Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions

VII.5. The Weierstrass Factorization Theorem—Proofs of Theorems

Table of contents

(1) Lemma VII.5.A
(2) Proposition VII.5.2
(3) Lemma VII.5.B
(4) Proposition VII.5.4
(5) Lemma VII.5.C
(6) Corollary VII.5.6
(7) Lemma VII.5.7
(8) Lemma VII.5.8
(9) Theorem VII.5.9
(10) Lemma VII.5.11
(11) Theorem VII.5.12
(12) Theorem VII.5.14. The Weierstrass Factorization Theorem
(13) Theorem VII.5.15
(14) Corollary VII.5.20

Lemma VII.5.A

Lemma VII.5.A. Let $\left\{z_{n}\right\}$ be a sequence of nonzero complex numbers. Suppose $\prod_{k=1}^{\infty} z_{k}$ exists. If $\prod_{k=1}^{\infty} a_{k} \neq 0$ then $\lim _{n \rightarrow \infty} z_{n}=1$.

Proof. Denote $p_{n}=\prod_{k=1}^{n} z_{k}$. Suppose $\prod_{k=1}^{n} z_{n}$ exists and is not zero. Then no p_{n} is 0 and $p_{n} / p_{n-1}=z_{n}$.

Lemma VII.5.A

Lemma VII.5.A. Let $\left\{z_{n}\right\}$ be a sequence of nonzero complex numbers. Suppose $\prod_{k=1}^{\infty} z_{k}$ exists. If $\prod_{k=1}^{\infty} a_{k} \neq 0$ then $\lim _{n \rightarrow \infty} z_{n}=1$.

Proof. Denote $p_{n}=\prod_{k=1}^{n} z_{k}$. Suppose $\prod_{k=1}^{n} z_{n}$ exists and is not zero. Then no p_{n} is 0 and $p_{n} / p_{n-1}=z_{n}$. Since $\lim _{n \rightarrow \infty} p_{n}=z$, then

or $1=z / z=\lim _{n \rightarrow \infty} z_{n}$.

Lemma VII.5.A

Lemma VII.5.A. Let $\left\{z_{n}\right\}$ be a sequence of nonzero complex numbers. Suppose $\prod_{k=1}^{\infty} z_{k}$ exists. If $\prod_{k=1}^{\infty} a_{k} \neq 0$ then $\lim _{n \rightarrow \infty} z_{n}=1$.

Proof. Denote $p_{n}=\prod_{k=1}^{n} z_{k}$. Suppose $\prod_{k=1}^{n} z_{n}$ exists and is not zero. Then no p_{n} is 0 and $p_{n} / p_{n-1}=z_{n}$. Since $\lim _{n \rightarrow \infty} p_{n}=z$, then

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{p_{n-1}}=\lim _{n \rightarrow \infty} z_{n} \text { implies } \frac{\lim _{n \rightarrow \infty} p_{n}}{\lim _{n \rightarrow \infty} p_{n-1}}=\lim _{n \rightarrow \infty} z_{n},
$$

or $1=z / z=\lim _{n \rightarrow \infty} z_{n}$.

Proposition VII.5.2

Proposition VII.5.2. Let $\operatorname{Re}(z)>0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_{n}$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_{n}$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_{n}$ converges (say to s) then $\prod_{k=1}^{\infty} z_{n}$ converges (to e^{s}). Now suppose $\prod_{n=1}^{\infty} z_{n}$ converges, say $\lim _{n \rightarrow \infty} p_{n}=z$ where $z=r e^{i \theta}$ for some $-\pi<\theta \leq \pi$. Define $\ell\left(p_{n}\right)=\log \left|p_{n}\right|+i \theta_{n}$ where $\theta-\pi<\theta_{n} \leq \theta+\pi$.

