Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions

VII.3. Spaces of Meromorphic Functions—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

Table of contents

Theorem VII.3.4. Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic on $f \equiv \infty$.

Proof. (1) Let $a \in G$ with $f(a) \neq \infty$. Set M = |f(a)|. By Proposition VII.3.3(a), there is $\rho > 0$ such that $B_{\infty}(f(a); \rho) \subset B(f(z); M)$.

Theorem VII.3.4. Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic on $f \equiv \infty$.

Proof. (I) Let $a \in G$ with $f(a) \neq \infty$. Set M = |f(a)|. By Proposition VII.3.3(a), there is $\rho > 0$ such that $B_{\infty}(f(a); \rho) \subset B(f(z); M)$. Since $f_n \to f$ then there is $n_0 \in \mathbb{N}$ such that $d(f_n(a), f(a)) < \rho/2$ for all $n \ge n_0$ (since convergence in $C(G, \mathbb{C}_{\infty})$ implies convergence on compact subsets of G and so implies pointwise convergence since $\{a\} \subset G \subset \mathbb{C}$ is compact). Now $\{f -, f_1, f_2, \ldots\} \subset C(G, \mathbb{C}_{\infty})$ is compact since any open cover must include an open set containing f and this open set contains all by finitely many of the other elements of the set.

Theorem VII.3.4. Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic on $f \equiv \infty$.

Proof. (I) Let $a \in G$ with $f(a) \neq \infty$. Set M = |f(a)|. By Proposition VII.3.3(a), there is $\rho > 0$ such that $B_{\infty}(f(a); \rho) \subset B(f(z); M)$. Since $f_n \to f$ then there is $n_0 \in \mathbb{N}$ such that $d(f_n(a), f(a)) < \rho/2$ for all $n \ge n_0$ (since convergence in $C(G, \mathbb{C}_{\infty})$ implies convergence on compact subsets of G and so implies pointwise convergence since $\{a\} \subset G \subset \mathbb{C}$ is compact). Now $\{f -, f_1, f_2, \ldots\} \subset C(G, \mathbb{C}_{\infty})$ is compact since any open cover must include an open set containing f and this open set contains all by finitely many of the other elements of the set. So $\{f, f_1, f_2, \ldots\}$ has compact closure and by Proposition VII.1.15 it is normal. By the Arzela-Ascoli Theorem (Theorem VII.1.23(b)) $\{f, f_1, f_2, \ldots\}$ is equicontinuous. So by the definition of equicontinuity, there is $r_1 > 0$ such that $|z - a| < r_1$ implies $d(f_n(z), f_n(z)) < \rho/2$.

Theorem VII.3.4. Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic on $f \equiv \infty$.

Proof. (I) Let $a \in G$ with $f(a) \neq \infty$. Set M = |f(a)|. By Proposition VII.3.3(a), there is $\rho > 0$ such that $B_{\infty}(f(a); \rho) \subset B(f(z); M)$. Since $f_n \to f$ then there is $n_0 \in \mathbb{N}$ such that $d(f_n(a), f(a)) < \rho/2$ for all $n \ge n_0$ (since convergence in $C(G, \mathbb{C}_{\infty})$ implies convergence on compact subsets of G and so implies pointwise convergence since $\{a\} \subset G \subset \mathbb{C}$ is compact). Now $\{f -, f_1, f_2, \ldots\} \subset C(G, \mathbb{C}_{\infty})$ is compact since any open cover must include an open set containing f and this open set contains all by finitely many of the other elements of the set. So $\{f, f_1, f_2, \ldots\}$ has compact closure and by Proposition VII.1.15 it is normal. By the Arzela-Ascoli Theorem (Theorem VII.1.23(b)) $\{f, f_1, f_2, \ldots\}$ is equicontinuous. So by the definition of equicontinuity, there is $r_1 > 0$ such that $|z - a| < r_1$ implies $d(f_n(z), f_n(z)) < \rho/2$.

Proof (continued). So for $|z - a| \le r < r_1$ and $n \ge n_0$ we have

 $d(f_n(z), f(a)) \le d(f_n(z), f_n(a)) + d(f_n(a), f(a)) < \rho/2 + \rho/2 = \rho.$

By the choice of ρ , $B_{\infty}(f(a); \rho) \subset B(f(a); M)$, so $d(f_n(z), f(a)) < \rho$ implies $f_n(z) \in B_{\infty}(f(a); \rho) \subset B(f(a); M)$ and so $|f_n(z) - f(a)| < M$. So for $z \in \overline{B}(a; r)$ and $n \ge n_0$ we have

 $|f_n(z)| = |f_n(z) - f(a) + f(a)| \le |f_n(z) - f(a)| + |f(a)| < M + M = 2M.$ Since $f_n(z) \to f(z)$, then $f(z) \le 2M$ for all $z \in \overline{B}(a; r)$. So

$$d(f_n(z), f(z)) = \frac{2|f_n(z) - f(z)|}{\{(1 + |f_n(z)|^2)(1 + |f(z)|^2)\}^{1/2}}$$

$$\geq \frac{2|f_n(z) - f(z)|}{\{(1 + (2M)^2)(1 + (2M)^2)\}^{1/2}} = \frac{2|f_n(z) - f(z)|}{1 + 4M^2}$$

for $z \in \overline{B}(a; r)$ and $n \ge n_0$.

