|z-z^{\prime}\right|$;
(3.11) $\left|\frac{1+\left|f\left(w_{k-1}\right)\right|^{2}}{\left\{\left.\left(1+\left|f\left(w_{k}\right)\right|^{2}\right)\left(1+\left|f\left(w_{k-1}\right)\right|^{2}\right)\right|^{1 / 2}\right.}-1\right|<\alpha$, for $1 \leq k \leq n ;$
(3.12) $\left|\frac{f\left(w_{k}\right)=f\left(w_{k-1}\right)}{w_{k}-w_{k-1}}-f^{\prime}\left(w_{k-1}\right)\right|<\alpha$, for $a \leq k \leq n$.

Since K is a closed disk and the poles of f are isolated, then there are only finitely many poles of f in K (by the Bolzano-Weierstrass Theorem; see Theorem 2.12 of my Analysis 1, MATH 4217/5217, notes). So there is a polynomial path P from z to z^{\prime} satisfying (3.9) and (3.10).

Theorem VII.3.8 (continued 2)

Proof (continued). (I) Suppose neither z nor z^{\prime} are poles of a fixed function $f \in \mathcal{F}$. Let $\alpha>0$. Choose points $w_{0}=z, w_{1}, w_{2}, \ldots, w_{n}=z^{\prime}$ in K which satisfy the following:
(3.9) for $1 \leq k \leq n, w \in\left[w_{k-1}, w_{k}\right]$ implies w is not a pole of f;
(3.10) $\sum_{k=1}^{n}\left|w_{k}-w_{k-1}\right|<2\left|z-z^{\prime}\right|$;
(3.11) $\left|\frac{1+\left|f\left(w_{k-1}\right)\right|^{2}}{\left\{\left.\left(1+\left|f\left(w_{k}\right)\right|^{2}\right)\left(1+\left|f\left(w_{k-1}\right)\right|^{2}\right)\right|^{1 / 2}\right.}-1\right|<\alpha$, for $1 \leq k \leq n ;$
(3.12) $\left|\frac{f\left(w_{k}\right)=f\left(w_{k-1}\right)}{w_{k}-w_{k-1}}-f^{\prime}\left(w_{k-1}\right)\right|<\alpha$, for $a \leq k \leq n$.

Since K is a closed disk and the poles of f are isolated, then there are only finitely many poles of f in K (by the Bolzano-Weierstrass Theorem; see Theorem 2.12 of my Analysis 1, MATH 4217/5217, notes). So there is a polynomial path P from z to z^{\prime} satisfying (3.9) and (3.10)...

Theorem VII.3.8 (continued 3)

Proof (continued). ... (start with a line segment from z to z^{\prime}; it can contain only finitely many poles, so modify it to go around any poles-this can be done without involving other poles since the poles are isolated).
Now consider

$$
g\left(z_{1}, z_{2}\right)=\frac{1+\left|f\left(z_{1}\right)\right|^{2}}{\left\{\left(1+\left|f\left(z_{1}\right)\right|^{2}\right)\left(1+|f(z-1)|^{2}\right\}^{1 / 2}\right.}
$$

Then g is continuous on K, except at the poles of f. Since $g\left(z_{1}, z_{2}\right)=1$, ten for given a_{1} an $\mathrm{d} \alpha>0$, if z_{2} is sufficiently close to z_{1} then $\left|g\left(z_{1}, z_{2}\right)-1\right|<\alpha$. So for each $z_{1} \in P$ there is a small open disk centered at z_{1} such that for all z_{2} in the disk, $\left|g\left(z_{1}, z_{2}\right)-1\right|<\alpha$. Since f is differentiable at each $z_{1} \in P$ then there is a small open disk centered at z_{1} such that for all z_{2} in the disk, $\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}-f^{\prime}\left(z_{1}\right)\right|<\alpha$.

