Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions
VII.4. The Riemann Mapping Theorem—Proofs of Theorems

Table of contents

(1) Lemma VII.4.A
(2) Lemma VII.4.3
(3) Theorem VII.4.2. The Riemann Mapping Theorem

Lemma VII.4.A

Lemma VII.4.A. If G_{1} is simply connected and G_{1} is conformally equivalent to G_{2} then G_{2} is simply connected.

Proof. Let G_{1} be simply connected and let G_{2} be conformally equivalent to G_{2} under analytic function f. Let γ_{2} be a closed rectifiable curve in G_{2}.

Lemma VII.4.A

Lemma VII.4.A. If G_{1} is simply connected and G_{1} is conformally equivalent to G_{2} then G_{2} is simply connected.

Proof. Let G_{1} be simply connected and let G_{2} be conformally equivalent to G_{2} under analytic function f. Let γ_{2} be a closed rectifiable curve in G_{2}. Then $\gamma_{1}=f^{-1} \circ \gamma_{2}$ is a closed rectifiable curve in G_{1} (since $\gamma_{2}:[0,1] \rightarrow \mathbb{C}$ is continuous and f^{-1} is analytic, then $f^{-1} \circ \gamma_{2}:[0,1] \rightarrow \mathbb{C}$ is continuous; $\gamma_{2}(0)=\gamma_{2}(a)$ implies $\left.\left.\gamma_{1}(0)=f^{-1}\left(\gamma_{2}(0)\right)=f^{-1}\right) \gamma-1(1)\right)=\gamma_{2}(1)$; rectifiable follows from the fact that f^{-1} is analytic and therefore Lipschitz).

Lemma VII.4.A

Lemma VII.4.A. If G_{1} is simply connected and G_{1} is conformally equivalent to G_{2} then G_{2} is simply connected.

Proof. Let G_{1} be simply connected and let G_{2} be conformally equivalent to G_{2} under analytic function f. Let γ_{2} be a closed rectifiable curve in G_{2}. Then $\gamma_{1}=f^{-1} \circ \gamma_{2}$ is a closed rectifiable curve in G_{1} (since $\gamma_{2}:[0,1] \rightarrow \mathbb{C}$ is continuous and f^{-1} is analytic, then $f^{-1} \circ \gamma_{2}:[0,1] \rightarrow \mathbb{C}$ is continuous; $\gamma_{2}(0)=\gamma_{2}(a)$ implies $\left.\left.\gamma_{1}(0)=f^{-1}\left(\gamma_{2}(0)\right)=f^{-1}\right) \gamma-1(1)\right)=\gamma_{2}(1)$; rectifiable follows from the fact that f^{-1} is analytic and therefore Lipschitz). Since G_{1} is simply connected, then γ_{1} is homotopic to zero and so there is continuous $\Gamma:[0,1] \times[0,1] \rightarrow G_{1}$ such that

$$
\left\{\begin{array}{l}
\Gamma(s, 0)=\gamma_{1}(s) \text { and } \Gamma(s, 1)=c \text { for } s \in[0,1] \\
\Gamma(0, t)=\Gamma(1, t) \text { for } t \in[0,1]
\end{array}\right.
$$

for some constant $c \in G_{1}$

Lemma VII.4.A

Lemma VII.4.A. If G_{1} is simply connected and G_{1} is conformally equivalent to G_{2} then G_{2} is simply connected.

Proof. Let G_{1} be simply connected and let G_{2} be conformally equivalent to G_{2} under analytic function f. Let γ_{2} be a closed rectifiable curve in G_{2}. Then $\gamma_{1}=f^{-1} \circ \gamma_{2}$ is a closed rectifiable curve in G_{1} (since $\gamma_{2}:[0,1] \rightarrow \mathbb{C}$ is continuous and f^{-1} is analytic, then $f^{-1} \circ \gamma_{2}:[0,1] \rightarrow \mathbb{C}$ is continuous; $\gamma_{2}(0)=\gamma_{2}(a)$ implies $\left.\left.\gamma_{1}(0)=f^{-1}\left(\gamma_{2}(0)\right)=f^{-1}\right) \gamma-1(1)\right)=\gamma_{2}(1)$; rectifiable follows from the fact that f^{-1} is analytic and therefore Lipschitz). Since G_{1} is simply connected, then γ_{1} is homotopic to zero and so there is continuous $\Gamma:[0,1] \times[0,1] \rightarrow G_{1}$ such that

$$
\left\{\begin{array}{l}
\Gamma(s, 0)=\gamma_{1}(s) \text { and } \Gamma(s, 1)=c \text { for } s \in[0,1] \\
\Gamma(0, t)=\Gamma(1, t) \text { for } t \in[0,1]
\end{array}\right.
$$

for some constant $c \in G_{1}$.

Lemma VII.4.A (continued)

Lemma VII.4.A. If G_{1} is simply connected and G_{1} is conformally equivalent to G_{2} then G_{2} is simply connected.

Proof (continued). But then $f \circ \Gamma:[0,1] \times[0,1] \rightarrow G_{2}$ is continuous and $f \circ \Gamma(s, 0)=f \circ \gamma_{1}(s)=f \circ\left(f^{-1} \circ \gamma_{2}\right)(s)=\gamma(s)$ for $s \in[0,1]$, $f \circ \Gamma(s, 1)=f(c)$ for $s \in[0,1]$, and $f \circ \Gamma(0,1)=f \circ \Gamma(1, t)$ for $t \in[0,1]$. That is, $f \circ \Gamma$ is a path homotopy from γ_{2} to constant $f(c)$ and so γ_{2} is homotopic to zero. Since γ_{2} is an arbitrary closed rectifiable curve in G_{2}, then G_{2} is simply connected.

