Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions

VII.4. The Riemann Mapping Theorem—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

3 Theorem VII.4.2. The Riemann Mapping Theorem

Lemma VII.4.A. If G_1 is simply connected and G_1 is conformally equivalent to G_2 then G_2 is simply connected.

Proof. Let G_1 be simply connected and let G_2 be conformally equivalent to G_2 under analytic function f. Let γ_2 be a closed rectifiable curve in G_2 .

Lemma VII.4.A. If G_1 is simply connected and G_1 is conformally equivalent to G_2 then G_2 is simply connected.

Proof. Let G_1 be simply connected and let G_2 be conformally equivalent to G_2 under analytic function f. Let γ_2 be a closed rectifiable curve in G_2 . Then $\gamma_1 = f^{-1} \circ \gamma_2$ is a closed rectifiable curve in G_1 (since $\gamma_2 : [0,1] \to \mathbb{C}$ is continuous and f^{-1} is analytic, then $f^{-1} \circ \gamma_2 : [0,1] \to \mathbb{C}$ is continuous; $\gamma_2(0) = \gamma_2(a)$ implies $\gamma_1(0) = f^{-1}(\gamma_2(0)) = f^{-1}(\gamma_2 - 1(1)) = \gamma_2(1)$; rectifiable follows from the fact that f^{-1} is analytic and therefore Lipschitz).

Lemma VII.4.A. If G_1 is simply connected and G_1 is conformally equivalent to G_2 then G_2 is simply connected.

Proof. Let G_1 be simply connected and let G_2 be conformally equivalent to G_2 under analytic function f. Let γ_2 be a closed rectifiable curve in G_2 . Then $\gamma_1 = f^{-1} \circ \gamma_2$ is a closed rectifiable curve in G_1 (since $\gamma_2 : [0,1] \to \mathbb{C}$ is continuous and f^{-1} is analytic, then $f^{-1} \circ \gamma_2 : [0,1] \to \mathbb{C}$ is continuous; $\gamma_2(0) = \gamma_2(a)$ implies $\gamma_1(0) = f^{-1}(\gamma_2(0)) = f^{-1}(\gamma_2 - 1(1)) = \gamma_2(1)$; rectifiable follows from the fact that f^{-1} is analytic and therefore Lipschitz). Since G_1 is simply connected, then γ_1 is homotopic to zero and so there is continuous $\Gamma : [0,1] \times [0,1] \to G_1$ such that

$$\left\{\begin{array}{l} \Gamma(s,0) = \gamma_1(s) \text{ and } \Gamma(s,1) = c \text{ for } s \in [0,1] \\ \Gamma(0,t) = \Gamma(1,t) \text{ for } t \in [0,1] \end{array}\right.$$

for some constant $c \in G_1$.

Lemma VII.4.A. If G_1 is simply connected and G_1 is conformally equivalent to G_2 then G_2 is simply connected.

Proof. Let G_1 be simply connected and let G_2 be conformally equivalent to G_2 under analytic function f. Let γ_2 be a closed rectifiable curve in G_2 . Then $\gamma_1 = f^{-1} \circ \gamma_2$ is a closed rectifiable curve in G_1 (since $\gamma_2 : [0,1] \to \mathbb{C}$ is continuous and f^{-1} is analytic, then $f^{-1} \circ \gamma_2 : [0,1] \to \mathbb{C}$ is continuous; $\gamma_2(0) = \gamma_2(a)$ implies $\gamma_1(0) = f^{-1}(\gamma_2(0)) = f^{-1}(\gamma_2 - 1(1)) = \gamma_2(1)$; rectifiable follows from the fact that f^{-1} is analytic and therefore Lipschitz). Since G_1 is simply connected, then γ_1 is homotopic to zero and so there is continuous $\Gamma : [0,1] \times [0,1] \to G_1$ such that

$$\left\{ \begin{array}{l} \Gamma(s,0)=\gamma_1(s) \text{ and } \Gamma(s,1)=c \text{ for } s\in[0,1] \\ \Gamma(0,t)=\Gamma(1,t) \text{ for } t\in[0,1] \end{array} \right.$$

for some constant $c \in G_1$.

Lemma VII.4.A. If G_1 is simply connected and G_1 is conformally equivalent to G_2 then G_2 is simply connected.

Proof (continued). But then $f \circ \Gamma : [0,1] \times [0,1] \rightarrow G_2$ is continuous and $f \circ \Gamma(s,0) = f \circ \gamma_1(s) = f \circ (f^{-1} \circ \gamma_2)(s) = \gamma(s)$ for $s \in [0,1]$, $f \circ \Gamma(s,1) = f(c)$ for $s \in [0,1]$, and $f \circ \Gamma(0,1) = f \circ \Gamma(1,t)$ for $t \in [0,1]$. That is, $f \circ \Gamma$ is a path homotopy from γ_2 to constant f(c) and so γ_2 is homotopic to zero. Since γ_2 is an arbitrary closed rectifiable curve in G_2 , then G_2 is simply connected.

Lemma VII.4.A. If G_1 is simply connected and G_1 is conformally equivalent to G_2 then G_2 is simply connected.

