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Lemma VII.4.A

Lemma VIIL.4.A. If Gy is simply connected and G; is conformally
equivalent to G, then G is simply connected.
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Lemma VII.4.A

Lemma VIIL.4.A. If Gy is simply connected and G; is conformally
equivalent to G, then G is simply connected.

Proof. Let G; be simply connected and let G, be conformally equivalent
to Gy under analytic function f. Let +» be a closed rectifiable curve in G,.
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Lemma VII.4.A

Lemma VII.4.A

Lemma VIIL.4.A. If Gy is simply connected and G; is conformally
equivalent to G, then G is simply connected.

Proof. Let G; be simply connected and let G, be conformally equivalent
to Gy under analytic function f. Let +» be a closed rectifiable curve in G,.
Then 41 = f~1 0, is a closed rectifiable curve in Gy (since v, : [0,1] — C
is continuous and ! is analytic, then f~1 05 : [0,1] — C is continuous;
712(0) = 72(a) implies 71(0) = £~(72(0)) = 1)y — 1(1)) = 72(1);
rectifiable follows from the fact that f~1 is analytic and therefore
Lipschitz).
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Lemma VII.4.A

Lemma VIIL.4.A. If Gy is simply connected and G; is conformally
equivalent to G, then G is simply connected.

Proof. Let G; be simply connected and let G, be conformally equivalent
to Gy under analytic function f. Let +» be a closed rectifiable curve in G,.
Then 41 = f~1 0, is a closed rectifiable curve in Gy (since v, : [0,1] — C
is continuous and ! is analytic, then f~1 05 : [0,1] — C is continuous;
712(0) = 72(a) implies 71(0) = £~(72(0)) = 1)y — 1(1)) = 72(1);
rectifiable follows from the fact that f~1 is analytic and therefore
Lipschitz). Since G; is simply connected, then ~y; is homotopic to zero and
so there is continuous I : [0, 1] x [0,1] — G; such that

M(s,0) =71(s) and T'(s,1) = ¢ for s € [0, 1]
{( t) =T(1,t) for t € [0,1]

for some constant ¢ € G.
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Lemma VII.4.A (continued)

Lemma VIIL4.A. If Gy is simply connected and G; is conformally
equivalent to Gy then G; is simply connected.

Proof (continued). But then f ol :[0,1] x [0,1] — G; is continuous and

fol(s,0)=fory(s)=fo(fLoy)(s)=r(s)forsc]01],
fol(s,1)=f(c)forse[0,1],and fol(0,1) = fol(1,t) for t € [0,1].
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Lemma VII.4.A (continued)

Lemma VIIL4.A. If Gy is simply connected and G; is conformally
equivalent to Gy then G; is simply connected.

Proof (continued). But then f ol :[0,1] x [0,1] — G; is continuous and
fol(s,0)=fory(s)=fo(fLoy)(s)=r(s)forsc]01],
fol(s,1)=f(c) forse[0,1], and fol(0,1) =f ol (1,t) for t € [0,1].
That is, f o[ is a path homotopy from =, to constant f(c) and so v, is
homotopic to zero. Since 7y, is an arbitrary closed rectifiable curve in Gp,
then G; is simply connected. O
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Lemma VI1.4.3

Lemma VII.4.3

Lemma VI1.4.3. Let G be a region which is not the whole plane and such
that every nonvanishing analytic function on G has an analytic square
root. If a € G then there is an analytic function f on G such that:

(a) f(a) =0and f'(a) > 0;

(b) f is one to one; and

(c) F(G) ={z||z[ <1}.
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Lemma VI1.4.3

Lemma VII.4.3

Lemma VI1.4.3. Let G be a region which is not the whole plane and such
that every nonvanishing analytic function on G has an analytic square
root. If a € G then there is an analytic function f on G such that:

(a) f(a) =0and f'(a) > 0;
(b) f is one to one; and
(c) F(G) ={z||z[ <1}.

Proof. Define F by letting
F ={f € H(G) | f is one to one, f(a) =0,f'(a) > 0,f(G) C D}.