Lemma VII.4.A (continued)

Lemma VII.4.A. If G_{1} is simply connected and G_{1} is conformally equivalent to G_{2} then G_{2} is simply connected.

Proof (continued). But then $f \circ \Gamma:[0,1] \times[0,1] \rightarrow G_{2}$ is continuous and $f \circ \Gamma(s, 0)=f \circ \gamma_{1}(s)=f \circ\left(f^{-1} \circ \gamma_{2}\right)(s)=\gamma(s)$ for $s \in[0,1]$, $f \circ \Gamma(s, 1)=f(c)$ for $s \in[0,1]$, and $f \circ \Gamma(0,1)=f \circ \Gamma(1, t)$ for $t \in[0,1]$. That is, $f \circ \Gamma$ is a path homotopy from γ_{2} to constant $f(c)$ and so γ_{2} is homotopic to zero. Since γ_{2} is an arbitrary closed rectifiable curve in G_{2}, then G_{2} is simply connected.

Lemma VII.4.3

Lemma VII.4.3. Let G be a region which is not the whole plane and such that every nonvanishing analytic function on G has an analytic square root. If $a \in G$ then there is an analytic function f on G such that:
(a) $f(a)=0$ and $f^{\prime}(a)>0$;
(b) f is one to one; and
(c) $f(G)=\{z| | z \mid<1\}$.

Proof. Define \mathcal{F} by letting

$$
\mathcal{F}=\left\{f \in H(G) \mid f \text { is one to one, } f(a)=0, f^{\prime}(a)>0, f(G) \subset D\right\} .
$$

For all $f \in \mathcal{F}$, since $f(G) \subset D$, then $\sup \{|f(z)| \mid z \in G\} \leq 1$. So \mathcal{F} is locally bounded (by definition of "locally bounded") and so by Motel's theorem (Theorem VII.2.9) \mathcal{F} is normal (if it is nonempty).

Lemma VII.4.3

Lemma VII.4.3. Let G be a region which is not the whole plane and such that every nonvanishing analytic function on G has an analytic square root. If $a \in G$ then there is an analytic function f on G such that:
(a) $f(a)=0$ and $f^{\prime}(a)>0$;
(b) f is one to one; and
(c) $f(G)=\{z| | z \mid<1\}$.

Proof. Define \mathcal{F} by letting

$$
\mathcal{F}=\left\{f \in H(G) \mid f \text { is one to one, } f(a)=0, f^{\prime}(a)>0, f(G) \subset D\right\}
$$

For all $f \in \mathcal{F}$, since $f(G) \subset D$, then $\sup \{|f(z)| \mid z \in G\} \leq 1$. So \mathcal{F} is locally bounded (by definition of "locally bounded") and so by Motel's theorem (Theorem VII.2.9) \mathcal{F} is normal (if it is nonempty).
(I) First, we show that $\mathcal{F} \neq \varnothing$. Since $G \neq \mathbb{C}$, there is $b \in \mathbb{C} \backslash G$. Consider the nonvanishing analytic function $z-b$.

Lemma VII.4.3

Lemma VII.4.3. Let G be a region which is not the whole plane and such that every nonvanishing analytic function on G has an analytic square root. If $a \in G$ then there is an analytic function f on G such that:

$$
\begin{aligned}
& \text { (a) } f(a)=0 \text { and } f^{\prime}(a)>0 ; \\
& \text { (b) } f \text { is one to one; and } \\
& \text { (c) } f(G)=\{z| | z \mid<1\} .
\end{aligned}
$$

Proof. Define \mathcal{F} by letting

$$
\mathcal{F}=\left\{f \in H(G) \mid f \text { is one to one, } f(a)=0, f^{\prime}(a)>0, f(G) \subset D\right\}
$$

For all $f \in \mathcal{F}$, since $f(G) \subset D$, then $\sup \{|f(z)| \mid z \in G\} \leq 1$. So \mathcal{F} is locally bounded (by definition of "locally bounded") and so by Motel's theorem (Theorem VII.2.9) \mathcal{F} is normal (if it is nonempty).
(I) First, we show that $\mathcal{F} \neq \varnothing$. Since $G \neq \mathbb{C}$, there is $b \in \mathbb{C} \backslash G$. Consider the nonvanishing analytic function $z-b$.

Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since $z-b \neq 0$ on $G), z-b$ has an analytic square root on G, say $(g(z))^{2}=z-b$. If $z_{1}, z_{2} \in G$ an $\mathrm{d} g\left(z_{1}\right)= \pm g\left(z_{2}\right)$ then $\left(g\left(z_{1}\right)\right)^{2}-z_{1}-b=z_{2}-b=\left(\pm g\left(z_{2}\right)\right)^{2}$ and so $z_{1}=z_{2}$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), $g(G)$ is open and so there if $r>0$ such that $B(g(a) ; r) \subset g(G)$.

Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since $z-b \neq 0$ on $G), z-b$ has an analytic square root on G, say $(g(z))^{2}=z-b$. If $z_{1}, z_{2} \in G$ an $\mathrm{d} g\left(z_{1}\right)= \pm g\left(z_{2}\right)$ then $\left(g\left(z_{1}\right)\right)^{2}-z_{1}-b=z_{2}-b=\left(\pm g\left(z_{2}\right)\right)^{2}$ and so $z_{1}=z_{2}$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), $g(G)$ is open and so there if $r>0$ such that $B(g(a) ; r) \subset g(G)$.

ASSUME there is $z \in G$ such that $g(z) \in B(-g(a) ; r)$. Then $r>|g(z)-(-g(a))|=|g(z)+g(a)|=|-g(z)-g(a)|$. So $-g(z) \in B(g(a) ; r)$ and for some $w \in G$ we have $g(w)=-g(z)$. So, as discussed above, $w=z$.

Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since $z-b \neq 0$ on $G), z-b$ has an analytic square root on G, say $(g(z))^{2}=z-b$. If $z_{1}, z_{2} \in G$ an $\mathrm{d} g\left(z_{1}\right)= \pm g\left(z_{2}\right)$ then $\left(g\left(z_{1}\right)\right)^{2}-z_{1}-b=z_{2}-b=\left(\pm g\left(z_{2}\right)\right)^{2}$ and so $z_{1}=z_{2}$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), $g(G)$ is open and so there if $r>0$ such that $B(g(a) ; r) \subset g(G)$.

ASSUME there is $z \in G$ such that $g(z) \in B(-g(a) ; r)$. Then $r>|g(z)-(-g(a))|=|g(z)+g(a)|=|-g(z)-g(a)|$. So $-g(z) \in B(g(a) ; r)$ and for some $w \in G$ we have $g(w)=-g(z)$. So, as discussed above, $w=z$. But then $g(w)=g(z)=-g(z)$ and so $g(z)=0$. But then $z-b=(g(z))^{2}=0$ and $z=b \in G$, a CONTRADICTION. So $g(G) \cap B(-g(a) ; r)=\varnothing$ (in fact, since $g(G)$ is open, then $g(G) \cap B(-g(a) ; r)=\varnothing$). By the Orientation Principle (Theorem III.3.21), there is a Möbius transformation T such that $T\left(\mathbb{C}_{\infty} \backslash U^{-}\right)=D$.

Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since $z-b \neq 0$ on G), $z-b$ has an analytic square root on G, say $(g(z))^{2}=z-b$. If $z_{1}, z_{2} \in G$ an $\mathrm{d} g\left(z_{1}\right)= \pm g\left(z_{2}\right)$ then $\left(g\left(z_{1}\right)\right)^{2}-z_{1}-b=z_{2}-b=\left(\pm g\left(z_{2}\right)\right)^{2}$ and so $z_{1}=z_{2}$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), $g(G)$ is open and so there if $r>0$ such that $B(g(a) ; r) \subset g(G)$.

ASSUME there is $z \in G$ such that $g(z) \in B(-g(a) ; r)$. Then $r>|g(z)-(-g(a))|=|g(z)+g(a)|=|-g(z)-g(a)|$. So $-g(z) \in B(g(a) ; r)$ and for some $w \in G$ we have $g(w)=-g(z)$. So, as discussed above, $w=z$. But then $g(w)=g(z)=-g(z)$ and so $g(z)=0$. But then $z-b=(g(z))^{2}=0$ and $z=b \in G$, a CONTRADICTION. So $g(G) \cap B(-g(a) ; r)=\varnothing$ (in fact, since $g(G)$ is open, then $g(G) \cap \bar{B}(-g(a) ; r)=\varnothing$). By the Orientation Principle (Theorem III.3.21), there is a Möbius transformation T such that $T\left(\mathbb{C}_{\infty} \backslash U^{-}\right)=D$.

Lemma VII.4.3 (continued 2)

Proof (continued). Let $g_{1}=T \circ g$. Then g_{1} is analytic and $g_{1}(G) \subset D$. If $\alpha=g_{1}(a)$ let $\varphi_{\alpha}-e^{i \theta_{0}}(z-\alpha)(\bar{\alpha} z-1)$. Notice

$$
\varphi_{\alpha}^{\prime}(z)-e^{i \theta_{0}} \frac{(\bar{\alpha} z-1)-(z-\alpha) \bar{\alpha}}{(\bar{\alpha} z-1)^{2}}=e^{i \theta_{0}} \frac{|\alpha|^{2}-1}{(\bar{\alpha} z-1)^{2}} .
$$

Then φ_{α} is a Möbius transformation from D onto D such that $\varphi_{\alpha}(\alpha)=0$ (this is shown in Exercise III.3.10). Define $g_{2}(z)=\varphi_{\alpha} \circ g_{1}(z)$. Then we still have $g_{2}(G) \subset D$ and g_{2} is analytic on G, but we also have that $g_{2}(a)=0$.

Lemma VII.4.3 (continued 2)

Proof (continued). Let $g_{1}=T \circ g$. Then g_{1} is analytic and $g_{1}(G) \subset D$. If $\alpha=g_{1}(a)$ let $\varphi_{\alpha}-e^{i \theta_{0}}(z-\alpha)(\bar{\alpha} z-1)$. Notice

$$
\varphi_{\alpha}^{\prime}(z)-e^{i \theta_{0}} \frac{(\bar{\alpha} z-1)-(z-\alpha) \bar{\alpha}}{(\bar{\alpha} z-1)^{2}}=e^{i \theta_{0}} \frac{|\alpha|^{2}-1}{(\bar{\alpha} z-1)^{2}} .
$$

Then φ_{α} is a Möbius transformation from D onto D such that $\varphi_{\alpha}(\alpha)=0$ (this is shown in Exercise III.3.10). Define $g_{2}(z)=\varphi_{\alpha} \circ g_{1}(z)$. Then we still have $g_{2}(G) \subset D$ and g_{2} is analytic on G, but we also have that $g_{2}(a)=0$.

$$
\begin{gathered}
\left.g_{2}^{\prime}(z)\right|_{z=a}=\left.\left[\varphi_{\alpha}\left(g_{1}(z)\right)\right]^{\prime}\right|_{z=a}=\varphi_{\alpha}^{\prime}\left(g_{1}(a)\right) g_{1}^{\prime}(a) \\
\quad=\varphi_{\alpha}^{\prime}(\alpha) g_{1}^{\prime}(a)=e^{i \theta_{0}} \frac{1}{|\alpha|^{2}-1} g_{1}^{\prime}(a) .
\end{gathered}
$$

Lemma VII.4.3 (continued 2)