Proof (continued). But then $f \circ \Gamma : [0,1] \times [0,1] \rightarrow G_2$ is continuous and $f \circ \Gamma(s,0) = f \circ \gamma_1(s) = f \circ (f^{-1} \circ \gamma_2)(s) = \gamma(s)$ for $s \in [0,1]$, $f \circ \Gamma(s,1) = f(c)$ for $s \in [0,1]$, and $f \circ \Gamma(0,1) = f \circ \Gamma(1,t)$ for $t \in [0,1]$. That is, $f \circ \Gamma$ is a path homotopy from γ_2 to constant f(c) and so γ_2 is homotopic to zero. Since γ_2 is an arbitrary closed rectifiable curve in G_2 , then G_2 is simply connected.

Lemma VII.4.3. Let G be a region which is not the whole plane and such that every nonvanishing analytic function on G has an analytic square root. If $a \in G$ then there is an analytic function f on G such that:

(a) f(a) = 0 and f'(a) > 0;
(b) f is one to one; and
(c) f(G) = {z | |z| < 1}.

Proof. Define \mathcal{F} by letting

 $\mathcal{F} = \{ f \in H(G) \mid f \text{ is one to one, } f(a) = 0, f'(a) > 0, f(G) \subset D \}.$

For all $f \in \mathcal{F}$, since $f(G) \subset D$, then $\sup\{|f(z)| \mid z \in G\} \leq 1$. So \mathcal{F} is locally bounded (by definition of "locally bounded") and so by Motel's theorem (Theorem VII.2.9) \mathcal{F} is normal (if it is nonempty).

Lemma VII.4.3. Let G be a region which is not the whole plane and such that every nonvanishing analytic function on G has an analytic square root. If $a \in G$ then there is an analytic function f on G such that:

(a) f(a) = 0 and f'(a) > 0; (b) f is one to one; and (c) $f(G) = \{z \mid |z| < 1\}.$

Proof. Define \mathcal{F} by letting

 $\mathcal{F} = \{ f \in H(G) \mid f \text{ is one to one, } f(a) = 0, f'(a) > 0, f(G) \subset D \}.$

For all $f \in \mathcal{F}$, since $f(G) \subset D$, then sup $\{|f(z)| | z \in G\} \leq 1$. So \mathcal{F} is locally bounded (by definition of "locally bounded") and so by Motel's theorem (Theorem VII.2.9) \mathcal{F} is normal (if it is nonempty).

(1) First, we show that $\mathcal{F} \neq \emptyset$. Since $G \neq \mathbb{C}$, there is $b \in \mathbb{C} \setminus G$. Consider the nonvanishing analytic function z - b.

Lemma VII.4.3. Let G be a region which is not the whole plane and such that every nonvanishing analytic function on G has an analytic square root. If $a \in G$ then there is an analytic function f on G such that:

(a) f(a) = 0 and f'(a) > 0; (b) f is one to one; and (c) $f(G) = \{z \mid |z| < 1\}.$

Proof. Define \mathcal{F} by letting

 $\mathcal{F} = \{ f \in H(G) \mid f \text{ is one to one, } f(a) = 0, f'(a) > 0, f(G) \subset D \}.$

For all $f \in \mathcal{F}$, since $f(G) \subset D$, then sup{ $|f(z)| | z \in G$ } ≤ 1 . So \mathcal{F} is locally bounded (by definition of "locally bounded") and so by Motel's theorem (Theorem VII.2.9) \mathcal{F} is normal (if it is nonempty).

(1) First, we show that $\mathcal{F} \neq \emptyset$. Since $G \neq \mathbb{C}$, there is $b \in \mathbb{C} \setminus G$. Consider the nonvanishing analytic function z - b.

Proof (continued). By hypothesis (since $z - b \neq 0$ on G), z - b has an analytic square root on G, say $(g(z))^2 = z - b$. If $z_1, z_2 \in G$ an $dg(z_1) = \pm g(z_2)$ then $(g(z_1))^2 - z_1 - b = z_2 - b = (\pm g(z_2))^2$ and so $z_1 = z_2$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), g(G) is open and so there if r > 0 such that $B(g(a); r) \subset g(G)$.

Proof (continued). By hypothesis (since $z - b \neq 0$ on G), z - b has an analytic square root on G, say $(g(z))^2 = z - b$. If $z_1, z_2 \in G$ an $dg(z_1) = \pm g(z_2)$ then $(g(z_1))^2 - z_1 - b = z_2 - b = (\pm g(z_2))^2$ and so $z_1 = z_2$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), g(G) is open and so there if r > 0 such that $B(g(a); r) \subset g(G)$.

ASSUME there is $z \in G$ such that $g(z) \in B(-g(a); r)$. Then r > |g(z) - (-g(a))| = |g(z) + g(a)| = |-g(z) - g(a)|. So $-g(z) \in B(g(a); r)$ and for some $w \in G$ we have g(w) = -g(z). So, as discussed above, w = z.