For all f € F, since f(G) C D, then sup{|f(z)||z€ G} <1. So F'is
locally bounded (by definition of “locally bounded”) and so by Motel's
theorem (Theorem VI1.2.9) F is normal (if it is nonempty).
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Lemma VII.4.3

Lemma VI1.4.3. Let G be a region which is not the whole plane and such
that every nonvanishing analytic function on G has an analytic square
root. If a € G then there is an analytic function f on G such that:

(a) f(a) =0and f'(a) > 0;
(b) f is one to one; and
(c) F(G) ={z||z[ <1}.

Proof. Define F by letting
F ={f € H(G) | f is one to one, f(a) =0,f'(a) > 0,f(G) C D}.

For all f € F, since f(G) C D, then sup{|f(z)||z€ G} <1. So F'is
locally bounded (by definition of “locally bounded”) and so by Motel's
theorem (Theorem VI1.2.9) F is normal (if it is nonempty).

(1) First, we show that F # @. Since G # C, thereis b € C\ G. Consider
the nonvanishing analytic function z — b.
Complex Analysis August 6, 2017 5/15



Lemma VI1.4.3

Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since z — b # 0 on G), z— b has an
analytic square root on G, say (g(z))? =z —b. If z1,20 € G an

dg(z1) = +g(2) then (g(z1))?> —z1 — b=z — b= (£g(22))? and so

z1 = zo. In particular, g is one to one.
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Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since z — b # 0 on G), z— b has an
analytic square root on G, say (g(z))? =z —b. If z1,20 € G an

dg(z1) = +g(2) then (g(z1))?> —z1 — b=z — b= (£g(22))? and so

z1 = z. In particular, g is one to one. Since g is an analytic one to one
function on G, by the Open Mapping Theorem (Theorem IV.7.5), g(G) is
open and so there if r > 0 such that B(g(a); r) C g(G).
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Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since z — b # 0 on G), z— b has an
analytic square root on G, say (g(z))? =z —b. If z1,20 € G an

dg(z1) = +g(2) then (g(z1))?> —z1 — b=z — b= (£g(22))? and so

z1 = z. In particular, g is one to one. Since g is an analytic one to one
function on G, by the Open Mapping Theorem (Theorem IV.7.5), g(G) is
open and so there if r > 0 such that B(g(a); r) C g(G).

ASSUME there is z € G such that g(z) € B(—g(a); r). Then

r> lg(2) — (—g(a))] = lg(z) + g(a)] = | - &(2) — g(3)]. So

—g(z) € B(g(a); r) and for some w € G we have g(w) = —g(z). So, as
discussed above, w = z.
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Lemma VII.4.3 (continued 1)

Proof (continued). By hypothesis (since z — b # 0 on G), z— b has an
analytic square root on G, say (g(z))? =z —b. If z1,20 € G an

dg(z1) = +g(2) then (g(z1))?> —z1 — b=z — b= (£g(22))? and so

z1 = z. In particular, g is one to one. Since g is an analytic one to one
function on G, by the Open Mapping Theorem (Theorem IV.7.5), g(G) is
open and so there if r > 0 such that B(g(a); r) C g(G).

ASSUME there is z € G such that g(z) € B(—g(a);r). Then

r> lg(z) — (—&())] = g(2) + ()] = | - &(2) - &(a)]. So

—g(z) € B(g(a); r) and for some w € G we have g(w) = —g(z). So, as
discussed above, w = z. But then g(w) = g(z) = —g(z) and so g(z) = 0.
But then z — b= (g(z))>=0and z= b € G, a CONTRADICTION. So
g(G)N B(—g(a); r) = @ (in fact, since g(G) is open, then

g(G) N B(—g(a); r) = @). By the Orientation Principle (Theorem
[11.3.21), there is a Mdbius transformation T such that T(Co \ U7) = D.
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Lemma VII.4.3 (continued 2)

Proof (continued). Let g1 = T o g. Then gy is analytic and g1(G) C D.
If o = g1(a) let p, — /% (z — a)(@z — 1). Notice

io,(@z —1) — (z—aja _ oif0 o> — 1
(z — 1)? (az — 1)

Pu(2) —
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Lemma VI1.4.3

Lemma VII.4.3 (continued 2)

