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Theorem VII.3.4

Theorem VII.3.4

Theorem VII.3.4. Let {fn} be a sequence in M(G ) and suppose fn → f
in C (G , C∞). Then either f is meromorphic or f ≡ ∞. If each fn is
analytic then either f is analytic on f ≡ ∞.

Proof. (I) Let a ∈ G with f (a) 6= ∞. Set M = |f (a)|. By Proposition
VII.3.3(a), there is ρ > 0 such that B∞(f (a); ρ) ⊂ B(f (z);M).

Since
fn → f then there is n0 ∈ N such that d(fn(a), f (a)) < ρ/2 for all n ≥ n0

(since convergence in C (G , C∞) implies convergence on compact subsets
of G and so implies pointwise convergence since {a} ⊂ G ⊂ C is
compact). Now {f−, f1, f2, . . .} ⊂ C (G , C∞) is compact since any open
cover must include an open set containing f and this open set contains all
by finitely many of the other elements of the set. So {f , f1, f2, . . .} has
compact closure and by Proposition VII.1.15 it is normal. By the
Arzela-Ascoli Theorem (Theorem VII.1.23(b)) {f , f1, f2, . . .} is
equicontinuous. So by the definition of equicontinuity, there is r1 > 0 such
that |z − a| < r1 implies d(fn(z), fn(z)) < ρ/2.
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Theorem VII.3.4

Theorem VII.3.4 (continued 1)

Proof (continued). So for |z − a| ≤ r < r1 and n ≥ n0 we have

d(fn(z), f (a)) ≤ d(fn(z), fn(a)) + d(fn(a), f (a)) < ρ/2 + ρ/2 = ρ.

By the choice of ρ, B∞(f (a); ρ) ⊂ B(f (a);M), so d(fn(z), f (a)) < ρ
implies fn(z) ∈ B∞(f (a); ρ) ⊂ B(f (a);M) and so |fn(z)− f (a)| < M. So
for z ∈ B(a; r) and n ≥ n0 we have

|fn(z)| = |fn(z)− f (a) + f (a)| ≤ |fn(z)− f (a)|+ |f (a)| < M + M = 2M.

Since fn(z) → f (z), then f (z) ≤ 2M for all z ∈ B(a; r). So

d(fn(z), f (z)) =
2|fn(z)− f (z)|

{(1 + |fn(z)|2)(1 + |f (z)|2)}1/2

≥ 2|fn(z)− f (z)|
{(1 + (2M)2)(1 + (2M)2)}1/2

=
2|fn(z)− f (z)|

1 + 4M2

for z ∈ B(a; r) and n ≥ n0.
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Theorem VII.3.4

Theorem VII.3.4 (continued 2)

.
Proof (continued). By Proposition VII.1.10, fn → f in C (G , C∞) implies
that d(fn(z), f (z)) → 0 uniformly on cmpact set B(a; r). So the above
inequality implies that |fn(z)− f (z)| → 0 uniformly in B(a; r). Now for
n ≥ n0, |fn(z)| ≤ 2M for all z ∈ B(a; r) so for n ≥ n0 each meromorphic
fn must be analytic on B(a; r) (since bounded fn cannot have a pole in
B(a; r)). So {fn}n≥n0 is a sequence of analytic functions which converges
uniformly on B(a; r) (and so converges uniformly on any compact subset
of B(a; r)) and then by Proposition VII.1.10 {fn}n≥n0 converges in
C (B(a; r), C∞). By Theorem VII.2.1, the limit function f is analytic on
B(a; r). That is, if f (a) 6= ∞ then f is analytic in some neighborhood of a.

(II) Now suppose there is a ∈ G with f (a) = ∞. For g ∈ C (G , C∞),

define

(
1

g

)
=


1/g(z) if g(z) 6∈ {0,∞}

0 if g(z) = ∞
∞ if g(z) = 0.

Then 1/g ∈ C (G , C∞).