Proof (continued). So for $|z - a| \le r < r_1$ and $n \ge n_0$ we have

 $d(f_n(z), f(a)) \le d(f_n(z), f_n(a)) + d(f_n(a), f(a)) < \rho/2 + \rho/2 = \rho.$

By the choice of ρ , $B_{\infty}(f(a); \rho) \subset B(f(a); M)$, so $d(f_n(z), f(a)) < \rho$ implies $f_n(z) \in B_{\infty}(f(a); \rho) \subset B(f(a); M)$ and so $|f_n(z) - f(a)| < M$. So for $z \in \overline{B}(a; r)$ and $n \ge n_0$ we have

$$|f_n(z)| = |f_n(z) - f(a) + f(a)| \le |f_n(z) - f(a)| + |f(a)| < M + M = 2M.$$

Since $f_n(z) \to f(z)$, then $f(z) \le 2M$ for all $z \in \overline{B}(a; r)$. So

$$d(f_n(z), f(z)) = \frac{2|f_n(z) - f(z)|}{\{(1 + |f_n(z)|^2)(1 + |f(z)|^2)\}^{1/2}}$$

$$\geq \frac{2|f_n(z) - f(z)|}{\{(1 + (2M)^2)(1 + (2M)^2)\}^{1/2}} = \frac{2|f_n(z) - f(z)|}{1 + 4M^2}$$

for $z \in \overline{B}(a; r)$ and $n \ge n_0$.

Proof (continued). By Proposition VII.1.10, $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$ implies that $d(f_n(z), f(z)) \to 0$ uniformly on cmpact set $\overline{B}(a; r)$. So the above inequality implies that $|f_n(z) - f(z)| \to 0$ uniformly in $\overline{B}(a; r)$. Now for $n \ge n_0$, $|f_n(z)| \le 2M$ for all $z \in \overline{B}(a; r)$ so for $n \ge n_0$ each meromorphic f_n must be analytic on B(a; r) (since bounded f_n cannot have a pole in B(a; r)). So $\{f_n\}_{n\ge n_0}$ is a sequence of analytic functions which converges uniformly on $\overline{B}(a; r)$ (and so converges uniformly on any compact subset of $\overline{B}(a; r)$) and then by Proposition VII.1.10 $\{f_n\}_{n\ge n_0}$ converges in $C(B(a; r), \mathbb{C}_{\infty})$. By Theorem VII.2.1, the limit function f is analytic on B(a; r). That is, if $f(a) \neq \infty$ then f is analytic in some neighborhood of a.

Proof (continued). By Proposition VII.1.10, $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$ implies that $d(f_n(z), f(z)) \to 0$ uniformly on cmpact set $\overline{B}(a; r)$. So the above inequality implies that $|f_n(z) - f(z)| \to 0$ uniformly in $\overline{B}(a; r)$. Now for $n \ge n_0$, $|f_n(z)| \le 2M$ for all $z \in \overline{B}(a; r)$ so for $n \ge n_0$ each meromorphic f_n must be analytic on B(a; r) (since bounded f_n cannot have a pole in B(a; r)). So $\{f_n\}_{n\ge n_0}$ is a sequence of analytic functions which converges uniformly on $\overline{B}(a; r)$ (and so converges uniformly on any compact subset of $\overline{B}(a; r)$) and then by Proposition VII.1.10 $\{f_n\}_{n\ge n_0}$ converges in $C(B(a; r), \mathbb{C}_{\infty})$. By Theorem VII.2.1, the limit function f is analytic on B(a; r). That is, if $f(a) \neq \infty$ then f is analytic in some neighborhood of a.

(II) Now suppose there is $a \in G$ with $f(a) = \infty$. For $g \in C(G, \mathbb{C}_{\infty})$, define $\left(\frac{1}{g}\right) = \begin{cases} 1/g(z) & \text{if } g(z) \notin \{0, \infty\} \\ 0 & \text{if } g(z) = \infty \\ \infty & \text{if } g(z) = 0. \end{cases}$ Then $1/g \in C(G, \mathbb{C}_{\infty})$.

Proof (continued). By Proposition VII.1.10, $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$ implies that $d(f_n(z), f(z)) \to 0$ uniformly on cmpact set $\overline{B}(a; r)$. So the above inequality implies that $|f_n(z) - f(z)| \to 0$ uniformly in $\overline{B}(a; r)$. Now for $n \ge n_0$, $|f_n(z)| \le 2M$ for all $z \in \overline{B}(a; r)$ so for $n \ge n_0$ each meromorphic f_n must be analytic on B(a; r) (since bounded f_n cannot have a pole in B(a; r)). So $\{f_n\}_{n\ge n_0}$ is a sequence of analytic functions which converges uniformly on $\overline{B}(a; r)$ (and so converges uniformly on any compact subset of $\overline{B}(a; r)$) and then by Proposition VII.1.10 $\{f_n\}_{n\ge n_0}$ converges in $C(B(a; r), \mathbb{C}_{\infty})$. By Theorem VII.2.1, the limit function f is analytic on B(a; r). That is, if $f(a) \neq \infty$ then f is analytic in some neighborhood of a.