Proof (continued). Let g1 = T o g. Then gy is analytic and g1(G) C D.
If o = g1(a) let p, — /% (z — a)(@z — 1). Notice

N o | o N
L o o e

Then ¢, is a Mobius transformation from D onto D such that g,(a) =0
(this is shown in Exercise 111.3.10). Define g2(z) = ¢q © g1(2). Then we
still have g»(G) C D and g is analytic on G, but we also have that

gg(a) = 0.
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Lemma VI1.4.3

Lemma VII.4.3 (continued 2)

Proof (continued). Let g1 = T o g. Then gy is analytic and g1(G) C D.
If o = g1(a) let p, — /% (z — a)(@z — 1). Notice

N o | o N
L o o e

Then ¢, is a Mobius transformation from D onto D such that g,(a) =0
(this is shown in Exercise 111.3.10). Define g2(z) = ¢q © g1(2). Then we

still have g»(G) C D and g is analytic on G, but we also have that
g2(a) = 0. Now

8(2)]  =lralar(@))| = ¥alei(a))ei(a)

zZz=a zZz=a

= duloet(a) = ¢ o el(a)
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Lemma VI1.4.3

Lemma VII.4.3 (continued 3)

Proof (continued). Next, g1 = T o g where T(z) = Zig with
ad — bc # 0, is some Mobius transformation. Now
l(cz+d)—(za+ b)z  ad— bc
T'(2) = = 0 f .
(2) (cz + d)?2 (czpap? Ofrz7oec

Complex Analysis August 6, 2017
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Lemma VII.4.3 (continued 3)

Proof (continued). Next, g1 = T o g where T(z) = Zig with
ad — bc # 0, is some Mobius transformation. Now

I(cz+d)—(za+b)z  ad — bc

T'(z) = (cz + d)? = (@t d? # 0 for z # oco.

So gi(a) = T'(g(2))g'(2)] = T'(g(a))g’(a) where T'(g(a)) # 0.

Next, (g(z))? = z — b and 2:g(z)g’(z) =1, so 2g(z)g’(a) = 1 and neither
g(a) nor g’(a) equal 0. Hence gi(a) = T'(g(a))g’(a) # 0 and
gy (a) = e M}_lg —1’(a) # 0. So by the proper choice of 6y (namely,

—arg(gi(a)/(Jaf> — 1)) we have gj(a) > 0. So g» € F and F is
nonempty.
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Lemma VII.4.3 (continued 3)

Proof (continued). Next, g = T o g where T(z) = 2Z£b with

cz+d’
ad — bc # 0, is some Mobius transformation. Now
;o Wcz+d)—(za+b)z  ad— bc
Sogi(a) = T'(g(2))g'(z)] = T'(g(a))g’(a) where T'(g(a)) # 0.

Next, (g(z))? = z — b and 2:g(z)g’(z) =1, so 2g(z)g’(a) = 1 and neither
g(a) nor g’(a) equal 0. Hence gi(a) = T'(g(a))g’(a) # 0 and

gy (a) = e M}_lg —1’(a) # 0. So by the proper choice of 6y (namely,
—arg(gi(a)/(Jaf> — 1)) we have gj(a) > 0. So g» € F and F is

nonempty.

(1) We now show that 7~ = FU {0} in H(G). Suppose {f,} is a
sequence in F and f, — f in H(G). Since fy(a) = 0 for all f, € F then
f(a) =0. Also f)(z) — f'(a) so f'(a) > 0.
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Lemma VII.4.3 (continued 4)

Proof (continued). Let z; € G, ( = f(z1), and (, = fp(z1). Let z € G,
7o # z1 and let K C G be a closed disk centered at z, such that z; ¢ K.
Since f, is one to one and f,(z) — (, = 0 at z; then f,(z) — {, does not
vanish on K. But f,(z) — {, — f(z) — ¢ uniformly on K (since K is
compact), so by the corollary to Hurwitz's Theorem (Corollary VI1.2.6)
either f(z) — ¢ never vanishes on K on f(z) = ¢ on K.
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Lemma VII.4.3 (continued 4)