Proof (continued). Let $g_{1}=T \circ g$. Then g_{1} is analytic and $g_{1}(G) \subset D$. If $\alpha=g_{1}(a)$ let $\varphi_{\alpha}-e^{i \theta_{0}}(z-\alpha)(\bar{\alpha} z-1)$. Notice

$$
\varphi_{\alpha}^{\prime}(z)-e^{i \theta_{0}} \frac{(\bar{\alpha} z-1)-(z-\alpha) \bar{\alpha}}{(\bar{\alpha} z-1)^{2}}=e^{i \theta_{0}} \frac{|\alpha|^{2}-1}{(\bar{\alpha} z-1)^{2}} .
$$

Then φ_{α} is a Möbius transformation from D onto D such that $\varphi_{\alpha}(\alpha)=0$ (this is shown in Exercise III.3.10). Define $g_{2}(z)=\varphi_{\alpha} \circ g_{1}(z)$. Then we still have $g_{2}(G) \subset D$ and g_{2} is analytic on G, but we also have that $g_{2}(a)=0$. Now

$$
\begin{gathered}
\left.g_{2}^{\prime}(z)\right|_{z=a}=\left.\left[\varphi_{\alpha}\left(g_{1}(z)\right)\right]^{\prime}\right|_{z=a}=\varphi_{\alpha}^{\prime}\left(g_{1}(a)\right) g_{1}^{\prime}(a) \\
\quad=\varphi_{\alpha}^{\prime}(\alpha) g_{1}^{\prime}(a)=e^{i \theta_{0}} \frac{1}{|\alpha|^{2}-1} g_{1}^{\prime}(a)
\end{gathered}
$$

Lemma VII.4.3 (continued 3)

Proof (continued). Next, $g_{1}=T \circ g$ where $T(z)=\frac{a z+b}{c z+d}$, with $a d-b c \neq 0$, is some Möbius transformation. Now

$$
T^{\prime}(z)=\frac{1(c z+d)-(z a+b) z}{(c z+d)^{2}}=\frac{a d-b c}{(c z+d)^{2}} \neq 0 \text { for } z \neq \infty
$$

So $g_{1}^{\prime}(a)=\left.T^{\prime}(g(z)) g^{\prime}(z)\right|_{z=a}=T^{\prime}(g(a)) g^{\prime}(a)$ where $T^{\prime}(g(a)) \neq 0$. Next, $(g(z))^{2}=z-b$ and $2 g(z) g^{\prime}(z)=1$, so $2 g(z) g^{\prime}(a)=1$ and neither $g(a)$ nor $g^{\prime}(a)$ equal 0 . Hence $g_{1}(a)=T^{\prime}(g(a)) g^{\prime}(a) \neq 0$ and $g_{2}^{\prime}(a)=e^{i \theta_{0}} \frac{1}{|\alpha|^{2}-1} g-1^{\prime}(a) \neq 0$. So by the proper choice of θ_{0} (namely, $\left.-\arg \left(g_{1}^{\prime}(a) /\left(|\alpha|^{2}-1\right)\right)\right)$ we have $g_{2}^{\prime}(a)>0$. So $g_{2} \in \mathcal{F}$ and \mathcal{F} is nonempty.

Lemma VII.4.3 (continued 3)

Proof (continued). Next, $g_{1}=T \circ g$ where $T(z)=\frac{a z+b}{c z+d}$, with $a d-b c \neq 0$, is some Möbius transformation. Now

$$
T^{\prime}(z)=\frac{1(c z+d)-(z a+b) z}{(c z+d)^{2}}=\frac{a d-b c}{(c z+d)^{2}} \neq 0 \text { for } z \neq \infty .
$$

So $g_{1}^{\prime}(a)=\left.T^{\prime}(g(z)) g^{\prime}(z)\right|_{z=a}=T^{\prime}(g(a)) g^{\prime}(a)$ where $T^{\prime}(g(a)) \neq 0$. Next, $(g(z))^{2}=z-b$ and $2 g(z) g^{\prime}(z)=1$, so $2 g(z) g^{\prime}(a)=1$ and neither $g(a)$ nor $g^{\prime}(a)$ equal 0 . Hence $g_{1}(a)=T^{\prime}(g(a)) g^{\prime}(a) \neq 0$ and $g_{2}^{\prime}(a)=e^{i \theta_{0}} \frac{1}{\left.|a|\right|^{2}-1} g-1^{\prime}(a) \neq 0$. So by the proper choice of θ_{0} (namely, $\left.-\arg \left(g_{1}^{\prime}(a) /\left(|\alpha|^{2}-1\right)\right)\right)$ we have $g_{2}^{\prime}(a)>0$. So $g_{2} \in \mathcal{F}$ and \mathcal{F} is nonempty.
(II) We now show that $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$ in $H(G)$. Suppose $\left\{f_{n}\right\}$ is a sequence in \mathcal{F} and $f_{n} \rightarrow f$ in $H(G)$. Since $f_{n}(a)=0$ for all $f_{n} \in \mathcal{F}$ then $f(a)=0$. Also $f_{n}^{\prime}(z) \rightarrow f^{\prime}(a)$ so $f^{\prime}(a) \geq 0$.