Complex Analysis

Proof (continued). By hypothesis (since $z - b \neq 0$ on G), z - b has an analytic square root on G, say $(g(z))^2 = z - b$. If $z_1, z_2 \in G$ an $dg(z_1) = \pm g(z_2)$ then $(g(z_1))^2 - z_1 - b = z_2 - b = (\pm g(z_2))^2$ and so $z_1 = z_2$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), g(G) is open and so there if r > 0 such that $B(g(a); r) \subset g(G)$.

ASSUME there is $z \in G$ such that $g(z) \in B(-g(a); r)$. Then r > |g(z) - (-g(a))| = |g(z) + g(a)| = | - g(z) - g(a)|. So $-g(z) \in B(g(a); r)$ and for some $w \in G$ we have g(w) = -g(z). So, as discussed above, w = z. But then g(w) = g(z) = -g(z) and so g(z) = 0. But then $z - b = (g(z))^2 = 0$ and $z = b \in G$, a CONTRADICTION. So $g(G) \cap B(-g(a); r) = \emptyset$ (in fact, since g(G) is open, then $g(G) \cap \overline{B}(-g(a); r) = \emptyset$). By the Orientation Principle (Theorem III.3.21), there is a Möbius transformation T such that $T(\mathbb{C}_{\infty} \setminus U^-) = D$.

Proof (continued). By hypothesis (since $z - b \neq 0$ on G), z - b has an analytic square root on G, say $(g(z))^2 = z - b$. If $z_1, z_2 \in G$ an $dg(z_1) = \pm g(z_2)$ then $(g(z_1))^2 - z_1 - b = z_2 - b = (\pm g(z_2))^2$ and so $z_1 = z_2$. In particular, g is one to one. Since g is an analytic one to one function on G, by the Open Mapping Theorem (Theorem IV.7.5), g(G) is open and so there if r > 0 such that $B(g(a); r) \subset g(G)$.

ASSUME there is $z \in G$ such that $g(z) \in B(-g(a); r)$. Then r > |g(z) - (-g(a))| = |g(z) + g(a)| = |-g(z) - g(a)|. So $-g(z) \in B(g(a); r)$ and for some $w \in G$ we have g(w) = -g(z). So, as discussed above, w = z. But then g(w) = g(z) = -g(z) and so g(z) = 0. But then $z - b = (g(z))^2 = 0$ and $z = b \in G$, a CONTRADICTION. So $g(G) \cap B(-g(a); r) = \emptyset$ (in fact, since g(G) is open, then $g(G) \cap \overline{B}(-g(a); r) = \emptyset$). By the Orientation Principle (Theorem III.3.21), there is a Möbius transformation T such that $T(\mathbb{C}_{\infty} \setminus U^{-}) = D$.

Proof (continued). Let $g_1 = T \circ g$. Then g_1 is analytic and $g_1(G) \subset D$. If $\alpha = g_1(a)$ let $\varphi_{\alpha} - e^{i\theta_0}(z - \alpha)(\overline{\alpha}z - 1)$. Notice

$$\varphi_{\alpha}'(z) - e^{i\theta_0} \frac{(\overline{\alpha}z - 1) - (z - \alpha)\overline{\alpha}}{(\overline{\alpha}z - 1)^2} = e^{i\theta_0} \frac{|\alpha|^2 - 1}{(\overline{\alpha}z - 1)^2}$$

Then φ_{α} is a Möbius transformation from D onto D such that $\varphi_{\alpha}(\alpha) = 0$ (this is shown in Exercise III.3.10). Define $g_2(z) = \varphi_{\alpha} \circ g_1(z)$. Then we still have $g_2(G) \subset D$ and g_2 is analytic on G, but we also have that $g_2(a) = 0$.

Complex Analysis

Proof (continued). Let $g_1 = T \circ g$. Then g_1 is analytic and $g_1(G) \subset D$. If $\alpha = g_1(a)$ let $\varphi_{\alpha} - e^{i\theta_0}(z - \alpha)(\overline{\alpha}z - 1)$. Notice

$$\varphi_{\alpha}'(z) - e^{i\theta_0} \frac{(\overline{\alpha}z - 1) - (z - \alpha)\overline{\alpha}}{(\overline{\alpha}z - 1)^2} = e^{i\theta_0} \frac{|\alpha|^2 - 1}{(\overline{\alpha}z - 1)^2}$$

Then φ_{α} is a Möbius transformation from D onto D such that $\varphi_{\alpha}(\alpha) = 0$ (this is shown in Exercise III.3.10). Define $g_2(z) = \varphi_{\alpha} \circ g_1(z)$. Then we still have $g_2(G) \subset D$ and g_2 is analytic on G, but we also have that $g_2(a) = 0$. Now

$$\begin{aligned} g_2'(z) \bigg|_{z=a} &= \left[\varphi_\alpha(g_1(z))\right]' \bigg|_{z=a} = \varphi_\alpha'(g_1(a))g_1'(a) \\ &= \varphi_\alpha'(\alpha)g_1'(a) = e^{i\theta_0}\frac{1}{|\alpha|^2 - 1}g_1'(a). \end{aligned}$$