Proof (continued). Let z; € G, ( = f(z1), and (, = fp(z1). Let z € G,
7o # z1 and let K C G be a closed disk centered at z, such that z; ¢ K.
Since f, is one to one and f,(z) — (, = 0 at z; then f,(z) — {, does not
vanish on K. But f,(z) — {, — f(z) — ¢ uniformly on K (since K is
compact), so by the corollary to Hurwitz's Theorem (Corollary VI1.2.6)
either f(z) — ¢ never vanishes on K on f(z) = on K. If f(z) = on K
then f is constant throughout G (by Theorem 1V.3.7) and since f(a) =0
then f(z) = 0 on G.Otherwise f(z) — ¢ never vanishes on K so (since

2 € K) f(z2) —(#0or f(z) # ¢ = f(z1). Since z; and z are arbitrary
distinct points in G, then g is one to one on G. By Exercise IV.7.4,

f'(z) # 0 on G. We have above that f’(a) > 0, so it must be that in fact
f'(a) > 0. So f € F.
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Lemma VII.4.3 (continued 4)

Proof (continued). Let z; € G, ( = f(z1), and (, = fp(z1). Let z € G,
7o # z1 and let K C G be a closed disk centered at z, such that z; ¢ K.
Since f, is one to one and f,(z) — (, = 0 at z; then f,(z) — {, does not
vanish on K. But f,(z) — {, — f(z) — ¢ uniformly on K (since K is
compact), so by the corollary to Hurwitz's Theorem (Corollary VI1.2.6)
either f(z) — ¢ never vanishes on K on f(z) = on K. If f(z) = on K
then f is constant throughout G (by Theorem 1V.3.7) and since f(a) =0
then f(z) = 0 on G.Otherwise f(z) — ¢ never vanishes on K so (since

2 € K) f(z2) —(#0or f(z) # ¢ = f(z1). Since z; and z are arbitrary
distinct points in G, then g is one to one on G. By Exercise IV.7.4,

f'(z) # 0 on G. We have above that f’(a) > 0, so it must be that in fact
f'(a) > 0. So f € F. That is, the limit of any sequence in F is either an
element of F or the function f(z) =0 on G. Hence, ¥~ = F U {0}.
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Lemma VI1.4.3

Lemma VII.4.3 (continued 5)

Proof (continued). (I1l1) Finally, we show there is f € F with f(D) = D.
Consider the mapping of function f € H(G) to f'(a) € R. This is a

continuous mapping by Theorem VII.2.1. Now since F U {0} maps G to D
then F U {0} is locally bounded.
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Lemma VII.4.3 (continued 5)

Proof (continued). (I11) Finally, we show there is f € F with f(D) = D.
Consider the mapping of function f € H(G) to f'(a) € R. This is a
continuous mapping by Theorem VII.2.1. Now since F U {0} maps G to D
then F U {0} is locally bounded. By Part II, 7~ = F U {0} is closed so,
by Corollary VI1.2.10, F~ is compact. So by the Extreme Value Theorem
(Corollary 11.5.12) there is f € F~ with '(a) > g'(a) for all g € F. Since
F is nonempty by Part |, this particular f is in F (since f € F implies
f(a) > 0 and so 0(a) = 0 does not give the maximum). We now show
that for this f € F, we have f(G) = D and this is the desired function.
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Lemma VII.4.3 (continued 5)

Proof (continued). (I11) Finally, we show there is f € F with f(D) = D.
Consider the mapping of function f € H(G) to f'(a) € R. This is a
continuous mapping by Theorem VII.2.1. Now since F U {0} maps G to D
then F U {0} is locally bounded. By Part II, 7~ = F U {0} is closed so,
by Corollary VI1.2.10, F~ is compact. So by the Extreme Value Theorem
(Corollary 11.5.12) there is f € F~ with '(a) > g'(a) for all g € F. Since
F is nonempty by Part |, this particular f is in F (since f € F implies
f(a) > 0 and so 0(a) = 0 does not give the maximum). We now show
that for this f € F, we have f(G) = D and this is the desired function.