Lemma VII.4.3 (continued 3)

Proof (continued). Next, $g_{1}=T \circ g$ where $T(z)=\frac{a z+b}{c z+d}$, with $a d-b c \neq 0$, is some Möbius transformation. Now

$$
T^{\prime}(z)=\frac{1(c z+d)-(z a+b) z}{(c z+d)^{2}}=\frac{a d-b c}{(c z+d)^{2}} \neq 0 \text { for } z \neq \infty .
$$

So $g_{1}^{\prime}(a)=\left.T^{\prime}(g(z)) g^{\prime}(z)\right|_{z=a}=T^{\prime}(g(a)) g^{\prime}(a)$ where $T^{\prime}(g(a)) \neq 0$. Next, $(g(z))^{2}=z-b$ and $2 g(z) g^{\prime}(z)=1$, so $2 g(z) g^{\prime}(a)=1$ and neither $g(a)$ nor $g^{\prime}(a)$ equal 0 . Hence $g_{1}(a)=T^{\prime}(g(a)) g^{\prime}(a) \neq 0$ and $g_{2}^{\prime}(a)=e^{i \theta_{0}} \frac{1}{|a|{ }^{2}-1} g-1^{\prime}(a) \neq 0$. So by the proper choice of θ_{0} (namely, $\left.-\arg \left(g_{1}^{\prime}(a) /\left(|\alpha|^{2}-1\right)\right)\right)$ we have $g_{2}^{\prime}(a)>0$. So $g_{2} \in \mathcal{F}$ and \mathcal{F} is nonempty.
(II) We now show that $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$ in $H(G)$. Suppose $\left\{f_{n}\right\}$ is a sequence in \mathcal{F} and $f_{n} \rightarrow f$ in $H(G)$. Since $f_{n}(a)=0$ for all $f_{n} \in \mathcal{F}$ then $f(a)=0$. Also $f_{n}^{\prime}(z) \rightarrow f^{\prime}(a)$ so $f^{\prime}(a) \geq 0$.

Lemma VII.4.3 (continued 4)

Proof (continued). Let $z_{1} \in G, \zeta=f\left(z_{1}\right)$, and $\zeta_{n}=f_{n}\left(z_{1}\right)$. Let $z_{2} \in G$, $z_{2} \neq z_{1}$ and let $K \subset G$ be a closed disk centered at z_{2} such that $z_{1} \notin K$. Since f_{n} is one to one and $f_{n}(z)-\zeta_{n}=0$ at z_{1} then $f_{n}(z)-\zeta_{n}$ does not vanish on K. But $f_{n}(z)-\zeta_{n} \rightarrow f(z)-\zeta$ uniformly on K (since K is compact), so by the corollary to Hurwitz's Theorem (Corollary VII.2.6) either $f(z)-\zeta$ never vanishes on K on $f(z)=\zeta$ on K. If $f(z) \equiv \zeta$ on K then f is constant throughout G (by Theorem IV.3.7) and since $f(a)=0$ then $f(z)=0$ on G.Otherwise $f(z)-\zeta$ never vanishes on K so (since $\left.z_{2} \in K\right) f\left(z_{2}\right)-\zeta \neq 0$ or $f\left(z_{2}\right) \neq \zeta=f\left(z_{1}\right)$. Since z_{1} and z_{2} are arbitrary distinct points in G, then g is one to one on G. By Exercise IV.7.4, $f^{\prime}(z) \neq 0$ on G. We have above that $f^{\prime}(a) \geq 0$, so it must be that in fact $f^{\prime}(a)>0$. So $f \in \mathcal{F}$.

Lemma VII.4.3 (continued 4)

Proof (continued). Let $z_{1} \in G, \zeta=f\left(z_{1}\right)$, and $\zeta_{n}=f_{n}\left(z_{1}\right)$. Let $z_{2} \in G$, $z_{2} \neq z_{1}$ and let $K \subset G$ be a closed disk centered at z_{2} such that $z_{1} \notin K$. Since f_{n} is one to one and $f_{n}(z)-\zeta_{n}=0$ at z_{1} then $f_{n}(z)-\zeta_{n}$ does not vanish on K. But $f_{n}(z)-\zeta_{n} \rightarrow f(z)-\zeta$ uniformly on K (since K is compact), so by the corollary to Hurwitz's Theorem (Corollary VII.2.6) either $f(z)-\zeta$ never vanishes on K on $f(z)=\zeta$ on K. If $f(z) \equiv \zeta$ on K then f is constant throughout G (by Theorem IV.3.7) and since $f(a)=0$ then $f(z)=0$ on G.Otherwise $f(z)-\zeta$ never vanishes on K so (since $\left.z_{2} \in K\right) f\left(z_{2}\right)-\zeta \neq 0$ or $f\left(z_{2}\right) \neq \zeta=f\left(z_{1}\right)$. Since z_{1} and z_{2} are arbitrary distinct points in G, then g is one to one on G. By Exercise IV.7.4, $f^{\prime}(z) \neq 0$ on G. We have above that $f^{\prime}(a) \geq 0$, so it must be that in fact $f^{\prime}(a)>0$. So $f \in \mathcal{F}$. That is, the limit of any sequence in \mathcal{F} is either an element of \mathcal{F} or the function $f(z) \equiv 0$ on G. Hence, $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$

Lemma VII.4.3 (continued 4)

Proof (continued). Let $z_{1} \in G, \zeta=f\left(z_{1}\right)$, and $\zeta_{n}=f_{n}\left(z_{1}\right)$. Let $z_{2} \in G$, $z_{2} \neq z_{1}$ and let $K \subset G$ be a closed disk centered at z_{2} such that $z_{1} \notin K$. Since f_{n} is one to one and $f_{n}(z)-\zeta_{n}=0$ at z_{1} then $f_{n}(z)-\zeta_{n}$ does not vanish on K. But $f_{n}(z)-\zeta_{n} \rightarrow f(z)-\zeta$ uniformly on K (since K is compact), so by the corollary to Hurwitz's Theorem (Corollary VII.2.6) either $f(z)-\zeta$ never vanishes on K on $f(z)=\zeta$ on K. If $f(z) \equiv \zeta$ on K then f is constant throughout G (by Theorem IV.3.7) and since $f(a)=0$ then $f(z)=0$ on G.Otherwise $f(z)-\zeta$ never vanishes on K so (since $\left.z_{2} \in K\right) f\left(z_{2}\right)-\zeta \neq 0$ or $f\left(z_{2}\right) \neq \zeta=f\left(z_{1}\right)$. Since z_{1} and z_{2} are arbitrary distinct points in G, then g is one to one on G. By Exercise IV.7.4, $f^{\prime}(z) \neq 0$ on G. We have above that $f^{\prime}(a) \geq 0$, so it must be that in fact $f^{\prime}(a)>0$. So $f \in \mathcal{F}$. That is, the limit of any sequence in \mathcal{F} is either an element of \mathcal{F} or the function $f(z) \equiv 0$ on G. Hence, $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$.