() Complex Analysis August 4, 2017 5 / 18



Theorem VII.3.4

Theorem VII.3.4 (continued 2)

.
Proof (continued). By Proposition VII.1.10, fn → f in C (G , C∞) implies
that d(fn(z), f (z)) → 0 uniformly on cmpact set B(a; r). So the above
inequality implies that |fn(z)− f (z)| → 0 uniformly in B(a; r). Now for
n ≥ n0, |fn(z)| ≤ 2M for all z ∈ B(a; r) so for n ≥ n0 each meromorphic
fn must be analytic on B(a; r) (since bounded fn cannot have a pole in
B(a; r)). So {fn}n≥n0 is a sequence of analytic functions which converges
uniformly on B(a; r) (and so converges uniformly on any compact subset
of B(a; r)) and then by Proposition VII.1.10 {fn}n≥n0 converges in
C (B(a; r), C∞). By Theorem VII.2.1, the limit function f is analytic on
B(a; r). That is, if f (a) 6= ∞ then f is analytic in some neighborhood of a.

(II) Now suppose there is a ∈ G with f (a) = ∞. For g ∈ C (G , C∞),

define

(
1

g

)
=


1/g(z) if g(z) 6∈ {0,∞}

0 if g(z) = ∞
∞ if g(z) = 0.

Then 1/g ∈ C (G , C∞).

() Complex Analysis August 4, 2017 5 / 18



Theorem VII.3.4

Theorem VII.3.4 (continued 2)

.
Proof (continued). By Proposition VII.1.10, fn → f in C (G , C∞) implies
that d(fn(z), f (z)) → 0 uniformly on cmpact set B(a; r). So the above
inequality implies that |fn(z)− f (z)| → 0 uniformly in B(a; r). Now for
n ≥ n0, |fn(z)| ≤ 2M for all z ∈ B(a; r) so for n ≥ n0 each meromorphic
fn must be analytic on B(a; r) (since bounded fn cannot have a pole in
B(a; r)). So {fn}n≥n0 is a sequence of analytic functions which converges
uniformly on B(a; r) (and so converges uniformly on any compact subset
of B(a; r)) and then by Proposition VII.1.10 {fn}n≥n0 converges in
C (B(a; r), C∞). By Theorem VII.2.1, the limit function f is analytic on
B(a; r). That is, if f (a) 6= ∞ then f is analytic in some neighborhood of a.

(II) Now suppose there is a ∈ G with f (a) = ∞. For g ∈ C (G , C∞),

define

(
1

g

)
=


1/g(z) if g(z) 6∈ {0,∞}

0 if g(z) = ∞
∞ if g(z) = 0.

Then 1/g ∈ C (G , C∞).

() Complex Analysis August 4, 2017 5 / 18



Theorem VII.3.4

Theorem VII.3.4 (continued 3)

Proof (continued). Since, as observed above, d(z1, z2) = d(1/z1, 1/z2)
and d(z , 0) = d(1/z ,∞) for z 6= 0, then fn → f in C (G , C∞) implies
1/fn → 1/f in C (G , C∞). Since each fn is meromorphic on G , then each
1/fn is meromorphic on G . Since (1/f )(z) = 0 6= ∞, by Part I there is
r > 0 and n0 ∈ N such that 1/f and 1/fn are analytic on B(a; r) for
n ≥ n0, and 1/fn → 1/f uniformly on B(a; r). So by Proposition
VII.1.10(b), 1/fn → 1/f in H(G ) ⊂ C (G , C).

So the hypotheses of
Hurwitz’s Theorem (Theorem VII.2.5) and the corollary to Hurwitz’s
Theorem, Corollary VII.2.6, are satisfied. Since 1/f is analytic on B(a; r)
and (1/f )(a) = 0, then by Corollary IV.3.10 then either 1/f ≡ 0 or there is
R > 0 such that B(a;R) ⊂ G and (1/f )(z) 6= 0 for 0 < |z − a| < R; that
is, either a/f ≡ 0 or z = a is an isolated zero of 1/f . Therefore, either
f ≡ 0 or f is meromorphic on B(a;R). (Conway uses Hurwitz’s Theorem
to reach this conclusion.)