(IV) ASSUME w € D and w ¢ f(G). Then the function
(f(z) —w)/(1 —wf(z)) is analytic in G (notice |1/w| > 1so f(z) # 1/w
for z € G) and never vanishes in G.
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Lemma VII.4.3 (continued 5)

Proof (continued). (I11) Finally, we show there is f € F with f(D) = D.
Consider the mapping of function f € H(G) to f'(a) € R. This is a
continuous mapping by Theorem VII.2.1. Now since F U {0} maps G to D
then F U {0} is locally bounded. By Part II, 7~ = F U {0} is closed so,
by Corollary VI1.2.10, F~ is compact. So by the Extreme Value Theorem
(Corollary 11.5.12) there is f € F~ with '(a) > g'(a) for all g € F. Since
F is nonempty by Part |, this particular f is in F (since f € F implies
f(a) > 0 and so 0(a) = 0 does not give the maximum). We now show
that for this f € F, we have f(G) = D and this is the desired function.

(IV) ASSUME w € D and w ¢ f(G). Then the function

(f(z) —w)/(1 —wf(z)) is analytic in G (notice |1/w| > 1so f(z) # 1/w
for z € G) and never vanishes in G. Therefore, by hypothesis, there is
h: G — C such that (h(z))? = (f(z) — w)/(1 — wf(z)). The Mdbius
transformation T(¢) = (¢ — w)/(1 — () maps D onto D (since w € D;
see Exercise 111.3.10).
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Lemma VII.4.3 (continued 6)

Proof (continued). Define g: G — C as
H(a)| h(z) — h(a
sz = (@) hl2) —Ga)
W(a) 1 — h(a)h(z)
Notice that from the definition of h,

fi(2)(1 = wf(2)) - (f(2) — w)(=wf'(2)) _ F(z)(1 —|w[*)
(1-wf(2))? (1 -wf(2))?

2h(z)H'(2) =

and so
! — |w 2
2o () = A - 20 ()

since w € D and f'(a) > 0.
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Lemma VII.4.3 (continued 6)

Proof (continued). Define g: G — C as
H(a)| h(z) — h(a
sz = (@) hl2) —Ga)
W(a) 1 — h(a)h(z)
Notice that from the definition of h,

fi(2)(1 = wf(2)) - (f(2) — w)(=wf'(2)) _ F(z)(1 —|w[*)
(1-wf(2))? (1 -wf(2))?

2h(z)H'(2) =

and so

! — |w 2
2o () = A - 20 ()

since w € D and f’(a) > 0. Therefore h'(a) # 0 (and so | (a)|/H (&) is a
complex number of modulus 1). Since h(G) C D then h(a) € D and so
g(G) C D. Also g(a) =0 and g is one to one since h is (it is a branch of
a square root and so is invertible, so h is one to one) and the Mobius
transformation T such that g(z) = T(h(z)), is one to one.
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Lemma VII.4.3 (continued 7)

Proof (continued). Also,

_ [W(a)| H(a)(1 — h(a)h(2)) — (h(z) — h(a))(~h(a)H'(2))

¢ =) (1— h(2)h(2))?

_ [P H(2)(1 —[h(a)]?)
h(a) (1 - h(a)h(z))?

and
@ K& @R P E)
S % B G5 ) ERl B 1 (5 X
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Lemma VII.4.3 (continued 7)

Proof (continued). Also,

(2) = |h'(a)| H'(a)(1 — h(a)h(2)) — (h(z) — h(a))(~h(a)H(2))
H'(a) (1 h(a)h(2))>

_ [P H(2)(1 —[h(a)]?)

|
h(a) (1 - h(a)h(z))?

and
@ K& @R P E)
S % B G5 ) ERl B 1 (5 X
But h(a)f2 = | 2L = =] =[] and by (),

2K (a)h(a) = f'(a)(1 — |w|?), so ...
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Lemma VII.4.3 (continued 8)

Proof (continued).

@)l 1 [f(a)ld - |w?)
1—|ha)P  1—|wl  2[h(a)l

(a)(1+ lol)2lh(a)] = ”Z)(ji'“" =raE Ve

_ a
because 2/|w| < 1+ |w| (since 0 < (1 —|w|)? =1—2w| + [w|?). So g is
one to one, g(a) =0, g(G) C D, and g'(a) > f'(a) > 0.

g'(a) =

Complex Analysis August 6, 2017 13 /15



Lemma VII.4.3 (continued 8)

Proof (continued).