Proof (continued). Let $g_1 = T \circ g$. Then g_1 is analytic and $g_1(G) \subset D$. If $\alpha = g_1(a)$ let $\varphi_{\alpha} - e^{i\theta_0}(z - \alpha)(\overline{\alpha}z - 1)$. Notice

$$\varphi_{\alpha}'(z) - e^{i\theta_0} \frac{(\overline{\alpha}z - 1) - (z - \alpha)\overline{\alpha}}{(\overline{\alpha}z - 1)^2} = e^{i\theta_0} \frac{|\alpha|^2 - 1}{(\overline{\alpha}z - 1)^2}$$

Then φ_{α} is a Möbius transformation from D onto D such that $\varphi_{\alpha}(\alpha) = 0$ (this is shown in Exercise III.3.10). Define $g_2(z) = \varphi_{\alpha} \circ g_1(z)$. Then we still have $g_2(G) \subset D$ and g_2 is analytic on G, but we also have that $g_2(a) = 0$. Now

$$egin{aligned} g_2'(z) igg|_{z=a} &= \left[arphi_lpha(g_1(z))
ight]' igg|_{z=a} &= arphi_lpha(g_1(a)) g_1'(a) \ &= arphi_lpha(lpha) g_1'(a) = e^{i heta_0} rac{1}{|lpha|^2 - 1} g_1'(a). \end{aligned}$$

Proof (continued). Next, $g_1 = T \circ g$ where $T(z) = \frac{az+b}{cz+d}$, with $ad - bc \neq 0$, is some Möbius transformation. Now

$$T'(z) = \frac{1(cz+d)-(za+b)z}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} \neq 0 \text{ for } z \neq \infty.$$

So
$$g'_1(a) = T'(g(z))g'(z) \Big|_{\substack{z=a \\ z=a}} = T'(g(a))g'(a)$$
 where $T'(g(a)) \neq 0$.
Next, $(g(z))^2 = z - b$ and $2g(z)g'(z) = 1$, so $2g(z)g'(a) = 1$ and neither $g(a)$ nor $g'(a)$ equal 0. Hence $g_1(a) = T'(g(a))g'(a) \neq 0$ and $g'_2(a) = e^{i\theta_0} \frac{1}{|\alpha|^2 - 1}g - 1'(a) \neq 0$. So by the proper choice of θ_0 (namely, $-\arg(g'_1(a)/(|\alpha|^2 - 1)))$ we have $g'_2(a) > 0$. So $g_2 \in \mathcal{F}$ and \mathcal{F} is nonempty.

Proof (continued). Next, $g_1 = T \circ g$ where $T(z) = \frac{az+b}{cz+d}$, with $ad - bc \neq 0$, is some Möbius transformation. Now

$$T'(z) = \frac{1(cz+d)-(za+b)z}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} \neq 0 \text{ for } z \neq \infty.$$

So $g'_1(a) = T'(g(z))g'(z)\Big|_{z=a} = T'(g(a))g'(a)$ where $T'(g(a)) \neq 0$. Next, $(g(z))^2 = z - b$ and 2g(z)g'(z) = 1, so 2g(z)g'(a) = 1 and neither g(a) nor g'(a) equal 0. Hence $g_1(a) = T'(g(a))g'(a) \neq 0$ and $g'_2(a) = e^{i\theta_0}\frac{1}{|\alpha|^2 - 1}g - 1'(a) \neq 0$. So by the proper choice of θ_0 (namely, $-\arg(g'_1(a)/(|\alpha|^2 - 1)))$ we have $g'_2(a) > 0$. So $g_2 \in \mathcal{F}$ and \mathcal{F} is nonempty.

(II) We now show that $\mathcal{F}^- = \mathcal{F} \cup \{0\}$ in H(G). Suppose $\{f_n\}$ is a sequence in \mathcal{F} and $f_n \to f$ in H(G). Since $f_n(a) = 0$ for all $f_n \in \mathcal{F}$ then f(a) = 0. Also $f'_n(z) \to f'(a)$ so $f'(a) \ge 0$.

Proof (continued). Next, $g_1 = T \circ g$ where $T(z) = \frac{az+b}{cz+d}$, with $ad - bc \neq 0$, is some Möbius transformation. Now

$$T'(z) = \frac{1(cz+d)-(za+b)z}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} \neq 0 \text{ for } z \neq \infty.$$

So $g'_1(a) = T'(g(z))g'(z)\Big|_{z=a} = T'(g(a))g'(a)$ where $T'(g(a)) \neq 0$. Next, $(g(z))^2 = z - b$ and 2g(z)g'(z) = 1, so 2g(z)g'(a) = 1 and neither g(a) nor g'(a) equal 0. Hence $g_1(a) = T'(g(a))g'(a) \neq 0$ and $g'_2(a) = e^{i\theta_0}\frac{1}{|\alpha|^2 - 1}g - 1'(a) \neq 0$. So by the proper choice of θ_0 (namely, $-\arg(g'_1(a)/(|\alpha|^2 - 1)))$ we have $g'_2(a) > 0$. So $g_2 \in \mathcal{F}$ and \mathcal{F} is nonempty.

(II) We now show that $\mathcal{F}^- = \mathcal{F} \cup \{0\}$ in H(G). Suppose $\{f_n\}$ is a sequence in \mathcal{F} and $f_n \to f$ in H(G). Since $f_n(a) = 0$ for all $f_n \in \mathcal{F}$ then f(a) = 0. Also $f'_n(z) \to f'(a)$ so $f'(a) \ge 0$.

