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Lemma VII.4.A

Lemma VII.4.A

Lemma VII.4.A. If G1 is simply connected and G1 is conformally
equivalent to G2 then G2 is simply connected.

Proof. Let G1 be simply connected and let G2 be conformally equivalent
to G2 under analytic function f . Let γ2 be a closed rectifiable curve in G2.

Then γ1 = f −1 ◦ γ2 is a closed rectifiable curve in G1 (since γ2 : [0, 1] → C
is continuous and f −1 is analytic, then f −1 ◦ γ2 : [0, 1] → C is continuous;
γ2(0) = γ2(a) implies γ1(0) = f −1(γ2(0)) = f −1)γ − 1(1)) = γ2(1);
rectifiable follows from the fact that f −1 is analytic and therefore
Lipschitz). Since G1 is simply connected, then γ1 is homotopic to zero and
so there is continuous Γ : [0, 1]× [0, 1] → G1 such that{

Γ(s, 0) = γ1(s) and Γ(s, 1) = c for s ∈ [0, 1]
Γ(0, t) = Γ(1, t) for t ∈ [0, 1]

for some constant c ∈ G1.
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Lemma VII.4.A

Lemma VII.4.A (continued)

Lemma VII.4.A. If G1 is simply connected and G1 is conformally
equivalent to G2 then G2 is simply connected.

Proof (continued). But then f ◦ Γ : [0, 1]× [0, 1] → G2 is continuous and
f ◦ Γ(s, 0) = f ◦ γ1(s) = f ◦ (f −1 ◦ γ2)(s) = γ(s) for s ∈ [0, 1],
f ◦ Γ(s, 1) = f (c) for s ∈ [0, 1], and f ◦ Γ(0, 1) = f ◦ Γ(1, t) for t ∈ [0, 1].
That is, f ◦ Γ is a path homotopy from γ2 to constant f (c) and so γ2 is
homotopic to zero. Since γ2 is an arbitrary closed rectifiable curve in G2,
then G2 is simply connected.
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Lemma VII.4.A (continued)
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Lemma VII.4.3

Lemma VII.4.3

Lemma VII.4.3. Let G be a region which is not the whole plane and such
that every nonvanishing analytic function on G has an analytic square
root. If a ∈ G then there is an analytic function f on G such that:

(a) f (a) = 0 and f ′(a) > 0;

(b) f is one to one; and

(c) f (G ) = {z | |z | < 1}.

Proof. Define F by letting

F = {f ∈ H(G ) | f is one to one, f (a) = 0, f ′(a) > 0, f (G ) ⊂ D}.

For all f ∈ F , since f (G ) ⊂ D, then sup{|f (z)| | z ∈ G} ≤ 1. So F is
locally bounded (by definition of “locally bounded”) and so by Motel’s
theorem (Theorem VII.2.9) F is normal (if it is nonempty).

(I) First, we show that F 6= ∅. Since G 6= C, there is b ∈ C \G . Consider
the nonvanishing analytic function z − b.
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Lemma VII.4.3

Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since z − b 6= 0 on G ), z − b has an
analytic square root on G , say (g(z))2 = z − b. If z1, z2 ∈ G an
dg(z1) = ±g(z2) then (g(z1))

2 − z1 − b = z2 − b = (±g(z2))
2 and so

z1 = z2. In particular, g is one to one. Since g is an analytic one to one
function on G , by the Open Mapping Theorem (Theorem IV.7.5), g(G ) is
open and so there if r > 0 such that B(g(a); r) ⊂ g(G ).

ASSUME there is z ∈ G such that g(z) ∈ B(−g(a); r). Then
r > |g(z)− (−g(a))| = |g(z) + g(a)| = | − g(z)− g(a)|. So
−g(z) ∈ B(g(a); r) and for some w ∈ G we have g(w) = −g(z). So, as
discussed above, w = z . But then g(w) = g(z) = −g(z) and so g(z) = 0.
But then z − b = (g(z))2 = 0 and z = b ∈ G , a CONTRADICTION. So
g(G ) ∩ B(−g(a); r) = ∅ (in fact, since g(G ) is open, then
g(G ) ∩ B(−g(a); r) = ∅). By the Orientation Principle (Theorem
III.3.21), there is a Möbius transformation T such that T (C∞ \ U−) = D.
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Lemma VII.4.3

Lemma VII.4.3 (continued 2)

Proof (continued). Let g1 = T ◦ g . Then g1 is analytic and g1(G ) ⊂ D.
If α = g1(a) let ϕα − e iθ0(z − α)(αz − 1). Notice

ϕ′
α(z)− e iθ0

(αz − 1)− (z − α)α

(αz − 1)2
= e iθ0

|α|2 − 1

(αz − 1)2
.