Combining Parts I and II, either f ≡ ∞ or f is meromorphic in G ; that is,
f ∈ M(G ) ∪ {∞}.
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Theorem VII.3.4

Theorem VII.3.4 (continued 4)

Theorem VII.3.4. Let {fn} be a sequence in M(G ) and suppose fn → f
in C (G , C∞). Then either f is meromorphic or f ≡ ∞. If each fn is
analytic then either f is analytic on f ≡ ∞.

Proof (continued). (III) If each fn is analytic in G then each fn is finite
in G and so 1/fn has no zeros in G . So for any a ∈ G and B(a; r) ⊂ G ,
1/fn has no zeros in B(a; r) and so by Corollary VII.2.6, either 1/f ≡ 0 or
1/f never vanishes on B(a; r). That is, either f ≡ ∞ or f is analytic on
B(a; r). Combining this with Part I we have that either f ≡ ∞ or f is
analytic on G .
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Theorem VII.3.8

Theorem VII.3.8

Theorem VII.3.8. A family F ⊂ M(G ) is normal in C (G , C∞) if and
only if µ(F) = {µ(f ) | f ∈ F} is locally bounded.

Proof of locally bounded implies normal. Let F ⊂ M(G ) with µ(F)
locally bounded. Notice that µ(f ) ∈ C (G , R) ⊂ C (G , C) so “locally
bounded” in this context means that for each a ∈ G there are constants
M and r > 0 such that for all f ∈ F we have |µ(f )(z)| ≤ M for all
|z − a| < r (technically, “uniformly bounded” is only defined for functions
in H(G ) in Section VII.2).

To show normality of F in C (G , C∞), we apply
the Arzela-Ascoli Theorem (Theorem VII.1.23). This requires that for each
z ∈ G , {f (z) | f ∈ F} has compact closure in Ω = C∞. But C∞ is
compact (see the exercises for the supplement “The Extended Complex
Plane”) and a closed subset of a compact set is compact by Proposition
II.4.3(b), so this condition is satisfied. We also need F to be
equicontinuous at each point of G , so we now show that.
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Theorem VII.3.8

Theorem VII.3.8 (continued 1)

Theorem VII.3.8. A family F ⊂ M(G ) is normal in C (G , C∞) if and
only if µ(F) = {µ(f ) | f ∈ F} is locally bounded.

Proof (continued). As in Lemma VII.2.8 (which is in the setting of
H(G )), pointwise locally bounded implies locally bounded on compact
sets. Let K be an arbitrary closed disk in G (so K is closed and bounded
and by Heine-Borel Theorem is a compact set). Then the local
boundedness of µ(F) implies that there is M such that
|µ(f )(z)| = µ(f )(z) = 2|f ′(z)|/(1 + |f (z)|2) ≤ M for all z ∈ K and for all
f ∈ F . Let z1, z

′ ∈ K .
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Theorem VII.3.8

Theorem VII.3.8 (continued 2)

Proof (continued). (I) Suppose neither z nor z ′ are poles of a fixed
function f ∈ F . Let α > 0. Choose points w0 = z ,w1,w2, . . . ,wn = z ′ in
K which satisfy the following:

(3.9) for 1 ≤ k ≤ n, w ∈ [wk−1,wk ] implies w is not a pole of f ;

(3.10)
∑n

k=1 |wk − wk−1| < 2|z − z ′|;

(3.11)

∣∣∣∣ 1 + |f (wk−1)|2

{(1 + |f (wk)|2)(1 + |f (wk−1)|2)‖1/2
− 1

∣∣∣∣ < α, for

1 ≤ k ≤ n;

(3.12)

∣∣∣∣ f (wk) = f (wk−1)

wk − wk−1
− f ′(wk−1)

∣∣∣∣ < α, for a ≤ k ≤ n.