(II) Now suppose there is $a \in G$ with $f(a) = \infty$. For $g \in C(G, \mathbb{C}_{\infty})$, define $\left(\frac{1}{g}\right) = \begin{cases} 1/g(z) & \text{if } g(z) \notin \{0, \infty\} \\ 0 & \text{if } g(z) = \infty \\ \infty & \text{if } g(z) = 0. \end{cases}$ Then $1/g \in C(G, \mathbb{C}_{\infty})$.

Proof (continued). Since, as observed above, $d(z_1, z_2) = d(1/z_1, 1/z_2)$ and $d(z, 0) = d(1/z, \infty)$ for $z \neq 0$, then $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$ implies $1/f_n \to 1/f$ in $C(G, \mathbb{C}_{\infty})$. Since each f_n is meromorphic on G, then each $1/f_n$ is meromorphic on G. Since $(1/f)(z) = 0 \neq \infty$, by Part I there is r > 0 and $n_0 \in \mathbb{N}$ such that 1/f and $1/f_n$ are analytic on B(a; r) for $n \ge n_0$, and $1/f_n \to 1/f$ uniformly on B(a; r). So by Proposition VII.1.10(b), $1/f_n \to 1/f$ in $H(G) \subset C(G, \mathbb{C})$.

Proof (continued). Since, as observed above, $d(z_1, z_2) = d(1/z_1, 1/z_2)$ and $d(z,0) = d(1/z,\infty)$ for $z \neq 0$, then $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$ implies $1/f_n \to 1/f$ in $C(G, \mathbb{C}_{\infty})$. Since each f_n is meromorphic on G, then each $1/f_n$ is meromorphic on G. Since $(1/f)(z) = 0 \neq \infty$, by Part I there is r > 0 and $n_0 \in \mathbb{N}$ such that 1/f and $1/f_n$ are analytic on B(a; r) for $n \ge n_0$, and $1/f_n \to 1/f$ uniformly on B(a; r). So by Proposition VII.1.10(b), $1/f_n \to 1/f$ in $H(G) \subset C(G, \mathbb{C})$. So the hypotheses of Hurwitz's Theorem (Theorem VII.2.5) and the corollary to Hurwitz's Theorem, Corollary VII.2.6, are satisfied. Since 1/f is analytic on B(a; r)and (1/f)(a) = 0, then by Corollary IV.3.10 then either $1/f \equiv 0$ or there is R > 0 such that $B(a; R) \subset G$ and $(1/f)(z) \neq 0$ for 0 < |z - a| < R; that is, either $a/f \equiv 0$ or z = a is an isolated zero of 1/f. Therefore, either $f \equiv 0$ or f is meromorphic on B(a; R). (Conway uses Hurwitz's Theorem to reach this conclusion.)

Proof (continued). Since, as observed above, $d(z_1, z_2) = d(1/z_1, 1/z_2)$ and $d(z,0) = d(1/z,\infty)$ for $z \neq 0$, then $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$ implies $1/f_n \to 1/f$ in $C(G, \mathbb{C}_{\infty})$. Since each f_n is meromorphic on G, then each $1/f_n$ is meromorphic on G. Since $(1/f)(z) = 0 \neq \infty$, by Part I there is r > 0 and $n_0 \in \mathbb{N}$ such that 1/f and $1/f_n$ are analytic on B(a; r) for $n \ge n_0$, and $1/f_n \to 1/f$ uniformly on B(a; r). So by Proposition VII.1.10(b), $1/f_n \to 1/f$ in $H(G) \subset C(G, \mathbb{C})$. So the hypotheses of Hurwitz's Theorem (Theorem VII.2.5) and the corollary to Hurwitz's Theorem, Corollary VII.2.6, are satisfied. Since 1/f is analytic on B(a; r)and (1/f)(a) = 0, then by Corollary IV.3.10 then either $1/f \equiv 0$ or there is R > 0 such that $B(a; R) \subset G$ and $(1/f)(z) \neq 0$ for 0 < |z - a| < R; that is, either $a/f \equiv 0$ or z = a is an isolated zero of 1/f. Therefore, either $f \equiv 0$ or f is meromorphic on B(a; R). (Conway uses Hurwitz's Theorem to reach this conclusion.)

Combining Parts I and II, either $f \equiv \infty$ or f is meromorphic in G; that is, $f \in M(G) \cup \{\infty\}$.