Lemma VII.4.3 (continued 5)

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with $f(D)=D$. Consider the mapping of function $f \in H(G)$ to $f^{\prime}(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup\{0\}$ maps G to D then $\mathcal{F} \cup\{0\}$ is locally bounded. By Part II, $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^{-}is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^{-}$with $f^{\prime}(a) \geq g^{\prime}(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies $f(a)>0$ and so $0(a)=0$ does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have $f(G)=D$ and this is the desired function.

Lemma VII.4.3 (continued 5)

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with $f(D)=D$. Consider the mapping of function $f \in H(G)$ to $f^{\prime}(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup\{0\}$ maps G to D then $\mathcal{F} \cup\{0\}$ is locally bounded. By Part II, $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^{-}is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^{-}$with $f^{\prime}(a) \geq g^{\prime}(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies $f(a)>0$ and so $0(a)=0$ does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have $f(G)=D$ and this is the desired function.

Lemma VII.4.3 (continued 5)

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with $f(D)=D$. Consider the mapping of function $f \in H(G)$ to $f^{\prime}(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup\{0\}$ maps G to D then $\mathcal{F} \cup\{0\}$ is locally bounded. By Part II, $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^{-}is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^{-}$with $f^{\prime}(a) \geq g^{\prime}(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies $f(a)>0$ and so $0(a)=0$ does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have $f(G)=D$ and this is the desired function.
(IV) ASSUME $\omega \in D$ and $\omega \notin f(G)$. Then the function $(f(z)-\omega) /(1-\bar{\omega} f(z))$ is analytic in $G($ notice $|1 / \bar{\omega}|>1$ so $f(z) \neq 1 / \bar{\omega}$ for $z \in G)$ and never vanishes in G. Therefore, by hypothesis, there is

transformation $T(\zeta)=(\zeta-\omega) /(1-\bar{\omega} \zeta)$ maps D onto D (since $\omega \in D$; see Exercise III.3.10)

Lemma VII.4.3 (continued 5)

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with $f(D)=D$. Consider the mapping of function $f \in H(G)$ to $f^{\prime}(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup\{0\}$ maps G to D then $\mathcal{F} \cup\{0\}$ is locally bounded. By Part II, $\mathcal{F}^{-}=\mathcal{F} \cup\{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^{-}is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^{-}$with $f^{\prime}(a) \geq g^{\prime}(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies $f(a)>0$ and so $0(a)=0$ does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have $f(G)=D$ and this is the desired function.
(IV) ASSUME $\omega \in D$ and $\omega \notin f(G)$. Then the function $(f(z)-\omega) /(1-\bar{\omega} f(z))$ is analytic in G (notice $|1 / \bar{\omega}|>1$ so $f(z) \neq 1 / \bar{\omega}$ for $z \in G)$ and never vanishes in G. Therefore, by hypothesis, there is $h: G \rightarrow \mathbb{C}$ such that $(h(z))^{2}=(f(z)-\omega) /(1-\bar{\omega} f(z))$. The Möbius transformation $T(\zeta)=(\zeta-\omega) /(1-\bar{\omega} \zeta)$ maps D onto D (since $\omega \in D$; see Exercise III.3.10).

Lemma VII.4.3 (continued 6)

Proof (continued). Define $g: G \rightarrow \mathbb{C}$ as

$$
g(z)=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h(z)-h(a)}{1-\overline{h(a)} h(z)}
$$

Notice that from the definition of h,

$$
2 h(z) h^{\prime}(z)=\frac{f^{\prime}(z)(1-\bar{\omega} f(z))-(f(z)-\omega)\left(-\bar{\omega} f^{\prime}(z)\right)}{(1-\bar{\omega} f(z))^{2}}=\frac{f^{\prime}(z)\left(1-|\omega|^{2}\right)}{(1-\bar{\omega} f(z))^{2}}
$$

and so

$$
\begin{equation*}
2 h(a) h^{\prime}(a)=\frac{f^{\prime}(a)\left(1-|\omega|^{2}\right)}{(1-\bar{\omega} f(a))^{2}}=f^{\prime}(a)\left(1-|\omega|^{2}\right) \neq 0 \tag{*}
\end{equation*}
$$

since $\omega \in D$ and $f^{\prime}(a)>0$. Therefore $h^{\prime}(a) \neq 0$ (and so $\left|h^{\prime}(a)\right| / h^{\prime}(a)$ is a complex number of modulus 1). Since $h(G) \subset D$ then $h(a) \in D$ and so $g(G) \subset D$. Also $g(a)=0$ and g is one to one since h is (it is a branch of a square root and so is invertible, so h is one to one) and the Möbius transformation T such that $g(z)=T(h(z))$, is one to one.