Proposition VII.5.2

Proposition VII.5.2. Let $\operatorname{Re}(z)>0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_{n}$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_{n}$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_{n}$ converges (say to s) then $\prod_{k=1}^{\infty} z_{n}$ converges (to e^{s}). Now suppose $\prod_{n=1}^{\infty} z_{n}$ converges, say $\lim _{n \rightarrow \infty} p_{n}=z$ where $z=r e^{i \theta}$ for some $-\pi<\theta \leq \pi$. Define $\ell\left(p_{n}\right)=\log \left|p_{n}\right|+i \theta_{n}$ where $\theta-\pi<\theta_{n} \leq \theta+\pi$. Since $\lim _{n \rightarrow \infty} p_{n}=z$ then $\lim _{n \rightarrow \infty}\left|p_{n}\right|=|z|=r$ and $\lim _{n \rightarrow \infty} \theta_{n}=\theta$; hence $\lim _{n \rightarrow \infty} \ell\left(p_{n}\right)=\lim _{n \rightarrow \infty}\left(\log \left|p_{n}\right|+i \theta_{n}\right)=\log |z|+i \theta($ notice $\theta_{n} \in(\theta-\pi, \theta+\pi]$ for all $\left.n \in \mathbb{N}\right)$. If $s_{n} \sum_{k=1}^{n} \log z_{k}$ then $\exp \left(s_{n}\right)=p_{n}$ and so $s_{n}=\ell\left(p_{n}\right)+2 \pi i k_{n}$ for some $k \in \mathbb{Z}$.

Proposition VII.5.2

Proposition VII.5.2. Let $\operatorname{Re}(z)>0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_{n}$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_{n}$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_{n}$ converges (say to s) then $\prod_{k=1}^{\infty} z_{n}$ converges (to e^{s}). Now suppose $\prod_{n=1}^{\infty} z_{n}$ converges, say $\lim _{n \rightarrow \infty} p_{n}=z$ where $z=r e^{i \theta}$ for some $-\pi<\theta \leq \pi$. Define $\ell\left(p_{n}\right)=\log \left|p_{n}\right|+i \theta_{n}$ where $\theta-\pi<\theta_{n} \leq \theta+\pi$. Since $\lim _{n \rightarrow \infty} p_{n}=z$ then $\lim _{n \rightarrow \infty}\left|p_{n}\right|=|z|=r$ and $\lim _{n \rightarrow \infty} \theta_{n}=\theta$; hence $\lim _{n \rightarrow \infty} \ell\left(p_{n}\right)=\lim _{n \rightarrow \infty}\left(\log \left|p_{n}\right|+i \theta_{n}\right)=\log |z|+i \theta$ (notice $\theta_{n} \in(\theta-\pi, \theta+\pi]$ for all $\left.n \in \mathbb{N}\right)$. If $s_{n} \sum_{k=1}^{n} \log z_{k}$ then $\exp \left(s_{n}\right)=p_{n}$ and so $s_{n}=\ell\left(p_{n}\right)+2 \pi i k_{n}$ for some $k \in \mathbb{Z}$. Since $p_{n} \rightarrow z$ then $s_{n}-s_{n-1}=\sum_{k=1}^{n} \log z_{k}-\sum_{k=1}^{n-1} \log z_{k}=\log z_{n}$ (where we use the principal branch of the logarithm here) and so $\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=\lim _{n \rightarrow \infty} z_{n}=\log \lim _{n \rightarrow \infty} z_{n}=\log 1=0$.