Theorem VII.3.8 (continued 3)

Proof (continued). ... (start with a line segment from z to z^{\prime}; it can contain only finitely many poles, so modify it to go around any poles-this can be done without involving other poles since the poles are isolated).
Now consider

$$
g\left(z_{1}, z_{2}\right)=\frac{1+\left|f\left(z_{1}\right)\right|^{2}}{\left\{\left(1+\left|f\left(z_{1}\right)\right|^{2}\right)\left(1+|f(z-1)|^{2}\right\}^{1 / 2}\right.}
$$

Then g is continuous on K, except at the poles of f. Since $g\left(z_{1}, z_{2}\right)=1$, ten for given a_{1} an $\mathrm{d} \alpha>0$, if z_{2} is sufficiently close to z_{1} then $\left|g\left(z_{1}, z_{2}\right)-1\right|<\alpha$. So for each $z_{1} \in P$ there is a small open disk centered at z_{1} such that for all z_{2} in the disk, $\left|g\left(z_{1}, z_{2}\right)-1\right|<\alpha$. Since f is differentiable at each $z_{1} \in P$ then there is a small open disk centered at z_{1} such that for all z_{2} in the disk, $\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}-f^{\prime}\left(z_{1}\right)\right|<\alpha$.

Theorem VII.3.8 (continued 4)

Proof (continued). So for each $z_{1} \in P$, there is a small disk centered at z_{1} such that both

$$
\left|g\left(z_{1}, z_{2}\right)-1\right|<\alpha \text { and }\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}-f^{\prime}\left(z_{1}\right)\right|<\alpha
$$

for all z_{2} in the small disk. Now the resulting collection of "small disks" (one for each $z_{1} \in P$) is an open cover of P. Since P is a compact set, there is a finite number of small disks covering P.

Theorem VII.3.8 (continued 4)

Proof (continued). So for each $z_{1} \in P$, there is a small disk centered at z_{1} such that both

$$
\left|g\left(z_{1}, z_{2}\right)-1\right|<\alpha \text { and }\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}-f^{\prime}\left(z_{1}\right)\right|<\alpha
$$

for all z_{2} in the small disk. Now the resulting collection of "small disks" (one for each $z_{1} \in P$) is an open cover of P. Since P is a compact set, there is a finite number of small disks covering P. Then label points $w_{0}=z, w_{1}, w_{2}, \ldots, w_{n}=z^{\prime}$ (which results in a "refinement" of the original polygon; only straight line segments are refined here) such that [w_{k-1}, w_{k}] lies entirely inside a given open disk for $k=1,2, \ldots, n$. Then the polygonal path determined by $w_{0}=z, w_{1}, w_{2}, \ldots, w_{n}=z^{\prime}$ satisfies (3.11) and (3.12) (an properties (3.9) and (3.10) still hold).

Theorem VII.3.8 (continued 4)

Proof (continued). So for each $z_{1} \in P$, there is a small disk centered at z_{1} such that both

$$
\left|g\left(z_{1}, z_{2}\right)-1\right|<\alpha \text { and }\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{z_{1}-z_{2}}-f^{\prime}\left(z_{1}\right)\right|<\alpha
$$

for all z_{2} in the small disk. Now the resulting collection of "small disks" (one for each $z_{1} \in P$) is an open cover of P. Since P is a compact set, there is a finite number of small disks covering P. Then label points $w_{0}=z, w_{1}, w_{2}, \ldots, w_{n}=z^{\prime}$ (which results in a "refinement" of the original polygon; only straight line segments are refined here) such that [w_{k-1}, w_{k}] lies entirely inside a given open disk for $k=1,2, \ldots, n$. Then the polygonal path determined by $w_{0}=z, w_{1}, w_{2}, \ldots, w_{n}=z^{\prime}$ satisfies (3.11) and (3.12) (an properties (3.9) and (3.10) still hold).