Then ϕα is a Möbius transformation from D onto D such that ϕα(α) = 0
(this is shown in Exercise III.3.10). Define g2(z) = ϕα ◦ g1(z). Then we
still have g2(G ) ⊂ D and g2 is analytic on G , but we also have that
g2(a) = 0.

Now

g ′2(z)

∣∣∣∣
z=a

= [ϕα(g1(z))]′
∣∣∣∣
z=a

= ϕ′
α(g1(a))g

′
1(a)

= ϕ′
α(α)g ′1(a) = e iθ0

1

|α|2 − 1
g ′1(a).
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Lemma VII.4.3

Lemma VII.4.3 (continued 3)

Proof (continued). Next, g1 = T ◦ g where T (z) = az+b
cz+d , with

ad − bc 6= 0, is some Möbius transformation. Now

T ′(z) =
1(cz + d)− (za + b)z

(cz + d)2
=

ad − bc

(cz + d)2
6= 0 for z 6= ∞.

So g ′1(a) = T ′(g(z))g ′(z)

∣∣∣∣
z=a

= T ′(g(a))g ′(a) where T ′(g(a)) 6= 0.

Next, (g(z))2 = z − b and 2g(z)g ′(z) = 1, so 2g(z)g ′(a) = 1 and neither
g(a) nor g ′(a) equal 0. Hence g1(a) = T ′(g(a))g ′(a) 6= 0 and
g ′2(a) = e iθ0 1

|α|2−1
g − 1′(a) 6= 0. So by the proper choice of θ0 (namely,

−arg(g ′1(a)/(|α|2 − 1))) we have g ′2(a) > 0. So g2 ∈ F and F is
nonempty.

(II) We now show that F− = F ∪ {0} in H(G ). Suppose {fn} is a
sequence in F and fn → f in H(G ). Since fn(a) = 0 for all fn ∈ F then
f (a) = 0. Also f ′n(z) → f ′(a) so f ′(a) ≥ 0.
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Lemma VII.4.3

Lemma VII.4.3 (continued 4)

Proof (continued). Let z1 ∈ G , ζ = f (z1), and ζn = fn(z1). Let z2 ∈ G ,
z2 6= z1 and let K ⊂ G be a closed disk centered at z2 such that z1 6∈ K .
Since fn is one to one and fn(z)− ζn = 0 at z1 then fn(z)− ζn does not
vanish on K . But fn(z)− ζn → f (z)− ζ uniformly on K (since K is
compact), so by the corollary to Hurwitz’s Theorem (Corollary VII.2.6)
either f (z)− ζ never vanishes on K on f (z) = ζ on K . If f (z) ≡ ζ on K
then f is constant throughout G (by Theorem IV.3.7) and since f (a) = 0
then f (z) = 0 on G .Otherwise f (z)− ζ never vanishes on K so (since
z2 ∈ K ) f (z2)− ζ 6= 0 or f (z2) 6= ζ = f (z1). Since z1 and z2 are arbitrary
distinct points in G , then g is one to one on G . By Exercise IV.7.4,
f ′(z) 6= 0 on G . We have above that f ′(a) ≥ 0, so it must be that in fact
f ′(a) > 0. So f ∈ F .

That is, the limit of any sequence in F is either an
element of F or the function f (z) ≡ 0 on G . Hence, F− = F ∪ {0}.
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f ′(a) > 0. So f ∈ F . That is, the limit of any sequence in F is either an
element of F or the function f (z) ≡ 0 on G . Hence, F− = F ∪ {0}.
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Lemma VII.4.3

Lemma VII.4.3 (continued 5)

Proof (continued). (III) Finally, we show there is f ∈ F with f (D) = D.
Consider the mapping of function f ∈ H(G ) to f ′(a) ∈ R. This is a
continuous mapping by Theorem VII.2.1. Now since F ∪ {0} maps G to D
then F ∪ {0} is locally bounded. By Part II, F− = F ∪ {0} is closed so,
by Corollary VII.2.10, F− is compact. So by the Extreme Value Theorem
(Corollary II.5.12) there is f ∈ F− with f ′(a) ≥ g ′(a) for all g ∈ F . Since
F is nonempty by Part I, this particular f is in F (since f ∈ F implies
f (a) > 0 and so 0(a) = 0 does not give the maximum). We now show
that for this f ∈ F , we have f (G ) = D and this is the desired function.