L@ 1 P(@I - W)
=T @ ST W 2h()

F(a)(1+|w2lh(a)| = ”Z)(ji'”"—ff D+ VBT )
B a

because 2+/|w| < 1+ |w| (since 0 < (1 —|w|)? =1—2w| + [w|?). So g is
one to one, g(a) =0, g(G) C D, and g'(a) > f'(a) > 0. But the g € F
and g’(a) > f’(a), a CONTRADICTION to the fact that '(a) > g’(a) for
all g € . So no such w € D with w & f(G). Thatis, f(G) = D.
Therefore, f is the desired function. O
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Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VI1.4.2. The Riemann Mapping Theorem.
Let G be a simply connected region which is not the whole plane C and
let a € G. Then there is a unique analytic function f : G — C having the
properties:

(a) f(a) =0and f'(a) > 0;

(b) f is one to one; and

(c) £(G) = {z| || < 1}.
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Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VI1.4.2. The Riemann Mapping Theorem.
Let G be a simply connected region which is not the whole plane C and
let a € G. Then there is a unique analytic function f : G — C having the
properties:

(a) f(a) =0and f'(a) > 0;

(b) f is one to one; and

(c) £(G) = {z| || < 1}.
Proof. Let G be a simply connected region which is not the whole plane
C. Notice that every nonvanishing analytic function on a simply connected
region has an analytic square root on the region.
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Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VI1.4.2. The Riemann Mapping Theorem.
Let G be a simply connected region which is not the whole plane C and
let a € G. Then there is a unique analytic function f : G — C having the
properties:

(a) f(a) =0and f'(a) > 0;

(b) f is one to one; and

(c) F(G)={z|lzl <1},
Proof. Let G be a simply connected region which is not the whole plane
C. Notice that every nonvanishing analytic function on a simply connected
region has an analytic square root on the region. This is because we can
define a branch of the logarithm and compose it with such a function
throughout the region; the branch cut must run from where the function is
0 to oo € C; since the function can only be 0 outside of the simply
connected region, then then a branch cut exists for the branch of the
logarithm. The branch of the logarithm then allows us to define the square
root (recall that a branch of the square root satisfies z1/2 = e(1/2)log2),

Complex Analysis August 6, 2017 14 / 15



Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem
(continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now

follows from Lemma VI1.4.3. We need only prove uniqueness. Suppose g
is another such function.
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Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem
(continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now
follows from Lemma VI1.4.3. We need only prove uniqueness. Suppose g
is another such function. Then g=!: D — G is analytic by Corollary
IV.7.6. Therefore f o g~ : D — D is analytic, one to one, and onto. Also,
fog=1(0) = f(g~1(0) = f(a) = 0. So by Theorem VI.2.5,

fog }z) = cpo = c(z—0)/(1—0z) = cz (on D) for some |c| = 1.
Replacing z with g(z) in f(g71(z)) = cz (since g(G) = D) gives
f(g71(g(2)) = cg(z) or f(z) = cg(z). Then 0 < f'(z) — cg’(a); since
g’'(a) > 0 and cg’(a) > 0 then ¢ > 0 and so ¢ = 1.
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Theorem VII.4.2. The Riemann Mapping Theorem
(continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now
follows from Lemma VI1.4.3. We need only prove uniqueness. Suppose g
is another such function. Then g=!: D — G is analytic by Corollary
IV.7.6. Therefore f o g~ : D — D is analytic, one to one, and onto. Also,
fog=1(0) = f(g~1(0) = f(a) = 0. So by Theorem VI.2.5,

fog }z) = cpo = c(z—0)/(1—0z) = cz (on D) for some |c| = 1.
Replacing z with g(z) in f(g71(z)) = cz (since g(G) = D) gives
f(g71(g(2)) = cg(z) or f(z) = cg(z). Then 0 < f'(z) — cg’(a); since
g’(a) > 0and cg’(a) > 0then c >0andsoc=1. Thatis, f =g.
Therefore, the function f is unique.

O
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