Theorem VII.3.8 (continued 5)

Proof (continued). With $\beta_{k}=\left\{\left(1+\left|f\left(w_{k-1}\right)\right|^{2}\right)\left(1+\left|f\left(w_{k}\right)\right|^{2}\right)\right\}^{1 / 2}$, we have

$$
\begin{aligned}
& d\left(f(z), f\left(z^{\prime}\right)\right) \leq \sum_{k=1}^{n} d\left(f\left(w_{k-1}\right), f\left(w_{k}\right)\right) \text { by the Triangle Inequality, } \\
& \quad \text { and the facts that } w_{0}=z, \text { and } z_{n}=z^{\prime} \\
& =\sum_{k=1}^{n} \frac{2}{\beta_{k}}\left|f\left(w_{k}\right)-f\left(w_{k-1}\right)\right| \text { by definition of } d \\
& =\sum_{k=1}^{n} \frac{2}{\beta_{k}}\left|\frac{f\left(w_{k}\right)-f\left(w_{k-1}\right)}{w_{k}-w_{k-1}}\right|\left|w_{k}-w_{k-1}\right| \\
& \quad=\sum_{k=1}^{n} \frac{2}{\beta_{k}}\left|\frac{f\left(w_{k}\right)-f\left(w_{k-1}\right)}{w_{k}-w_{k-1}}-f^{\prime}\left(w_{k-1}\right)+f^{\prime}\left(w_{k-1}\right)\right|\left|w_{k}-w_{k-1}\right|
\end{aligned}
$$

Theorem VII.3.8 (continued 6)

Proof (continued).

$$
\begin{aligned}
& \leq \sum_{k=1}^{n} \frac{2}{\beta_{k}}\left|\frac{f\left(w_{k}\right)-f\left(w_{k-1}\right)}{w_{k}-w_{k-1}}-f^{\prime}\left(w_{k-1}\right)\right|\left|w_{k}-w_{k-1}\right| \\
&+\sum_{k=1}^{n} \frac{2}{\beta_{k}}\left|f^{\prime}\left(w_{k-1}\right)\right|\left|w_{k}-w_{k-1}\right| \\
& \leq 2 \alpha \sum_{k=} k=1^{n} \frac{1}{\beta_{k}}\left|w_{k}-w_{k-1}\right|+\sum_{k=1}^{n} \frac{2}{\beta_{k}}\left|f^{\prime}\left(w_{k-1}\right)\right|\left|w_{k}-w_{k-1}\right| \\
& \text { by }(3.11) \\
& \leq 2 \alpha \sum_{k=1}^{n} \frac{1}{\beta_{k}}\left|w_{k}-w_{k-1}\right|+M \sum_{k=1}^{n} \frac{1+\left|f\left(w_{k-1}\right)\right|^{2}}{\beta_{k}}\left|w_{k}-w_{k-1}\right| \\
& \text { since } \mu(f)\left(w_{k-1}\right)=\frac{2\left|f^{\prime}\left(w_{k-1}\right)\right|}{1+\left|f\left(w_{k-1}\right)\right|^{2}} \leq M
\end{aligned}
$$

by the local boundedness of $\mu(\mathcal{F})$

Theorem VII.3.8 (continued 7)

Proof (continued).

$$
\left.\begin{array}{r}
\leq 2 \alpha \sum_{k=1}^{n}\left|w_{k}-w_{k-1}\right|+M \sum_{k=1}^{n}\left(\frac{1+\left|f\left(w_{k-1}\right)\right|^{2}}{\beta_{k}}-1+1\right)\left|w_{k}-w_{k-1}\right| \\
\quad \text { since } \beta_{k}=\left\{\left(1+\left|f\left(w_{k-1}\right)\right|^{2}\right)\left(\left(1+\left|f\left(w_{k}\right)\right|^{2}\right)\right\}^{1 / 2} \geq 1 \text { and } 1 / \beta_{k} \leq 1\right. \\
\leq
\end{array} \quad 4 \alpha\left|z-z^{\prime}\right|+M \sum_{k=1}^{n}\left|w_{k}-w_{k-1}+M \sum_{k=1}^{n} \frac{1+\left|f\left(w_{k-1}\right)\right|^{2}}{\beta_{k}}\right| w_{k}-w_{k-1} \right\rvert\, .
$$