Proposition VII.5.2

Proposition VII.5.2. Let $\operatorname{Re}(z)>0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_{n}$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_{n}$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_{n}$ converges (say to s) then $\prod_{k=1}^{\infty} z_{n}$ converges (to e^{s}). Now suppose $\prod_{n=1}^{\infty} z_{n}$ converges, say $\lim _{n \rightarrow \infty} p_{n}=z$ where $z=r e^{i \theta}$ for some $-\pi<\theta \leq \pi$. Define $\ell\left(p_{n}\right)=\log \left|p_{n}\right|+i \theta_{n}$ where $\theta-\pi<\theta_{n} \leq \theta+\pi$. Since $\lim _{n \rightarrow \infty} p_{n}=z$ then $\lim _{n \rightarrow \infty}\left|p_{n}\right|=|z|=r$ and $\lim _{n \rightarrow \infty} \theta_{n}=\theta$; hence $\lim _{n \rightarrow \infty} \ell\left(p_{n}\right)=\lim _{n \rightarrow \infty}\left(\log \left|p_{n}\right|+i \theta_{n}\right)=\log |z|+i \theta$ (notice $\theta_{n} \in(\theta-\pi, \theta+\pi]$ for all $\left.n \in \mathbb{N}\right)$. If $s_{n} \sum_{k=1}^{n} \log z_{k}$ then $\exp \left(s_{n}\right)=p_{n}$ and so $s_{n}=\ell\left(p_{n}\right)+2 \pi i k_{n}$ for some $k \in \mathbb{Z}$. Since $p_{n} \rightarrow z$ then $s_{n}-s_{n-1}=\sum_{k=1}^{n} \log z_{k}-\sum_{k=1}^{n-1} \log z_{k}=\log z_{n}$ (where we use the principal branch of the logarithm here) and so $\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=\lim _{n \rightarrow \infty} z_{n}=\log \lim _{n \rightarrow \infty} z_{n}=\log 1=0$.

Proposition VII.5.2 (continued 1)

Proof (continued). Also

$$
\begin{aligned}
& \ell\left(p_{n}\right)-\ell\left(p_{n-1}\right)=\left(\log \left|p_{n}\right|+i \theta_{n}\right)-\left(\log \left|p_{n-1}\right|+i \theta_{n-1}\right) \\
& \quad=\log \left|\frac{p_{n}}{p_{n-1}}\right|+i\left(\theta_{n}-\theta_{n-1}\right)=\log \left|z_{n}\right|+i\left(\theta_{n}-\theta_{n-1}\right)
\end{aligned}
$$

and so

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\ell\left(p_{n}\right)-\ell\left(p_{n-1}\right)\right)=\lim _{n \rightarrow \infty}\left(\log \left|z_{n}\right|+i\left(\theta_{n}-\theta_{n-1}\right)\right) \log \left(\lim _{n \rightarrow \infty} z_{n}\right) \\
+i \lim _{n \rightarrow \infty}\left(\theta_{n}-\theta_{n-1}\right)=\log 1+i(\theta-\theta)=0 .
\end{gathered}
$$

Since $s_{n}=\ell\left(p_{n}\right)+2 \pi i k_{n}$ then $\ell\left(p_{n}\right)=s_{n}-2 \pi i k_{n}$, and so
$\ell\left(p_{n}\right)-\ell\left(p_{n-1}\right)=\left(s_{n}-2 \pi i k_{n}\right)-\left(s_{n-1}-2 \pi i k_{n-1}\right)=s_{n}-s_{n-1}-2 \pi i\left(k_{n}-k_{n-1}\right)$
and $\lim _{n \rightarrow \infty}\left(\left(s_{n}-s_{n-1}\right)-2 \pi i\left(k_{n}-k_{n-1}\right)\right)=0$, so $\lim _{n \rightarrow \infty}\left(k_{n}-k_{n-1}\right)=0$. But since $k_{n} \in \mathbb{Z}$ then there is some $n_{0} \in \mathbb{N}$ such that $k_{m}=k_{n}=k$ for some fixed $k \in \mathbb{Z}$ and for all $m, n \geq n_{0}$.

Proposition VII.5.2 (continued 1)

Proof (continued). Also

$$
\begin{aligned}
& \ell\left(p_{n}\right)-\ell\left(p_{n-1}\right)=\left(\log \left|p_{n}\right|+i \theta_{n}\right)-\left(\log \left|p_{n-1}\right|+i \theta_{n-1}\right) \\
& \quad=\log \left|\frac{p_{n}}{p_{n-1}}\right|+i\left(\theta_{n}-\theta_{n-1}\right)=\log \left|z_{n}\right|+i\left(\theta_{n}-\theta_{n-1}\right)
\end{aligned}
$$

and so

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\ell\left(p_{n}\right)-\ell\left(p_{n-1}\right)\right)=\lim _{n \rightarrow \infty}\left(\log \left|z_{n}\right|+i\left(\theta_{n}-\theta_{n-1}\right)\right) \log \left(\lim _{n \rightarrow \infty} z_{n}\right) \\
+i \lim _{n \rightarrow \infty}\left(\theta_{n}-\theta_{n-1}\right)=\log 1+i(\theta-\theta)=0 .
\end{gathered}
$$