Proof (continued). Since, as observed above, $d(z_1, z_2) = d(1/z_1, 1/z_2)$ and $d(z,0) = d(1/z,\infty)$ for $z \neq 0$, then $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$ implies $1/f_n \to 1/f$ in $C(G, \mathbb{C}_{\infty})$. Since each f_n is meromorphic on G, then each $1/f_n$ is meromorphic on G. Since $(1/f)(z) = 0 \neq \infty$, by Part I there is r > 0 and $n_0 \in \mathbb{N}$ such that 1/f and $1/f_n$ are analytic on B(a; r) for $n \ge n_0$, and $1/f_n \to 1/f$ uniformly on B(a; r). So by Proposition VII.1.10(b), $1/f_n \to 1/f$ in $H(G) \subset C(G, \mathbb{C})$. So the hypotheses of Hurwitz's Theorem (Theorem VII.2.5) and the corollary to Hurwitz's Theorem, Corollary VII.2.6, are satisfied. Since 1/f is analytic on B(a; r)and (1/f)(a) = 0, then by Corollary IV.3.10 then either $1/f \equiv 0$ or there is R > 0 such that $B(a; R) \subset G$ and $(1/f)(z) \neq 0$ for 0 < |z - a| < R; that is, either $a/f \equiv 0$ or z = a is an isolated zero of 1/f. Therefore, either $f \equiv 0$ or f is meromorphic on B(a; R). (Conway uses Hurwitz's Theorem to reach this conclusion.)

Combining Parts I and II, either $f \equiv \infty$ or f is meromorphic in G; that is, $f \in M(G) \cup \{\infty\}$.

Theorem VII.3.4. Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic on $f \equiv \infty$.

Proof (continued). (III) If each f_n is analytic in G then each f_n is finite in G and so $1/f_n$ has no zeros in G. So for any $a \in G$ and $B(a; r) \subset G$, $1/f_n$ has no zeros in B(a; r) and so by Corollary VII.2.6, either $1/f \equiv 0$ or 1/f never vanishes on B(a; r). That is, either $f \equiv \infty$ or f is analytic on B(a; r). Combining this with Part I we have that either $f \equiv \infty$ or f is analytic on G.

Theorem VII.3.4. Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic on $f \equiv \infty$.

Proof (continued). (III) If each f_n is analytic in G then each f_n is finite in G and so $1/f_n$ has no zeros in G. So for any $a \in G$ and $B(a; r) \subset G$, $1/f_n$ has no zeros in B(a; r) and so by Corollary VII.2.6, either $1/f \equiv 0$ or 1/f never vanishes on B(a; r). That is, either $f \equiv \infty$ or f is analytic on B(a; r). Combining this with Part I we have that either $f \equiv \infty$ or f is analytic on G.

Theorem VII.3.8

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof of locally bounded implies normal. Let $\mathcal{F} \subset M(G)$ with $\mu(\mathcal{F})$ locally bounded. Notice that $\mu(f) \in C(G, \mathbb{R}) \subset C(G, \mathbb{C})$ so "locally bounded" in this context means that for each $a \in G$ there are constants M and r > 0 such that for all $f \in \mathcal{F}$ we have $|\mu(f)(z)| \leq M$ for all |z - a| < r (technically, "uniformly bounded" is only defined for functions in H(G) in Section VII.2).

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof of locally bounded implies normal. Let $\mathcal{F} \subset M(G)$ with $\mu(\mathcal{F})$ locally bounded. Notice that $\mu(f) \in C(G, \mathbb{R}) \subset C(G, \mathbb{C})$ so "locally bounded" in this context means that for each $a \in G$ there are constants *M* and r > 0 such that for all $f \in \mathcal{F}$ we have $|\mu(f)(z)| \leq M$ for all |z-a| < r (technically, "uniformly bounded" is only defined for functions in H(G) in Section VII.2). To show normality of \mathcal{F} in $C(G, \mathbb{C}_{\infty})$, we apply the Arzela-Ascoli Theorem (Theorem VII.1.23). This requires that for each $z \in G$, $\{f(z) \mid f \in \mathcal{F}\}$ has compact closure in $\Omega = \mathbb{C}_{\infty}$. But \mathbb{C}_{∞} is compact (see the exercises for the supplement "The Extended Complex Plane") and a closed subset of a compact set is compact by Proposition II.4.3(b), so this condition is satisfied. We also need \mathcal{F} to be equicontinuous at each point of G, so we now show that.

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof of locally bounded implies normal. Let $\mathcal{F} \subset M(G)$ with $\mu(\mathcal{F})$ locally bounded. Notice that $\mu(f) \in C(G, \mathbb{R}) \subset C(G, \mathbb{C})$ so "locally bounded" in this context means that for each $a \in G$ there are constants *M* and r > 0 such that for all $f \in \mathcal{F}$ we have $|\mu(f)(z)| \leq M$ for all |z - a| < r (technically, "uniformly bounded" is only defined for functions in H(G) in Section VII.2). To show normality of \mathcal{F} in $C(G, \mathbb{C}_{\infty})$, we apply the Arzela-Ascoli Theorem (Theorem VII.1.23). This requires that for each $z \in G$, $\{f(z) \mid f \in \mathcal{F}\}$ has compact closure in $\Omega = \mathbb{C}_{\infty}$. But \mathbb{C}_{∞} is compact (see the exercises for the supplement "The Extended Complex Plane") and a closed subset of a compact set is compact by Proposition II.4.3(b), so this condition is satisfied. We also need \mathcal{F} to be equicontinuous at each point of G, so we now show that.

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = {\mu(f) \mid f \in \mathcal{F}}$ is locally bounded.