Proof (continued). Let $z_1 \in G$, $\zeta = f(z_1)$, and $\zeta_n = f_n(z_1)$. Let $z_2 \in G$, $z_2 \neq z_1$ and let $K \subset G$ be a closed disk centered at z_2 such that $z_1 \notin K$. Since f_n is one to one and $f_n(z) - \zeta_n = 0$ at z_1 then $f_n(z) - \zeta_n$ does not vanish on K. But $f_n(z) - \zeta_n \to f(z) - \zeta$ uniformly on K (since K is compact), so by the corollary to Hurwitz's Theorem (Corollary VII.2.6) either $f(z) - \zeta$ never vanishes on K on $f(z) = \zeta$ on K. If $f(z) \equiv \zeta$ on K then f is constant throughout G (by Theorem IV.3.7) and since f(a) = 0then f(z) = 0 on G.Otherwise $f(z) - \zeta$ never vanishes on K so (since $z_2 \in K$) $f(z_2) - \zeta \neq 0$ or $f(z_2) \neq \zeta = f(z_1)$. Since z_1 and z_2 are arbitrary distinct points in G, then g is one to one on G. By Exercise IV.7.4, $f'(z) \neq 0$ on G. We have above that f'(a) > 0, so it must be that in fact f'(a) > 0. So $f \in \mathcal{F}$.

Proof (continued). Let $z_1 \in G$, $\zeta = f(z_1)$, and $\zeta_n = f_n(z_1)$. Let $z_2 \in G$, $z_2 \neq z_1$ and let $K \subset G$ be a closed disk centered at z_2 such that $z_1 \notin K$. Since f_n is one to one and $f_n(z) - \zeta_n = 0$ at z_1 then $f_n(z) - \zeta_n$ does not vanish on K. But $f_n(z) - \zeta_n \to f(z) - \zeta$ uniformly on K (since K is compact), so by the corollary to Hurwitz's Theorem (Corollary VII.2.6) either $f(z) - \zeta$ never vanishes on K on $f(z) = \zeta$ on K. If $f(z) \equiv \zeta$ on K then f is constant throughout G (by Theorem IV.3.7) and since f(a) = 0then f(z) = 0 on G.Otherwise $f(z) - \zeta$ never vanishes on K so (since $z_2 \in K$) $f(z_2) - \zeta \neq 0$ or $f(z_2) \neq \zeta = f(z_1)$. Since z_1 and z_2 are arbitrary distinct points in G, then g is one to one on G. By Exercise IV.7.4, $f'(z) \neq 0$ on G. We have above that f'(a) > 0, so it must be that in fact f'(a) > 0. So $f \in \mathcal{F}$. That is, the limit of any sequence in \mathcal{F} is either an element of \mathcal{F} or the function $f(z) \equiv 0$ on G. Hence, $\mathcal{F}^- = \mathcal{F} \cup \{0\}$.

Complex Analysis

Proof (continued). Let $z_1 \in G$, $\zeta = f(z_1)$, and $\zeta_n = f_n(z_1)$. Let $z_2 \in G$, $z_2 \neq z_1$ and let $K \subset G$ be a closed disk centered at z_2 such that $z_1 \notin K$. Since f_n is one to one and $f_n(z) - \zeta_n = 0$ at z_1 then $f_n(z) - \zeta_n$ does not vanish on K. But $f_n(z) - \zeta_n \to f(z) - \zeta$ uniformly on K (since K is compact), so by the corollary to Hurwitz's Theorem (Corollary VII.2.6) either $f(z) - \zeta$ never vanishes on K on $f(z) = \zeta$ on K. If $f(z) \equiv \zeta$ on K then f is constant throughout G (by Theorem IV.3.7) and since f(a) = 0then f(z) = 0 on G.Otherwise $f(z) - \zeta$ never vanishes on K so (since $z_2 \in K$) $f(z_2) - \zeta \neq 0$ or $f(z_2) \neq \zeta = f(z_1)$. Since z_1 and z_2 are arbitrary distinct points in G, then g is one to one on G. By Exercise IV.7.4, $f'(z) \neq 0$ on G. We have above that f'(a) > 0, so it must be that in fact f'(a) > 0. So $f \in \mathcal{F}$. That is, the limit of any sequence in \mathcal{F} is either an element of \mathcal{F} or the function $f(z) \equiv 0$ on G. Hence, $\mathcal{F}^- = \mathcal{F} \cup \{0\}$.

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with f(D) = D. Consider the mapping of function $f \in H(G)$ to $f'(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup \{0\}$ maps G to Dthen $\mathcal{F} \cup \{0\}$ is locally bounded. By Part II, $\mathcal{F}^- = \mathcal{F} \cup \{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^- is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^-$ with $f'(a) \ge g'(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies f(a) > 0 and so 0(a) = 0 does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have f(G) = D and this is the desired function.