Since K is a closed disk and the poles of f are isolated, then there are only
finitely many poles of f in K (by the Bolzano-Weierstrass Theorem; see
Theorem 2.12 of my Analysis 1, MATH 4217/5217, notes). So there is a
polynomial path P from z to z ′ satisfying (3.9) and (3.10). . .
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Theorem VII.3.8

Theorem VII.3.8 (continued 3)

Proof (continued). . . . (start with a line segment from z to z ′; it can
contain only finitely many poles, so modify it to go around any poles—this
can be done without involving other poles since the poles are isolated).
Now consider

g(z1, z2) =
1 + |f (z1)|2

{(1 + |f (z1)|2)(1 + |f (z − 1)|2}1/2
.

Then g is continuous on K , except at the poles of f . Since g(z1, z2) = 1,
ten for given a1 an dα > 0, if z2 is sufficiently close to z1 then
|g(z1, z2)− 1| < α. So for each z1 ∈ P there is a small open disk centered
at z1 such that for all z2 in the disk, |g(z1, z2)− 1| < α. Since f is
differentiable at each z1 ∈ P then there is a small open disk centered at z1

such that for all z2 in the disk,

∣∣∣∣ f (z1)− f (z2)

z1 − z2
− f ′(z1)

∣∣∣∣ < α.
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Theorem VII.3.8

Theorem VII.3.8 (continued 4)

Proof (continued). So for each z1 ∈ P, there is a small disk centered at
z1 such that both

|g(z1, z2)− 1| < α and

∣∣∣∣ f (z1)− f (z2)

z1 − z2
− f ′(z1)

∣∣∣∣ < α

for all z2 in the small disk. Now the resulting collection of “small disks”
(one for each z1 ∈ P) is an open cover of P. Since P is a compact set,
there is a finite number of small disks covering P.

Then label points
w0 = z ,w1,w2, . . . ,wn = z ′ (which results in a “refinement” of the
original polygon; only straight line segments are refined here) such that
[wk−1,wk ] lies entirely inside a given open disk for k = 1, 2, . . . , n. Then
the polygonal path determined by w0 = z ,w1,w2, . . . ,wn = z ′ satisfies
(3.11) and (3.12) (an properties (3.9) and (3.10) still hold).
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Theorem VII.3.8

Theorem VII.3.8 (continued 5)

Proof (continued). With βk = {(1 + |f (wk−1)|2)(1 + |f (wk)|2)}1/2, we
have

d(f (z), f (z ′)) ≤
n∑

k=1

d(f (wk−1), f (wk)) by the Triangle Inequality,

and the facts that w0 = z , and zn = z ′

=
n∑

k=1

2

βk
|f (wk)− f (wk−1)| by definition of d

=
n∑

k=1

2

βk

∣∣∣∣ f (wk)− f (wk−1)

wk − wk−1

∣∣∣∣ |wk − wk−1|

=
n∑

k=1

2

βk

∣∣∣∣ f (wk)− f (wk−1)

wk − wk−1
− f ′(wk−1) + f ′(wk−1)

∣∣∣∣ |wk − wk−1|
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Theorem VII.3.8

Theorem VII.3.8 (continued 6)

Proof (continued).

≤
n∑

k=1

2

βk

∣∣∣∣ f (wk)− f (wk−1)

wk − wk−1
− f ′(wk−1)

∣∣∣∣ |wk − wk−1|

+
n∑

k=1

2

βk
|f ′(wk−1)||wk − wk−1|

≤ 2α
∑

k = 1n 1

βk
|wk − wk−1|+

n∑
k=1

2

βk
|f ′(wk−1)||wk − wk−1|

by (3.11)

≤ 2α

n∑
k=1

1

βk
|wk − wk−1|+ M

n∑
k=1

1 + |f (wk−1)|2

βk
|wk − wk−1|

since µ(f )(wk−1) =
2|f ′(wk−1)|

1 + |f (wk−1)|2
≤ M

by the local boundedness of µ(F)
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Theorem VII.3.8

Theorem VII.3.8 (continued 7)

Proof (continued).