Proof (continued). As in Lemma VII.2.8 (which is in the setting of H(G)), pointwise locally bounded implies locally bounded on compact sets. Let K be an arbitrary closed disk in G (so K is closed and bounded and by Heine-Borel Theorem is a compact set). Then the local boundedness of $\mu(\mathcal{F})$ implies that there is M such that $|\mu(f)(z)| = \mu(f)(z) = 2|f'(z)|/(1+|f(z)|^2) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$. Let $z_1, z' \in K$.

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). As in Lemma VII.2.8 (which is in the setting of H(G)), pointwise locally bounded implies locally bounded on compact sets. Let K be an arbitrary closed disk in G (so K is closed and bounded and by Heine-Borel Theorem is a compact set). Then the local boundedness of $\mu(\mathcal{F})$ implies that there is M such that $|\mu(f)(z)| = \mu(f)(z) = 2|f'(z)|/(1 + |f(z)|^2) \le M$ for all $z \in K$ and for all $f \in \mathcal{F}$. Let $z_1, z' \in K$.

Proof (continued). (I) Suppose neither z nor z' are poles of a fixed function $f \in \mathcal{F}$. Let $\alpha > 0$. Choose points $w_0 = z, w_1, w_2, \ldots, w_n = z'$ in K which satisfy the following:

(3.9) for
$$1 \le k \le n$$
, $w \in [w_{k-1}, w_k]$ implies w is not a pole of f ;
(3.10) $\sum_{k=1}^{n} |w_k - w_{k-1}| < 2|z - z'|$;
(3.11) $\left| \frac{1 + |f(w_{k-1})|^2}{\{(1 + |f(w_k)|^2)(1 + |f(w_{k-1})|^2)\|^{1/2}} - 1 \right| < \alpha$, for
 $1 \le k \le n$;
(3.12) $\left| \frac{f(w_k) = f(w_{k-1})}{w_k - w_{k-1}} - f'(w_{k-1}) \right| < \alpha$, for $a \le k \le n$.

Proof (continued). (I) Suppose neither z nor z' are poles of a fixed function $f \in \mathcal{F}$. Let $\alpha > 0$. Choose points $w_0 = z, w_1, w_2, \ldots, w_n = z'$ in K which satisfy the following:

$$(3.9) \text{ for } 1 \le k \le n, \ w \in [w_{k-1}, w_k] \text{ implies } w \text{ is not a pole of } f;$$

$$(3.10) \sum_{k=1}^n |w_k - w_{k-1}| < 2|z - z'|;$$

$$(3.11) \left| \frac{1 + |f(w_{k-1})|^2}{\{(1 + |f(w_k)|^2)(1 + |f(w_{k-1})|^2)\|^{1/2}} - 1 \right| < \alpha, \text{ for}$$

$$1 \le k \le n;$$

$$(3.12) \left| \frac{f(w_k) = f(w_{k-1})}{w_k - w_{k-1}} - f'(w_{k-1}) \right| < \alpha, \text{ for } a \le k \le n.$$

Since K is a closed disk and the poles of f are isolated, then there are only finitely many poles of f in K (by the Bolzano-Weierstrass Theorem; see Theorem 2.12 of my Analysis 1, MATH 4217/5217, notes). So there is a polynomial path P from z to z' satisfying (3.9) and (3.10)...

Proof (continued). (I) Suppose neither z nor z' are poles of a fixed function $f \in \mathcal{F}$. Let $\alpha > 0$. Choose points $w_0 = z, w_1, w_2, \ldots, w_n = z'$ in K which satisfy the following:

(3.9) for
$$1 \le k \le n$$
, $w \in [w_{k-1}, w_k]$ implies w is not a pole of f ;
(3.10) $\sum_{k=1}^{n} |w_k - w_{k-1}| < 2|z - z'|$;
(3.11) $\left| \frac{1 + |f(w_{k-1})|^2}{\{(1 + |f(w_k)|^2)(1 + |f(w_{k-1})|^2)\|^{1/2}} - 1 \right| < \alpha$, for
 $1 \le k \le n$;
(3.12) $\left| \frac{f(w_k) = f(w_{k-1})}{w_k - w_{k-1}} - f'(w_{k-1}) \right| < \alpha$, for $a \le k \le n$.

Since K is a closed disk and the poles of f are isolated, then there are only finitely many poles of f in K (by the Bolzano-Weierstrass Theorem; see Theorem 2.12 of my Analysis 1, MATH 4217/5217, notes). So there is a polynomial path P from z to z' satisfying (3.9) and (3.10)...

Proof (continued). . . . (start with a line segment from z to z'; it can contain only finitely many poles, so modify it to go around any poles—this can be done without involving other poles since the poles are isolated). Now consider

$$g(z_1,z_2) = rac{1+|f(z_1)|^2}{\{(1+|f(z_1)|^2)(1+|f(z-1)|^2\}^{1/2}}.$$

Then g is continuous on K, except at the poles of f. Since $g(z_1, z_2) = 1$, ten for given a_1 an $d\alpha > 0$, if z_2 is sufficiently close to z_1 then $|g(z_1, z_2) - 1| < \alpha$. So for each $z_1 \in P$ there is a small open disk centered at z_1 such that for all z_2 in the disk, $|g(z_1, z_2) - 1| < \alpha$. Since f is differentiable at each $z_1 \in P$ then there is a small open disk centered at z_1 such that for all z_2 in the disk, $\left| \frac{f(z_1) - f(z_2)}{z_1 - z_2} - f'(z_1) \right| < \alpha$.