by the Triangle Inequality and (3.10)
$\leq 4 \alpha\left|z-z^{\prime}\right|+2 M\left|z-z^{\prime}\right|+M \alpha\left(2\left|z-z^{\prime}\right|\right)$ by (3.10) and (3.12)
$=(4 \alpha+2 M \alpha+2 M)\left|z-z^{\prime}\right|$.
Since $\alpha>0$ is arbitrary an $\mathrm{d} z, z^{\prime}$ are any nonpoles of f, then

$$
\begin{equation*}
d\left(f(z), f\left(z^{\prime}\right)\right) \leq 2 M\left|z-z^{\prime}\right| \text { for nonpoles } z, z^{\prime} \in G . \tag{3.13}
\end{equation*}
$$

Theorem VII.3.8 (continued 7)

Proof (continued).

$$
\left.\begin{array}{r}
\leq 2 \alpha \sum_{k=1}^{n}\left|w_{k}-w_{k-1}\right|+M \sum_{k=1}^{n}\left(\frac{1+\left|f\left(w_{k-1}\right)\right|^{2}}{\beta_{k}}-1+1\right)\left|w_{k}-w_{k-1}\right| \\
\quad \text { since } \beta_{k}=\left\{\left(1+\left|f\left(w_{k-1}\right)\right|^{2}\right)\left(\left(1+\left|f\left(w_{k}\right)\right|^{2}\right)\right\}^{1 / 2} \geq 1 \text { and } 1 / \beta_{k} \leq 1\right. \\
\leq
\end{array} \quad 4 \alpha\left|z-z^{\prime}\right|+M \sum_{k=1}^{n}\left|w_{k}-w_{k-1}+M \sum_{k=1}^{n} \frac{1+\left|f\left(w_{k-1}\right)\right|^{2}}{\beta_{k}}\right| w_{k}-w_{k-1} \right\rvert\, .
$$

by the Triangle Inequality and (3.10)

$$
\begin{aligned}
& \leq 4 \alpha\left|z-z^{\prime}\right|+2 M\left|z-z^{\prime}\right|+M \alpha\left(2\left|z-z^{\prime}\right|\right) \text { by (3.10) and (3.12) } \\
& =(4 \alpha+2 M \alpha+2 M)\left|z-z^{\prime}\right| .
\end{aligned}
$$

Since $\alpha>0$ is arbitrary an $\mathrm{d} z, z^{\prime}$ are any nonpoles of f, then

$$
\begin{equation*}
d\left(f(z), f\left(z^{\prime}\right)\right) \leq 2 M\left|z-z^{\prime}\right| \text { for nonpoles } z, z^{\prime} \in G . \tag{3.13}
\end{equation*}
$$

Theorem VII.3.8 (continued 8)

Proof (continued). (II) Now suppose z^{\prime} is a pole of f but x is not. If $w \in K$ is not a pole then

$$
\begin{aligned}
d(f(z), \infty) & \leq d(f(z), f(w))+d(f(w), \infty) \text { by the Triangle Inequality } \\
& \leq 2 M|z-w|+d(f(w), \infty) \text { by }(3.13)
\end{aligned}
$$