Since $s_{n}=\ell\left(p_{n}\right)+2 \pi i k_{n}$ then $\ell\left(p_{n}\right)=s_{n}-2 \pi i k_{n}$, and so
$\ell\left(p_{n}\right)-\ell\left(p_{n-1}\right)=\left(s_{n}-2 \pi i k_{n}\right)-\left(s_{n-1}-2 \pi i k_{n-1}\right)=s_{n}-s_{n-1}-2 \pi i\left(k_{n}-k_{n-1}\right)$
and $\lim _{n \rightarrow \infty}\left(\left(s_{n}-s_{n-1}\right)-2 \pi i\left(k_{n}-k_{n-1}\right)\right)=0$, so $\lim _{n \rightarrow \infty}\left(k_{n}-k_{n-1}\right)=0$. But since $k_{n} \in \mathbb{Z}$ then there is some $n_{0} \in \mathbb{N}$ such that $k_{m}=k_{n}=k$ for some fixed $k \in \mathbb{Z}$ and for all $m, n \geq n_{0}$.

Proposition VII.5.2 (continued 2)

Proposition VII.5.2. Let $\operatorname{Re}(z)>0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_{n}$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_{n}$ converges.

Proof (continued). Therefore
$\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\ell\left(p_{n}\right)+2 \pi i k_{n}\right)=\lim _{n \rightarrow \infty} \ell\left(p_{n}\right)+2 \pi i \lim _{n \rightarrow \infty} k_{n}=\ell(z)+2 \pi i k$.
That is, $\sum_{k=1}^{\infty} \log z_{k}$ converges.

Lemma VII.5.B

Lemma VII.5.B. If $|z|<1 / 2$ then $\frac{1}{2}|z| \leq|\log (1+z)| \leq \frac{3}{2}|z|$.
Proof. The power series for $\log 1+z$ about $z=0$ is

$$
\log (1+z)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{n}}{n}=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots
$$

which has radius of convergence 1 .

Lemma VII.5.B

Lemma VII.5.B. If $|z|<1 / 2$ then $\frac{1}{2}|z| \leq|\log (1+z)| \leq \frac{3}{2}|z|$.
Proof. The power series for $\log 1+z$ about $z=0$ is

$$
\log (1+z)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{n}}{n}=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots
$$

which has radius of convergence 1 . So for $|z|<1$.

$$
\left|1-\frac{\log (1+z)}{z}\right|=\left|\frac{1}{2} z-\frac{1}{3} z^{2}+\frac{1}{4} z^{3}-\cdots\right|
$$

$$
\leq \frac{1}{2}|z|+\frac{1}{3}|z|^{2}+\frac{1}{4}|z|^{3}+\cdots \leq \frac{1}{2}\left(|z|+|z|^{2}+|z|^{3}+\cdots\right)=\frac{1}{2} \frac{|z|}{1-|z|}
$$

Lemma VII.5.B

Lemma VII.5.B. If $|z|<1 / 2$ then $\frac{1}{2}|z| \leq|\log (1+z)| \leq \frac{3}{2}|z|$.
Proof. The power series for $\log 1+z$ about $z=0$ is

$$
\log (1+z)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{n}}{n}=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots
$$

which has radius of convergence 1 . So for $|z|<1$.

$$
\begin{gathered}
\left|1-\frac{\log (1+z)}{z}\right|=\left|\frac{1}{2} z-\frac{1}{3} z^{2}+\frac{1}{4} z^{3}-\cdots\right| \\
\leq \frac{1}{2}|z|+\frac{1}{3}|z|^{2}+\frac{1}{4}|z|^{3}+\cdots \leq \frac{1}{2}\left(|z|+|z|^{2}+|z|^{3}+\cdots\right)=\frac{1}{2} \frac{|z|}{1-|z|} .
\end{gathered}
$$

For $|z|<1 / 2,\left|1-\frac{\log (1+z)}{z}\right| \leq \frac{1}{2}$ and $|z-\log (1+z)| \leq|z| / 2$. So by Exercise I.3.1, $|\log (1+z)|-|z| \leq|z| / 2$ and so $|\log (1+z)| \leq 3|z| / 2$. Similarly, $|z|-|\log (1+z)| \leq|z| / 2$ and so $|z| / 2 \leq|\log (1+z)|$.