Proof (continued). . . . (start with a line segment from z to z'; it can contain only finitely many poles, so modify it to go around any poles—this can be done without involving other poles since the poles are isolated). Now consider

$$g(z_1,z_2) = rac{1+|f(z_1)|^2}{\{(1+|f(z_1)|^2)(1+|f(z-1)|^2\}^{1/2}}.$$

Then g is continuous on K, except at the poles of f. Since $g(z_1, z_2) = 1$, ten for given a_1 an $d\alpha > 0$, if z_2 is sufficiently close to z_1 then $|g(z_1, z_2) - 1| < \alpha$. So for each $z_1 \in P$ there is a small open disk centered at z_1 such that for all z_2 in the disk, $|g(z_1, z_2) - 1| < \alpha$. Since f is differentiable at each $z_1 \in P$ then there is a small open disk centered at z_1 such that for all z_2 in the disk, $\left| \frac{f(z_1) - f(z_2)}{z_1 - z_2} - f'(z_1) \right| < \alpha$.

Proof (continued). So for each $z_1 \in P$, there is a small disk centered at z_1 such that both

$$\left|g(z_1,z_2)-1
ight| and $\left|rac{f(z_1)-f(z_2)}{z_1-z_2}-f'(z_1)
ight|$$$

for all z_2 in the small disk. Now the resulting collection of "small disks" (one for each $z_1 \in P$) is an open cover of P. Since P is a compact set, there is a finite number of small disks covering P.

Proof (continued). So for each $z_1 \in P$, there is a small disk centered at z_1 such that both

$$\left|g(z_1,z_2)-1
ight| and $\left|rac{f(z_1)-f(z_2)}{z_1-z_2}-f'(z_1)
ight|$$$

for all z_2 in the small disk. Now the resulting collection of "small disks" (one for each $z_1 \in P$) is an open cover of P. Since P is a compact set, there is a finite number of small disks covering P. Then label points $w_0 = z, w_1, w_2, \ldots, w_n = z'$ (which results in a "refinement" of the original polygon; only straight line segments are refined here) such that $[w_{k-1}, w_k]$ lies entirely inside a given open disk for $k = 1, 2, \ldots, n$. Then the polygonal path determined by $w_0 = z, w_1, w_2, \ldots, w_n = z'$ satisfies (3.11) and (3.12) (an properties (3.9) and (3.10) still hold).

Proof (continued). So for each $z_1 \in P$, there is a small disk centered at z_1 such that both

$$\left|gig(z_1,z_2ig)-1
ight| and $\left|rac{fig(z_1ig)-fig(z_2ig)}{z_1-z_2}-fig'ig(z_1ig)
ight|$$$

for all z_2 in the small disk. Now the resulting collection of "small disks" (one for each $z_1 \in P$) is an open cover of P. Since P is a compact set, there is a finite number of small disks covering P. Then label points $w_0 = z, w_1, w_2, \ldots, w_n = z'$ (which results in a "refinement" of the original polygon; only straight line segments are refined here) such that $[w_{k-1}, w_k]$ lies entirely inside a given open disk for $k = 1, 2, \ldots, n$. Then the polygonal path determined by $w_0 = z, w_1, w_2, \ldots, w_n = z'$ satisfies (3.11) and (3.12) (an properties (3.9) and (3.10) still hold).

Proof (continued). With $\beta_k = \{(1 + |f(w_{k-1})|^2)(1 + |f(w_k)|^2)\}^{1/2}$, we have

$$d(f(z), f(z')) \leq \sum_{k=1}^{n} d(f(w_{k-1}), f(w_k))$$
 by the Triangle Inequality,
and the facts that $w_0 = z$, and $z_n = z'$

$$= \sum_{k=1}^{n} \frac{2}{\beta_{k}} |f(w_{k}) - f(w_{k-1})| \text{ by definition of } d$$

$$= \sum_{k=1}^{n} \frac{2}{\beta_{k}} \left| \frac{f(w_{k}) - f(w_{k-1})}{w_{k} - w_{k-1}} \right| |w_{k} - w_{k-1}|$$

$$= \sum_{k=1}^{n} \frac{2}{\beta_{k}} \left| \frac{f(w_{k}) - f(w_{k-1})}{w_{k} - w_{k-1}} - f'(w_{k-1}) + f'(w_{k-1}) \right| |w_{k} - w_{k-1}|$$

Theorem VII.3.8 (continued 6)

Proof (continued).