≤ 2α

n∑
k=1

|wk − wk−1|+ M
n∑

k=1

(
1 + |f (wk−1)|2

βk
− 1 + 1

)
|wk − wk−1|

since βk = {(1 + |f (wk−1)|2)((1 + |f (wk)|2)}1/2 ≥ 1 and 1/βk ≤ 1

≤ 4α|z − z ′|+ M
n∑

k=1

|wk − wk−1 + M
n∑

k=1

1 + |f (wk−1)|2

βk
|wk − wk−1|

by the Triangle Inequality and (3.10)

≤ 4α|z − z ′|+ 2M|z − z ′|+ Mα(2|z − z ′|) by (3.10) and (3.12)

= (4α + 2Mα + 2M)|z − z ′|.

Since α > 0 is arbitrary an dz , z ′ are any nonpoles of f , then

d(f (z), f (z ′)) ≤ 2M|z − z ′| for nonpoles z , z ′ ∈ G . (3.13)
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Theorem VII.3.8

Theorem VII.3.8 (continued 8)

Proof (continued). (II) Now suppose z ′ is a pole of f but x is not. If
w ∈ K is not a pole then

d(f (z),∞) ≤ d(f (z), f (w)) + d(f (w),∞) by the Triangle Inequality

≤ 2M|z − w |+ d(f (w),∞) by (3.13).

Since the poles of f are isolated, for w “sufficiently close to” z ′, w is not a
pole and so limw→z ′ f (w) = f (z ′) = ∞ and limz→z ′ |z − w | = z − z ′|.
Therefore

d(f (z), f (z ′)) = d(f (z),∞) ≤ lim
w→z ′

(2M|z − w |+ d(f (w),∞))

= 2M|z − z ′|+ d(f (z ′),∞ = 2M|z − z ′|+ d(∞,∞)

= 2M|z − z ′|+ 0 = 2M|z − z ′|.

Therefore (3.13) holds if at most one of z and z ′ is a pole.
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Theorem VII.3.8

Theorem VII.3.8 (continued 9)

Proof (continued). (III) Similarly, if z and z ′ are both poles, then for w
“sufficiently close to;; z is not a pole of f (since poles are isolated) and so

(f (z), f (z ′)) = d
(

lim
w→z

f (w), f (z ′)
)

= lim
w→z

(f (w), f (z ′)) ≤ lim
w→z

2M|w − z ′| by Part II

= 2M|z − z ′|

and (3.13) holds if both z and z ′ are poles of f (in fact, this holds trivially
since f (z) = f (z ′) = ∞ and so d(f (z), f (z ′)) = 0). Therefore, (3.13)
holds for all z , z ′ ∈ K .

At this stage, we have that given any closed disk K ⊂ G that for all
z , z ′ ∈ K , d(f (z), f (z ′)) ≤ 2M|z − z ′| for all f ∈ F (since this conclusion
holds for arbitrary f ∈ F , as shown in Parts I, II, and III).
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Theorem VII.3.8

Theorem VII.3.8 (continued 10)

Theorem VII.3.8. A family F ⊂ M(G ) is normal in C (G , C∞) if and
only if µ(F) = {µ(f ) | f ∈ F} is locally bounded.

Proof (continued). Let a ∈ G . Let K = B(a; r) ⊂ G and let ε > 0. Let
M > 0 be the constant such that |µ(f )(z)| = µ(f )(z) ≤ M for all z ∈ K
and for all f ∈ F (given by the local boundedness of µ(f ) on K , as argued
above before Part I). Define δ = min{r , ε/(2M)}. Then for |z − a| < δ we
have d(f (z), f (a)) < 2M|z − a| < 2Mδ < ε for all f ∈ F . That is, F is
equicontinuous at point a ∈ G . Since a ∈ G is an arbitrary point of G ,
then by the Arzela-Ascoli Theorem (Theorem VII.4.23),
F ⊂ C (G ,Ω) = C (G , C∞) is normal

The converse is to be given in Exercise VII.3.2.
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