Since the poles of f are isolated, for w "sufficiently close to" z ', w is not a pole and so $\lim _{w \rightarrow z^{\prime}} f(w)=f\left(z^{\prime}\right)=\infty$ and $\lim _{z \rightarrow z^{\prime}}|z-w|=z-z^{\prime} \mid$. Therefore

$$
\begin{gathered}
d\left(f(z), f\left(z^{\prime}\right)\right)=d(f(z), \infty) \leq \lim _{w \rightarrow z^{\prime}}(2 M|z-w|+d(f(w), \infty)) \\
=2 M\left|z-z^{\prime}\right|+d\left(f\left(z^{\prime}\right), \infty=2 M\left|z-z^{\prime}\right|+d(\infty, \infty)\right. \\
=2 M\left|z-z^{\prime}\right|+0=2 M\left|z-z^{\prime}\right| .
\end{gathered}
$$

Therefore (3.13) holds if at most one of z and z^{\prime} is a pole.

Theorem VII.3.8 (continued 8)

Proof (continued). (II) Now suppose z^{\prime} is a pole of f but x is not. If $w \in K$ is not a pole then

$$
\begin{aligned}
d(f(z), \infty) & \leq d(f(z), f(w))+d(f(w), \infty) \text { by the Triangle Inequality } \\
& \leq 2 M|z-w|+d(f(w), \infty) \text { by }(3.13)
\end{aligned}
$$

Since the poles of f are isolated, for w "sufficiently close to" z ', w is not a pole and so $\lim _{w \rightarrow z^{\prime}} f(w)=f\left(z^{\prime}\right)=\infty$ and $\lim _{z \rightarrow z^{\prime}}|z-w|=z-z^{\prime} \mid$.
Therefore

$$
\begin{gathered}
d\left(f(z), f\left(z^{\prime}\right)\right)=d(f(z), \infty) \leq \lim _{w \rightarrow z^{\prime}}(2 M|z-w|+d(f(w), \infty)) \\
=2 M\left|z-z^{\prime}\right|+d\left(f\left(z^{\prime}\right), \infty=2 M\left|z-z^{\prime}\right|+d(\infty, \infty)\right. \\
=2 M\left|z-z^{\prime}\right|+0=2 M\left|z-z^{\prime}\right|
\end{gathered}
$$

Therefore (3.13) holds if at most one of z and z^{\prime} is a pole.

Theorem VII.3.8 (continued 9)

Proof (continued). (III) Similarly, if z and z^{\prime} are both poles, then for w "sufficiently close to;; z is not a pole of f (since poles are isolated) and so

$$
\begin{aligned}
\left(f(z), f\left(z^{\prime}\right)\right) & =d\left(\lim _{w \rightarrow z} f(w), f\left(z^{\prime}\right)\right) \\
& =\lim _{w \rightarrow z}\left(f(w), f\left(z^{\prime}\right)\right) \leq \lim _{w \rightarrow z} 2 M\left|w-z^{\prime}\right| \text { by Part II } \\
& =2 M\left|z-z^{\prime}\right|
\end{aligned}
$$

and (3.13) holds if both z and z^{\prime} are poles of f (in fact, this holds trivially since $f(z)=f\left(z^{\prime}\right)=\infty$ and so $\left.d\left(f(z), f\left(z^{\prime}\right)\right)=0\right)$. Therefore, (3.13) holds for all $z, z^{\prime} \in K$.

At this stage, we have that given any closed disk $K \subset G$ that for all $z, z^{\prime} \in K, d\left(f(z), f\left(z^{\prime}\right)\right) \leq 2 M\left|z-z^{\prime}\right|$ for all $f \in \mathcal{F}$ (since this conclusion holds for arbitrary $f \in \mathcal{F}$, as shown in Parts I, II, and III).