$$\leq \sum_{k=1}^{n} \frac{2}{\beta_{k}} \left| \frac{f(w_{k}) - f(w_{k-1})}{w_{k} - w_{k-1}} - f'(w_{k-1}) \right| |w_{k} - w_{k-1}| \\ + \sum_{k=1}^{n} \frac{2}{\beta_{k}} |f'(w_{k-1})| |w_{k} - w_{k-1}|$$

$$\leq 2\alpha \sum_{k=1}^{n} k = 1^{n} \frac{1}{\beta_{k}} |w_{k} - w_{k-1}| + \sum_{k=1}^{n} \frac{2}{\beta_{k}} |f'(w_{k-1})| |w_{k} - w_{k-1}|$$

by (3.11)
$$\leq 2\alpha \sum_{k=1}^{n} \frac{1}{\beta_{k}} |w_{k} - w_{k-1}| + M \sum_{k=1}^{n} \frac{1 + |f(w_{k-1})|^{2}}{\beta_{k}} |w_{k} - w_{k-1}|$$

since $\mu(f)(w_{k-1}) = \frac{2|f'(w_{k-1})|}{1 + |f(w_{k-1})|^{2}} \leq M$
by the local boundedness of $\mu(\mathcal{F})$

Theorem VII.3.8 (continued 7)

Proof (continued).

$$\leq 2\alpha \sum_{k=1}^{n} |w_{k} - w_{k-1}| + M \sum_{k=1}^{n} \left(\frac{1 + |f(w_{k-1})|^{2}}{\beta_{k}} - 1 + 1 \right) |w_{k} - w_{k-1}|$$
since $\beta_{k} = \{(1 + |f(w_{k-1})|^{2})((1 + |f(w_{k})|^{2})\}^{1/2} \geq 1 \text{ and } 1/\beta_{k} \leq 1$

$$\leq 4\alpha |z - z'| + M \sum_{k=1}^{n} |w_{k} - w_{k-1}| + M \sum_{k=1}^{n} \frac{1 + |f(w_{k-1})|^{2}}{\beta_{k}} |w_{k} - w_{k-1}|$$
by the Triangle Inequality and (3.10)
$$\leq 4\alpha |z - z'| + 2M |z - z'| + M\alpha (2|z - z'|) \text{ by (3.10) and (3.12)}$$

$$= (4\alpha + 2M\alpha + 2M)|z - z'|.$$

Since $\alpha > 0$ is arbitrary an dz, z' are any nonpoles of f, then

 $d(f(z), f(z')) \le 2M|z - z'|$ for nonpoles $z, z' \in G$. (3.13)

Theorem VII.3.8 (continued 7)

Proof (continued).

$$\leq 2\alpha \sum_{k=1}^{n} |w_{k} - w_{k-1}| + M \sum_{k=1}^{n} \left(\frac{1 + |f(w_{k-1})|^{2}}{\beta_{k}} - 1 + 1 \right) |w_{k} - w_{k-1}|$$
since $\beta_{k} = \{ (1 + |f(w_{k-1})|^{2})((1 + |f(w_{k})|^{2})\}^{1/2} \geq 1 \text{ and } 1/\beta_{k} \leq 1$

$$\leq 4\alpha |z - z'| + M \sum_{k=1}^{n} |w_{k} - w_{k-1}| + M \sum_{k=1}^{n} \frac{1 + |f(w_{k-1})|^{2}}{\beta_{k}} |w_{k} - w_{k-1}|$$
by the Triangle Inequality and (3.10)
$$\leq 4\alpha |z - z'| + 2M |z - z'| + M\alpha (2|z - z'|) \text{ by (3.10) and (3.12)}$$

$$= (4\alpha + 2M\alpha + 2M)|z - z'|.$$

Since $\alpha > 0$ is arbitrary an dz, z' are any nonpoles of f, then

$$d(f(z), f(z')) \leq 2M|z-z'|$$
 for nonpoles $z, z' \in G$. (3.13)

Proof (continued). (II) Now suppose z' is a pole of f but x is not. If $w \in K$ is not a pole then

 $\begin{array}{rcl} d(f(z),\infty) & \leq & d(f(z),f(w)) + d(f(w),\infty) \text{ by the Triangle Inequality} \\ & \leq & 2M|z-w| + d(f(w),\infty) \text{ by (3.13).} \end{array}$

Since the poles of f are isolated, for w "sufficiently close to" z', w is not a pole and so $\lim_{w\to z'} f(w) = f(z') = \infty$ and $\lim_{z\to z'} |z - w| = z - z'|$. Therefore

$$d(f(z), f(z')) = d(f(z), \infty) \le \lim_{w \to z'} (2M|z - w| + d(f(w), \infty))$$

$$= 2M|z-z'| + d(f(z'), \infty) = 2M|z-z'| + d(\infty, \infty)$$

$$= 2M|z - z'| + 0 = 2M|z - z'|.$$

Therefore (3.13) holds if at most one of z and z' is a pole.