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with f(D) = D. Consider the mapping of function $f \in H(G)$ to $f'(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup \{0\}$ maps G to Dthen $\mathcal{F} \cup \{0\}$ is locally bounded. By Part II, $\mathcal{F}^- = \mathcal{F} \cup \{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^- is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^-$ with $f'(a) \ge g'(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies f(a) > 0 and so 0(a) = 0 does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have f(G) = D and this is the desired function.

(IV) ASSUME $\omega \in D$ and $\omega \notin f(G)$. Then the function $(f(z) - \omega)/(1 - \overline{\omega}f(z))$ is analytic in G (notice $|1/\overline{\omega}| > 1$ so $f(z) \neq 1/\overline{\omega}$ for $z \in G$) and never vanishes in G.

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with f(D) = D. Consider the mapping of function $f \in H(G)$ to $f'(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup \{0\}$ maps G to Dthen $\mathcal{F} \cup \{0\}$ is locally bounded. By Part II, $\mathcal{F}^- = \mathcal{F} \cup \{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^- is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^-$ with $f'(a) \ge g'(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies f(a) > 0 and so 0(a) = 0 does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have f(G) = D and this is the desired function.

(IV) ASSUME $\omega \in D$ and $\omega \notin f(G)$. Then the function $(f(z) - \omega)/(1 - \overline{\omega}f(z))$ is analytic in *G* (notice $|1/\overline{\omega}| > 1$ so $f(z) \neq 1/\overline{\omega}$ for $z \in G$) and never vanishes in *G*. Therefore, by hypothesis, there is $h: G \to \mathbb{C}$ such that $(h(z))^2 = (f(z) - \omega)/(1 - \overline{\omega}f(z))$. The Möbius transformation $T(\zeta) = (\zeta - \omega)/(1 - \overline{\omega}\zeta)$ maps *D* onto *D* (since $\omega \in D$; see Exercise III.3.10).

Proof (continued). (III) Finally, we show there is $f \in \mathcal{F}$ with f(D) = D. Consider the mapping of function $f \in H(G)$ to $f'(a) \in \mathbb{R}$. This is a continuous mapping by Theorem VII.2.1. Now since $\mathcal{F} \cup \{0\}$ maps G to Dthen $\mathcal{F} \cup \{0\}$ is locally bounded. By Part II, $\mathcal{F}^- = \mathcal{F} \cup \{0\}$ is closed so, by Corollary VII.2.10, \mathcal{F}^- is compact. So by the Extreme Value Theorem (Corollary II.5.12) there is $f \in \mathcal{F}^-$ with $f'(a) \ge g'(a)$ for all $g \in \mathcal{F}$. Since \mathcal{F} is nonempty by Part I, this particular f is in \mathcal{F} (since $f \in \mathcal{F}$ implies f(a) > 0 and so 0(a) = 0 does not give the maximum). We now show that for this $f \in \mathcal{F}$, we have f(G) = D and this is the desired function.

(IV) ASSUME $\omega \in D$ and $\omega \notin f(G)$. Then the function $(f(z) - \omega)/(1 - \overline{\omega}f(z))$ is analytic in *G* (notice $|1/\overline{\omega}| > 1$ so $f(z) \neq 1/\overline{\omega}$ for $z \in G$) and never vanishes in *G*. Therefore, by hypothesis, there is $h: G \to \mathbb{C}$ such that $(h(z))^2 = (f(z) - \omega)/(1 - \overline{\omega}f(z))$. The Möbius transformation $T(\zeta) = (\zeta - \omega)/(1 - \overline{\omega}\zeta)$ maps *D* onto *D* (since $\omega \in D$; see Exercise III.3.10).

Proof (continued). Define $g: G \to \mathbb{C}$ as

$$g(z) = \frac{|h'(a)|}{h'(a)} \frac{h(z) - h(a)}{1 - \overline{h(a)}h(z)}$$

Notice that from the definition of h,

$$2h(z)h'(z) = \frac{f'(z)(1 - \overline{\omega}f(z)) - (f(z) - \omega)(-\overline{\omega}f'(z))}{(1 - \overline{\omega}f(z))^2} = \frac{f'(z)(1 - |\omega|^2)}{(1 - \overline{\omega}f(z))^2}$$

and so

$$2h(a)h'(a) = \frac{f'(a)(1-|\omega|^2)}{(1-\overline{\omega}f(a))^2} = f'(a)(1-|\omega|^2) \neq 0 \qquad (*)$$

since $\omega \in D$ and f'(a) > 0. Therefore $h'(a) \neq 0$ (and so |h'(a)|/h'(a) is a complex number of modulus 1). Since $h(G) \subset D$ then $h(a) \in D$ and so $g(G) \subset D$. Also g(a) = 0 and g is one to one since h is (it is a branch of a square root and so is invertible, so h is one to one) and the Möbius transformation T such that g(z) = T(h(z)), is one to one.