(IV) ASSUME ω ∈ D and ω 6∈ f (G ). Then the function
(f (z)− ω)/(1− ωf (z)) is analytic in G (notice |1/ω| > 1 so f (z) 6= 1/ω
for z ∈ G ) and never vanishes in G . Therefore, by hypothesis, there is
h : G → C such that (h(z))2 = (f (z)− ω)/(1− ωf (z)). The Möbius
transformation T (ζ) = (ζ − ω)/(1− ωζ) maps D onto D (since ω ∈ D;
see Exercise III.3.10).
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Lemma VII.4.3

Lemma VII.4.3 (continued 6)

Proof (continued). Define g : G → C as

g(z) =
|h′(a)|
h′(a)

h(z)− h(a)

1− h(a)h(z)
.

Notice that from the definition of h,

2h(z)h′(z) =
f ′(z)(1− ωf (z))− (f (z)− ω)(−ωf ′(z))

(1− ωf (z))2
=

f ′(z)(1− |ω|2)
(1− ωf (z))2

and so

2h(a)h′(a) =
f ′(a)(1− |ω|2)
(1− ωf (a))2

= f ′(a)(1− |ω|2) 6= 0 (∗)

since ω ∈ D and f ′(a) > 0. Therefore h′(a) 6= 0 (and so |h′(a)|/h′(a) is a
complex number of modulus 1). Since h(G ) ⊂ D then h(a) ∈ D and so
g(G ) ⊂ D. Also g(a) = 0 and g is one to one since h is (it is a branch of
a square root and so is invertible, so h is one to one) and the Möbius
transformation T such that g(z) = T (h(z)), is one to one.
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Lemma VII.4.3 (continued 7)

Proof (continued). Also,
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Lemma VII.4.3

Lemma VII.4.3 (continued 8)

Proof (continued).

g ′(a) =
|h′(a)|

1− |h(a)|2
=

1

1− |ω|
|f ′(a)|(1− |ω|2)

2|h(a)|

=
f ′(a)(1 + |ω|)2|h(a)| = f ′(a)(1+|ω|)

2
√
|ω|

= f ′(a)1+|ω|√
|ω

+
√
|ω|

>
f ′(a)

because 2
√
|ω| < 1 + |ω| (since 0 < (1− |ω|)2 = 1− 2|ω|+ |ω|2). So g is

one to one, g(a) = 0, g(G ) ⊂ D, and g ′(a) > f ′(a) > 0. But the g ∈ F
and g ′(a) > f ′(a), a CONTRADICTION to the fact that f ′(a) ≥ g ′(a) for
all g ∈ F . So no such ω ∈ D with ω 6∈ f (G ). That is, f (G ) = D.
Therefore, f is the desired function.
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Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem.
Let G be a simply connected region which is not the whole plane C and
let a ∈ G . Then there is a unique analytic function f : G → C having the
properties:

(a) f (a) = 0 and f ′(a) > 0;
(b) f is one to one; and
(c) f (G ) = {z | |z | < 1}.

Proof. Let G be a simply connected region which is not the whole plane
C. Notice that every nonvanishing analytic function on a simply connected
region has an analytic square root on the region.

This is because we can
define a branch of the logarithm and compose it with such a function
throughout the region; the branch cut must run from where the function is
0 to ∞ ∈ C; since the function can only be 0 outside of the simply
connected region, then then a branch cut exists for the branch of the
logarithm. The branch of the logarithm then allows us to define the square
root (recall that a branch of the square root satisfies z1/2 = e(1/2) log z).
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Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem
(continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now
follows from Lemma VII.4.3. We need only prove uniqueness. Suppose g
is another such function. Then g−1 : D → G is analytic by Corollary
IV.7.6. Therefore f ◦ g−1 : D → D is analytic, one to one, and onto. Also,
f ◦ g−1(0) = f (g−1(0) = f (a) = 0. So by Theorem VI.2.5,
f ◦ g−1(z) = cϕ0 = c(z − 0)/(1− 0z) = cz (on D) for some |c | = 1.
Replacing z with g(z) in f (g−1(z)) = cz (since g(G ) = D) gives
f (g−1(g(z)) = cg(z) or f (z) = cg(z). Then 0 < f ′(z)− cg ′(a); since
g ′(a) > 0 and cg ′(a) > 0 then c > 0 and so c = 1.

That is, f = g .
Therefore, the function f is unique.
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