Proof (continued). (II) Now suppose z' is a pole of f but x is not. If $w \in K$ is not a pole then

$$\begin{array}{rcl} d(f(z),\infty) & \leq & d(f(z),f(w)) + d(f(w),\infty) \text{ by the Triangle Inequality} \\ & \leq & 2M|z-w| + d(f(w),\infty) \text{ by (3.13).} \end{array}$$

Since the poles of f are isolated, for w "sufficiently close to" z', w is not a pole and so $\lim_{w\to z'} f(w) = f(z') = \infty$ and $\lim_{z\to z'} |z - w| = z - z'|$. Therefore

$$d(f(z), f(z')) = d(f(z), \infty) \le \lim_{w \to z'} (2M|z - w| + d(f(w), \infty))$$
$$= 2M|z - z'| + d(f(z'), \infty) = 2M|z - z'| + d(\infty, \infty)$$

$$= 2M|z - z'| + 0 = 2M|z - z'|.$$

Therefore (3.13) holds if at most one of z and z' is a pole.

Proof (continued). (III) Similarly, if z and z' are both poles, then for w "sufficiently close to;; z is not a pole of f (since poles are isolated) and so

$$(f(z), f(z')) = d\left(\lim_{w \to z} f(w), f(z')\right)$$

=
$$\lim_{w \to z} (f(w), f(z')) \le \lim_{w \to z} 2M|w - z'| \text{ by Part II}$$

=
$$2M|z - z'|$$

and (3.13) holds if both z and z' are poles of f (in fact, this holds trivially since $f(z) = f(z') = \infty$ and so d(f(z), f(z')) = 0). Therefore, (3.13) holds for all $z, z' \in K$.

At this stage, we have that given any closed disk $K \subset G$ that for all $z, z' \in K$, $d(f(z), f(z')) \leq 2M|z - z'|$ for all $f \in \mathcal{F}$ (since this conclusion holds for arbitrary $f \in \mathcal{F}$, as shown in Parts I, II, and III).

Proof (continued). (III) Similarly, if z and z' are both poles, then for w "sufficiently close to;; z is not a pole of f (since poles are isolated) and so

$$(f(z), f(z')) = d\left(\lim_{w \to z} f(w), f(z')\right)$$

=
$$\lim_{w \to z} (f(w), f(z')) \le \lim_{w \to z} 2M|w - z'| \text{ by Part II}$$

=
$$2M|z - z'|$$

and (3.13) holds if both z and z' are poles of f (in fact, this holds trivially since $f(z) = f(z') = \infty$ and so d(f(z), f(z')) = 0). Therefore, (3.13) holds for all $z, z' \in K$.

At this stage, we have that given any closed disk $K \subset G$ that for all $z, z' \in K$, $d(f(z), f(z')) \leq 2M|z - z'|$ for all $f \in \mathcal{F}$ (since this conclusion holds for arbitrary $f \in \mathcal{F}$, as shown in Parts I, II, and III).

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). Let $a \in G$. Let $K = B(a; r) \subset G$ and let $\varepsilon > 0$. Let M > 0 be the constant such that $|\mu(f)(z)| = \mu(f)(z) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$ (given by the local boundedness of $\mu(f)$ on K, as argued above before Part I). Define $\delta = \min\{r, \varepsilon/(2M)\}$. Then for $|z - a| < \delta$ we have $d(f(z), f(a)) < 2M|z - a| < 2M\delta < \varepsilon$ for all $f \in \mathcal{F}$. That is, \mathcal{F} is equicontinuous at point $a \in G$. Since $a \in G$ is an arbitrary point of G, then by the Arzela-Ascoli Theorem (Theorem VII.4.23), $\mathcal{F} \subset C(G, \Omega) = C(G, \mathbb{C}_{\infty})$ is normal

()

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). Let $a \in G$. Let $K = B(a; r) \subset G$ and let $\varepsilon > 0$. Let M > 0 be the constant such that $|\mu(f)(z)| = \mu(f)(z) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$ (given by the local boundedness of $\mu(f)$ on K, as argued above before Part I). Define $\delta = \min\{r, \varepsilon/(2M)\}$. Then for $|z - a| < \delta$ we have $d(f(z), f(a)) < 2M|z - a| < 2M\delta < \varepsilon$ for all $f \in \mathcal{F}$. That is, \mathcal{F} is equicontinuous at point $a \in G$. Since $a \in G$ is an arbitrary point of G, then by the Arzela-Ascoli Theorem (Theorem VII.4.23), $\mathcal{F} \subset C(G, \Omega) = C(G, \mathbb{C}_{\infty})$ is normal

The converse is to be given in Exercise VII.3.2.

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Proof (continued). Let $a \in G$. Let $K = B(a; r) \subset G$ and let $\varepsilon > 0$. Let M > 0 be the constant such that $|\mu(f)(z)| = \mu(f)(z) \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$ (given by the local boundedness of $\mu(f)$ on K, as argued above before Part I). Define $\delta = \min\{r, \varepsilon/(2M)\}$. Then for $|z - a| < \delta$ we have $d(f(z), f(a)) < 2M|z - a| < 2M\delta < \varepsilon$ for all $f \in \mathcal{F}$. That is, \mathcal{F} is equicontinuous at point $a \in G$. Since $a \in G$ is an arbitrary point of G, then by the Arzela-Ascoli Theorem (Theorem VII.4.23), $\mathcal{F} \subset C(G, \Omega) = C(G, \mathbb{C}_{\infty})$ is normal

The converse is to be given in Exercise VII.3.2.