Proof (continued). Define $g: G \to \mathbb{C}$ as

$$g(z) = \frac{|h'(a)|}{h'(a)} \frac{h(z) - h(a)}{1 - \overline{h(a)}h(z)}$$

Notice that from the definition of h,

$$2h(z)h'(z) = \frac{f'(z)(1 - \overline{\omega}f(z)) - (f(z) - \omega)(-\overline{\omega}f'(z))}{(1 - \overline{\omega}f(z))^2} = \frac{f'(z)(1 - |\omega|^2)}{(1 - \overline{\omega}f(z))^2}$$

and so

$$2h(a)h'(a) = rac{f'(a)(1-|\omega|^2)}{(1-\overline{\omega}f(a))^2} = f'(a)(1-|\omega|^2) \neq 0 \qquad (*)$$

since $\omega \in D$ and f'(a) > 0. Therefore $h'(a) \neq 0$ (and so |h'(a)|/h'(a) is a complex number of modulus 1). Since $h(G) \subset D$ then $h(a) \in D$ and so $g(G) \subset D$. Also g(a) = 0 and g is one to one since h is (it is a branch of a square root and so is invertible, so h is one to one) and the Möbius transformation T such that g(z) = T(h(z)), is one to one.

Proof (continued). Also,

$$g'(z) = \frac{|h'(a)|}{h'(a)} \frac{h'(a)(1 - \overline{h(a)}h(z)) - (h(z) - h(a))(-\overline{h(a)}h'(z))}{(1 - \overline{h(a)}h(z))^2}$$
$$= \frac{|h'(a)|}{h'(a)} \frac{h'(z)(1 - |h(a)|^2)}{(1 - \overline{h(a)}h(z))^2}$$

and

$$g'(a) = \frac{|h'(a)|}{h'(a)} \frac{h'(a)(1 - |h(a)|^2)}{(1 - h(a)|^2)^2} = \frac{|h'(a)|}{1 - |h(a)|^2}.$$

But $|h(a)|^2 = \left|\frac{f(a) - \omega}{1 - \overline{\omega}f(a)}\right| = |-\omega| = |\omega|$ and by (*),
 $2h'(a)h(a) = f'(a)(1 - |\omega|^2)$, so ...

Proof (continued). Also,

$$g'(z) = \frac{|h'(a)|}{h'(a)} \frac{h'(a)(1 - \overline{h(a)}h(z)) - (h(z) - h(a))(-\overline{h(a)}h'(z))}{(1 - \overline{h(a)}h(z))^2}$$
$$= \frac{|h'(a)|}{h'(a)} \frac{h'(z)(1 - |h(a)|^2)}{(1 - \overline{h(a)}h(z))^2}$$

and

$$g'(a) = \frac{|h'(a)|}{h'(a)} \frac{h'(a)(1-|h(a)|^2)}{(1-h(a)|^2)^2} = \frac{|h'(a)|}{1-|h(a)|^2}.$$

But $|h(a)|^2 = \left|\frac{f(a)-\omega}{1-\overline{\omega}f(a)}\right| = |-\omega| = |\omega|$ and by (*),
 $2h'(a)h(a) = f'(a)(1-|\omega|^2)$, so ...

Proof (continued).

$$g'(a) = \frac{|h'(a)|}{1 - |h(a)|^2} = \frac{1}{1 - |\omega|} \frac{|f'(a)|(1 - |\omega|^2)}{2|h(a)|}$$
$$= \frac{f'(a)(1 + |\omega|)2|h(a)| = \frac{f'(a)(1 + |\omega|)}{2\sqrt{|\omega|}} = f'(a)\frac{1 + |\omega|}{\sqrt{|\omega|}} + \sqrt{|\omega|}}{>} f'(a)$$

because $2\sqrt{|\omega|} < 1 + |\omega|$ (since $0 < (1 - |\omega|)^2 = 1 - 2|\omega| + |\omega|^2$). So g is one to one, g(a) = 0, $g(G) \subset D$, and g'(a) > f'(a) > 0. But the $g \in \mathcal{F}$ and g'(a) > f'(a), a CONTRADICTION to the fact that $f'(a) \ge g'(a)$ for all $g \in \mathcal{F}$. So no such $\omega \in D$ with $\omega \notin f(G)$. That is, f(G) = D. Therefore, f is the desired function.

Proof (continued).

$$g'(a) = rac{|h'(a)|}{1 - |h(a)|^2} = rac{1}{1 - |\omega|} rac{|f'(a)|(1 - |\omega|^2)}{2|h(a)|} = rac{f'(a)(1 + |\omega|)2|h(a)| = rac{f'(a)(1 + |\omega|)}{2\sqrt{|\omega|}} = f'(a)rac{1 + |\omega|}{\sqrt{|\omega|}} + \sqrt{|\omega|}}{2}$$

because $2\sqrt{|\omega|} < 1 + |\omega|$ (since $0 < (1 - |\omega|)^2 = 1 - 2|\omega| + |\omega|^2$). So g is one to one, g(a) = 0, $g(G) \subset D$, and g'(a) > f'(a) > 0. But the $g \in \mathcal{F}$ and g'(a) > f'(a), a CONTRADICTION to the fact that $f'(a) \ge g'(a)$ for all $g \in \mathcal{F}$. So no such $\omega \in D$ with $\omega \notin f(G)$. That is, f(G) = D. Therefore, f is the desired function.

Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem.