Theorem VII.3.8 (continued 9)

Proof (continued). (III) Similarly, if z and z^{\prime} are both poles, then for w "sufficiently close to;; z is not a pole of f (since poles are isolated) and so

$$
\begin{aligned}
\left(f(z), f\left(z^{\prime}\right)\right) & =d\left(\lim _{w \rightarrow z} f(w), f\left(z^{\prime}\right)\right) \\
& =\lim _{w \rightarrow z}\left(f(w), f\left(z^{\prime}\right)\right) \leq \lim _{w \rightarrow z} 2 M\left|w-z^{\prime}\right| \text { by Part II } \\
& =2 M\left|z-z^{\prime}\right|
\end{aligned}
$$

and (3.13) holds if both z and z^{\prime} are poles of f (in fact, this holds trivially since $f(z)=f\left(z^{\prime}\right)=\infty$ and so $\left.d\left(f(z), f\left(z^{\prime}\right)\right)=0\right)$. Therefore, (3.13) holds for all $z, z^{\prime} \in K$.

At this stage, we have that given any closed disk $K \subset G$ that for all $z, z^{\prime} \in K, d\left(f(z), f\left(z^{\prime}\right)\right) \leq 2 M\left|z-z^{\prime}\right|$ for all $f \in \mathcal{F}$ (since this conclusion holds for arbitrary $f \in \mathcal{F}$, as shown in Parts I, II, and III).

Theorem VII.3.8 (continued 10)

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). Let $a \in G$. Let $K=B(a ; r) \subset G$ and let $\varepsilon>0$. Let $M>0$ be the constant such that $|\mu(f)(z)|=\mu(f)(z) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$ (given by the local boundedness of $\mu(f)$ on K, as argued above before Part I). Define $\delta=\min \{r, \varepsilon /(2 M)\}$. Then for $|z-a|<\delta$ we have $d(f(z), f(a))<2 M|z-a|<2 M \delta<\varepsilon$ for all $f \in \mathcal{F}$. That is, \mathcal{F} is equicontinuous at point $a \in G$. Since $a \in G$ is an arbitrary point of G, then by the Arzela-Ascoli Theorem (Theorem VII.4.23), $\mathcal{F} \subset C(G, \Omega)=C\left(G, \mathbb{C}_{\infty}\right)$ is normal

Theorem VII.3.8 (continued 10)

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). Let $a \in G$. Let $K=B(a ; r) \subset G$ and let $\varepsilon>0$. Let $M>0$ be the constant such that $|\mu(f)(z)|=\mu(f)(z) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$ (given by the local boundedness of $\mu(f)$ on K, as argued above before Part I). Define $\delta=\min \{r, \varepsilon /(2 M)\}$. Then for $|z-a|<\delta$ we have $d(f(z), f(a))<2 M|z-a|<2 M \delta<\varepsilon$ for all $f \in \mathcal{F}$. That is, \mathcal{F} is equicontinuous at point $a \in G$. Since $a \in G$ is an arbitrary point of G, then by the Arzela-Ascoli Theorem (Theorem VII.4.23),
$\mathcal{F} \subset C(G, \Omega)=C\left(G, \mathbb{C}_{\infty}\right)$ is normal
The converse is to be given in Exercise VII.3.2.

Theorem VII.3.8 (continued 10)

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C\left(G, \mathbb{C}_{\infty}\right)$ if and only if $\mu(\mathcal{F})=\{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). Let $a \in G$. Let $K=B(a ; r) \subset G$ and let $\varepsilon>0$. Let $M>0$ be the constant such that $|\mu(f)(z)|=\mu(f)(z) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$ (given by the local boundedness of $\mu(f)$ on K, as argued above before Part I). Define $\delta=\min \{r, \varepsilon /(2 M)\}$. Then for $|z-a|<\delta$ we have $d(f(z), f(a))<2 M|z-a|<2 M \delta<\varepsilon$ for all $f \in \mathcal{F}$. That is, \mathcal{F} is equicontinuous at point $a \in G$. Since $a \in G$ is an arbitrary point of G, then by the Arzela-Ascoli Theorem (Theorem VII.4.23),
$\mathcal{F} \subset C(G, \Omega)=C\left(G, \mathbb{C}_{\infty}\right)$ is normal
The converse is to be given in Exercise VII.3.2.