Lemma VII.4.3 (continued 6)

Proof (continued). Define $g: G \rightarrow \mathbb{C}$ as

$$
g(z)=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h(z)-h(a)}{1-\overline{h(a)} h(z)}
$$

Notice that from the definition of h,

$$
2 h(z) h^{\prime}(z)=\frac{f^{\prime}(z)(1-\bar{\omega} f(z))-(f(z)-\omega)\left(-\bar{\omega} f^{\prime}(z)\right)}{(1-\bar{\omega} f(z))^{2}}=\frac{f^{\prime}(z)\left(1-|\omega|^{2}\right)}{(1-\bar{\omega} f(z))^{2}}
$$

and so

$$
\begin{equation*}
2 h(a) h^{\prime}(a)=\frac{f^{\prime}(a)\left(1-|\omega|^{2}\right)}{(1-\bar{\omega} f(a))^{2}}=f^{\prime}(a)\left(1-|\omega|^{2}\right) \neq 0 \tag{*}
\end{equation*}
$$

since $\omega \in D$ and $f^{\prime}(a)>0$. Therefore $h^{\prime}(a) \neq 0$ (and so $\left|h^{\prime}(a)\right| / h^{\prime}(a)$ is a complex number of modulus 1). Since $h(G) \subset D$ then $h(a) \in D$ and so $g(G) \subset D$. Also $g(a)=0$ and g is one to one since h is (it is a branch of a square root and so is invertible, so h is one to one) and the Möbius transformation T such that $g(z)=T(h(z))$, is one to one.

Lemma VII.4.3 (continued 7)

Proof (continued). Also,

$$
\begin{gathered}
g^{\prime}(z)=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h^{\prime}(a)(1-\overline{h(a)} h(z))-(h(z)-h(a))\left(-\overline{h(a)} h^{\prime}(z)\right)}{(1-\overline{h(a)} h(z))^{2}} \\
=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h^{\prime}(z)\left(1-|h(a)|^{2}\right)}{(1-\overline{h(a)} h(z))^{2}}
\end{gathered}
$$

and

$$
g^{\prime}(a)=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h^{\prime}(a)\left(1-|h(a)|^{2}\right)}{\left(1-\left.h(a)\right|^{2}\right)^{2}}=\frac{\left|h^{\prime}(a)\right|}{1-|h(a)|^{2}}
$$

But $|h(a)|^{2}=\left|\frac{f(a)-\omega}{1-\bar{\omega} f(a)}\right|=|-\omega|=|\omega|$ and by $(*)$, $2 h^{\prime}(a) h(a)=f^{\prime}(a)\left(1-|\omega|^{2}\right)$, so \ldots

Lemma VII.4.3 (continued 7)

Proof (continued). Also,

$$
\begin{gathered}
g^{\prime}(z)=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h^{\prime}(a)(1-\overline{h(a)} h(z))-(h(z)-h(a))\left(-\overline{h(a)} h^{\prime}(z)\right)}{(1-\overline{h(a)} h(z))^{2}} \\
=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h^{\prime}(z)\left(1-|h(a)|^{2}\right)}{(1-\overline{h(a)} h(z))^{2}}
\end{gathered}
$$

and

$$
g^{\prime}(a)=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h^{\prime}(a)\left(1-|h(a)|^{2}\right)}{\left(1-\left.h(a)\right|^{2}\right)^{2}}=\frac{\left|h^{\prime}(a)\right|}{1-|h(a)|^{2}}
$$

But $|h(a)|^{2}=\left|\frac{f(a)-\omega}{1-\bar{\omega} f(a)}\right|=|-\omega|=|\omega|$ and by $(*)$, $2 h^{\prime}(a) h(a)=f^{\prime}(a)\left(1-|\omega|^{2}\right)$, so \ldots

Lemma VII.4.3 (continued 8)

Proof (continued).

$$
\begin{gathered}
g^{\prime}(a)=\frac{\left|h^{\prime}(a)\right|}{1-|h(a)|^{2}}=\frac{1}{1-|\omega|} \frac{\left|f^{\prime}(a)\right|\left(1-|\omega|^{2}\right)}{2|h(a)|} \\
=\frac{f^{\prime}(a)(1+|\omega|) 2|h(a)|=\frac{f^{\prime}(a)(1+|\omega|)}{2 \sqrt{|\omega|}}=f^{\prime}(a) \frac{1+|\omega|}{\sqrt{\mid \omega}}+\sqrt{|\omega|}}{>} f^{\prime}(a)
\end{gathered}
$$

because $2 \sqrt{|\omega|}<1+|\omega|$ (since $\left.0<(1-|\omega|)^{2}=1-2|\omega|+|\omega|^{2}\right)$. So g is one to one, $g(a)=0, g(G) \subset D$, and $g^{\prime}(a)>f^{\prime}(a)>0$. and $g^{\prime}(a)>f^{\prime}(a)$, a CONTRADICTION to the fact that $f^{\prime}(a) \geq g^{\prime}(a)$ for all $g \in \mathcal{F}$. So no such $\omega \in D$ with $\omega \notin f(G)$. That is, $f(G)=D$. Therefore, f is the desired function.

Lemma VII.4.3 (continued 8)

Proof (continued).

$$
\begin{gather*}
g^{\prime}(a)=\frac{\left|h^{\prime}(a)\right|}{1-|h(a)|^{2}}=\frac{1}{1-|\omega|} \frac{\left|f^{\prime}(a)\right|\left(1-|\omega|^{2}\right)}{2|h(a)|} \\
f^{\prime}(a)(1+|\omega|) 2|h(a)|=\frac{f^{\prime}(a)(1+|\omega|)}{2 \sqrt{|\omega|}}=f^{\prime}(a) \frac{1+|\omega|}{\sqrt{\mid \omega}}+\sqrt{|\omega|} \tag{a}
\end{gather*}
$$

because $2 \sqrt{|\omega|}<1+|\omega|$ (since $\left.0<(1-|\omega|)^{2}=1-2|\omega|+|\omega|^{2}\right)$. So g is one to one, $g(a)=0, g(G) \subset D$, and $g^{\prime}(a)>f^{\prime}(a)>0$. But the $g \in \mathcal{F}$ and $g^{\prime}(a)>f^{\prime}(a)$, a CONTRADICTION to the fact that $f^{\prime}(a) \geq g^{\prime}(a)$ for all $g \in \mathcal{F}$. So no such $\omega \in D$ with $\omega \notin f(G)$. That is, $f(G)=D$.
Therefore, f is the desired function.

Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem.
Let G be a simply connected region which is not the whole plane \mathbb{C} and let $a \in G$. Then there is a unique analytic function $f: G \rightarrow \mathbb{C}$ having the properties:
(a) $f(a)=0$ and $f^{\prime}(a)>0$;
(b) f is one to one; and
(c) $f(G)=\{z| | z \mid<1\}$.

Proof. Let G be a simply connected region which is not the whole plane \mathbb{C}. Notice that every nonvanishing analytic function on a simply connected region has an analytic square root on the region.

Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem.

Let G be a simply connected region which is not the whole plane \mathbb{C} and let $a \in G$. Then there is a unique analytic function $f: G \rightarrow \mathbb{C}$ having the properties:
(a) $f(a)=0$ and $f^{\prime}(a)>0$;
(b) f is one to one; and
(c) $f(G)=\{z| | z \mid<1\}$.

Proof. Let G be a simply connected region which is not the whole plane \mathbb{C}. Notice that every nonvanishing analytic function on a simply connected region has an analytic square root on the region. This is because we can define a branch of the logarithm and compose it with such a function throughout the region; the branch cut must run from where the function is 0 to $\infty \in \mathbb{C}$; since the function can only be 0 outside of the simply connected region, then then a branch cut exists for the branch of the logarithm. The branch of the logarithm then allows us to define the square root (recall that a branch of the square root satisfies $z^{1 / 2}=e^{(1 / 2) \log z}$)

Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem.

Let G be a simply connected region which is not the whole plane \mathbb{C} and let $a \in G$. Then there is a unique analytic function $f: G \rightarrow \mathbb{C}$ having the properties:
(a) $f(a)=0$ and $f^{\prime}(a)>0$;
(b) f is one to one; and
(c) $f(G)=\{z| | z \mid<1\}$.

Proof. Let G be a simply connected region which is not the whole plane \mathbb{C}. Notice that every nonvanishing analytic function on a simply connected region has an analytic square root on the region. This is because we can define a branch of the logarithm and compose it with such a function throughout the region; the branch cut must run from where the function is 0 to $\infty \in \mathbb{C}$; since the function can only be 0 outside of the simply connected region, then then a branch cut exists for the branch of the logarithm. The branch of the logarithm then allows us to define the square root (recall that a branch of the square root satisfies $z^{1 / 2}=e^{(1 / 2) \log z}$).

Theorem VII.4.2. The Riemann Mapping Theorem (continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now follows from Lemma VII.4.3. We need only prove uniqueness. Suppose g is another such function. Then $g^{-1}: D \rightarrow G$ is analytic by Corollary IV.7.6. Therefore $f \circ g^{-1}: D \rightarrow D$ is analytic, one to one, and onto. Also, $f \circ g^{-1}(0)=f\left(g^{-1}(0)=f(a)=0\right.$. So by Theorem VI.2.5, $f \circ g^{-1}(z)=c \varphi_{0}=c(z-0) /(1-\overline{0} z)=c z($ on $D)$ for some $|c|=1$. Replacing z with $g(z)$ in $f\left(g^{-1}(z)\right)=c z($ since $g(G)=D)$ gives $f\left(g^{-1}(g(z))=c g(z)\right.$ or $f(z)=c g(z)$. Then $0<f^{\prime}(z)-c g^{\prime}(a)$; since $g^{\prime}(a)>0$ and $c g^{\prime}(a)>0$ then $c>0$ and so $c=1$.

Theorem VII.4.2. The Riemann Mapping Theorem (continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now follows from Lemma VII.4.3. We need only prove uniqueness. Suppose g is another such function. Then $g^{-1}: D \rightarrow G$ is analytic by Corollary IV.7.6. Therefore $f \circ g^{-1}: D \rightarrow D$ is analytic, one to one, and onto. Also, $f \circ g^{-1}(0)=f\left(g^{-1}(0)=f(a)=0\right.$. So by Theorem VI.2.5, $f \circ g^{-1}(z)=c \varphi_{0}=c(z-0) /(1-\overline{0} z)=c z($ on $D)$ for some $|c|=1$. Replacing z with $g(z)$ in $f\left(g^{-1}(z)\right)=c z($ since $g(G)=D)$ gives $f\left(g^{-1}(g(z))=c g(z)\right.$ or $f(z)=c g(z)$. Then $0<f^{\prime}(z)-c g^{\prime}(a)$; since $g^{\prime}(a)>0$ and $c g^{\prime}(a)>0$ then $c>0$ and so $c=1$. Therefore, the function f is unique.

Theorem VII.4.2. The Riemann Mapping Theorem (continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now follows from Lemma VII.4.3. We need only prove uniqueness. Suppose g is another such function. Then $g^{-1}: D \rightarrow G$ is analytic by Corollary IV.7.6. Therefore $f \circ g^{-1}: D \rightarrow D$ is analytic, one to one, and onto. Also, $f \circ g^{-1}(0)=f\left(g^{-1}(0)=f(a)=0\right.$. So by Theorem VI.2.5, $f \circ g^{-1}(z)=c \varphi_{0}=c(z-0) /(1-\overline{0} z)=c z($ on $D)$ for some $|c|=1$. Replacing z with $g(z)$ in $f\left(g^{-1}(z)\right)=c z($ since $g(G)=D)$ gives $f\left(g^{-1}(g(z))=c g(z)\right.$ or $f(z)=c g(z)$. Then $0<f^{\prime}(z)-c g^{\prime}(a)$; since $g^{\prime}(a)>0$ and $c g^{\prime}(a)>0$ then $c>0$ and so $c=1$. That is, $f=g$. Therefore, the function f is unique.