Let G be a simply connected region which is not the whole plane \mathbb{C} and let $a \in G$. Then there is a unique analytic function $f : G \to \mathbb{C}$ having the properties:

(a) f(a) = 0 and f'(a) > 0; (b) f is one to one; and

(b) f is one to one; and

(c) $f(G) = \{z \mid |z| < 1\}.$

Proof. Let *G* be a simply connected region which is not the whole plane \mathbb{C} . Notice that every nonvanishing analytic function on a simply connected region has an analytic square root on the region.

Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem.

Let G be a simply connected region which is not the whole plane \mathbb{C} and let $a \in G$. Then there is a unique analytic function $f : G \to \mathbb{C}$ having the properties:

(a) f(a) = 0 and f'(a) > 0; (b) f is one to one; and

(c)
$$f(G) = \{z \mid |z| < 1\}.$$

Proof. Let *G* be a simply connected region which is not the whole plane \mathbb{C} . Notice that every nonvanishing analytic function on a simply connected region has an analytic square root on the region. This is because we can define a branch of the logarithm and compose it with such a function throughout the region; the branch cut must run from where the function is 0 to $\infty \in \mathbb{C}$; since the function can only be 0 outside of the simply connected region, then then a branch cut exists for the branch of the logarithm. The branch of the logarithm then allows us to define the square root (recall that a branch of the square root satisfies $z^{1/2} = e^{(1/2) \log z}$).

Theorem VII.4.2. The Riemann Mapping Theorem

Theorem VII.4.2. The Riemann Mapping Theorem.

Let G be a simply connected region which is not the whole plane \mathbb{C} and let $a \in G$. Then there is a unique analytic function $f : G \to \mathbb{C}$ having the properties:

(a) f(a) = 0 and f'(a) > 0;
(b) f is one to one; and
(c) f(G) = {z | |z| < 1}.

Proof. Let *G* be a simply connected region which is not the whole plane \mathbb{C} . Notice that every nonvanishing analytic function on a simply connected region has an analytic square root on the region. This is because we can define a branch of the logarithm and compose it with such a function throughout the region; the branch cut must run from where the function is 0 to $\infty \in \mathbb{C}$; since the function can only be 0 outside of the simply connected region, then then a branch cut exists for the branch of the logarithm. The branch of the logarithm then allows us to define the square root (recall that a branch of the square root satisfies $z^{1/2} = e^{(1/2) \log z}$).

Theorem VII.4.2. The Riemann Mapping Theorem (continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now follows from Lemma VII.4.3. We need only prove uniqueness. Suppose g is another such function. Then $g^{-1}: D \to G$ is analytic by Corollary IV.7.6. Therefore $f \circ g^{-1}: D \to D$ is analytic, one to one, and onto. Also, $f \circ g^{-1}(0) = f(g^{-1}(0) = f(a) = 0$. So by Theorem VI.2.5, $f \circ g^{-1}(z) = c\varphi_0 = c(z-0)/(1-\overline{0}z) = cz$ (on D) for some |c| = 1. Replacing z with g(z) in $f(g^{-1}(z)) = cz$ (since g(G) = D) gives $f(g^{-1}(g(z)) = cg(z)$ or f(z) = cg(z). Then 0 < f'(z) - cg'(a); since g'(a) > 0 and cg'(a) > 0 then c > 0 and so c = 1.

Theorem VII.4.2. The Riemann Mapping Theorem (continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now follows from Lemma VII.4.3. We need only prove uniqueness. Suppose gis another such function. Then $g^{-1}: D \to G$ is analytic by Corollary IV.7.6. Therefore $f \circ g^{-1}: D \to D$ is analytic, one to one, and onto. Also, $f \circ g^{-1}(0) = f(g^{-1}(0) = f(a) = 0$. So by Theorem VI.2.5, $f \circ g^{-1}(z) = c\varphi_0 = c(z-0)/(1-\overline{0}z) = cz$ (on D) for some |c| = 1. Replacing z with g(z) in $f(g^{-1}(z)) = cz$ (since g(G) = D) gives $f(g^{-1}(g(z)) = cg(z)$ or f(z) = cg(z). Then 0 < f'(z) - cg'(a); since g'(a) > 0 and cg'(a) > 0 then c > 0 and so c = 1. That is, f = g. Therefore, the function f is unique.

Theorem VII.4.2. The Riemann Mapping Theorem (continued)

Proof. The existence of a function f satisfying (a), (b), and (c) now follows from Lemma VII.4.3. We need only prove uniqueness. Suppose gis another such function. Then $g^{-1}: D \to G$ is analytic by Corollary IV.7.6. Therefore $f \circ g^{-1}: D \to D$ is analytic, one to one, and onto. Also, $f \circ g^{-1}(0) = f(g^{-1}(0) = f(a) = 0$. So by Theorem VI.2.5, $f \circ g^{-1}(z) = c\varphi_0 = c(z-0)/(1-\overline{0}z) = cz$ (on D) for some |c| = 1. Replacing z with g(z) in $f(g^{-1}(z)) = cz$ (since g(G) = D) gives $f(g^{-1}(g(z)) = cg(z)$ or f(z) = cg(z). Then 0 < f'(z) - cg'(a); since g'(a) > 0 and cg'(a) > 0 then c > 0 and so c = 1. That is, f = g. Therefore, the function f is unique.