Lemma VII.5.B

Lemma VII.5.B. If $|z|<1 / 2$ then $\frac{1}{2}|z| \leq|\log (1+z)| \leq \frac{3}{2}|z|$.
Proof. The power series for $\log 1+z$ about $z=0$ is

$$
\log (1+z)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{n}}{n}=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots
$$

which has radius of convergence 1 . So for $|z|<1$.

$$
\begin{gathered}
\left|1-\frac{\log (1+z)}{z}\right|=\left|\frac{1}{2} z-\frac{1}{3} z^{2}+\frac{1}{4} z^{3}-\cdots\right| \\
\leq \frac{1}{2}|z|+\frac{1}{3}|z|^{2}+\frac{1}{4}|z|^{3}+\cdots \leq \frac{1}{2}\left(|z|+|z|^{2}+|z|^{3}+\cdots\right)=\frac{1}{2} \frac{|z|}{1-|z|} .
\end{gathered}
$$

For $|z|<1 / 2,\left|1-\frac{\log (1+z)}{z}\right| \leq \frac{1}{2}$ and $|z-\log (1+z)| \leq|z| / 2$. So by
Exercise I.3.1, $|\log (1+z)|-|z| \leq|z| / 2$ and so $|\log (1+z)| \leq 3|z| / 2$.
Similarly, $|z|-|\log (1+z)| \leq|z| / 2$ and so $|z| / 2 \leq|\log (1+z)|$.

Proposition VII.5.4

Proposition VII.5.4. Let $\operatorname{Re}(z)>-1$. Then the series $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_{n}$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges. Then, by the "Test for Divergence," from Calculus $2,\left|z_{n}\right| \rightarrow 0$ and $z_{n} \rightarrow 0$. So there is $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $\left|z_{n}\right|<1 / 2$. So by Lemma VII.5.B, for all $n \geq n_{0}$, $\left|\log \left(1+z_{n}\right)\right| \leq 3\left|z_{n}\right| / 2$.

Proposition VII.5.4

Proposition VII.5.4. Let $\operatorname{Re}(z)>-1$. Then the series $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_{n}$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges. Then, by the "Test for Divergence," from Calculus $2,\left|z_{n}\right| \rightarrow 0$ and $z_{n} \rightarrow 0$. So there is $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $\left|z_{n}\right|<1 / 2$. So by Lemma VII.5.B, for all $n \geq n_{0}$, $\left|\log \left(1+z_{n}\right)\right| \leq 3\left|z_{n}\right| / 2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3\left|z_{n}\right| / 2$ converges then $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges. That is, $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely.

Proposition VII.5.4

Proposition VII.5.4. Let $\operatorname{Re}(z)>-1$. Then the series $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_{n}$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges. Then, by the "Test for Divergence," from Calculus $2,\left|z_{n}\right| \rightarrow 0$ and $z_{n} \rightarrow 0$. So there is $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $\left|z_{n}\right|<1 / 2$. So by Lemma VII.5.B, for all $n \geq n_{0}$, $\left|\log \left(1+z_{n}\right)\right| \leq 3\left|z_{n}\right| / 2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3\left|z_{n}\right| / 2$ converges then $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges. That is, $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges. Then by the Test for Divergence, $\lim _{n \rightarrow \infty}\left|\log \left(1+z_{n}\right)\right|=0$ and so $\lim _{n \rightarrow \infty} z_{n}=0$. so there is $n_{1} \in \mathbb{N}$ such that for all $n \geq n_{1}$ we have $\left|z_{n}\right|<1 / 2$. By Lemma VII.5.B, for all $n \geq b_{1}$, $\left|z_{n}\right| / 2 \leq\left|\log \left(1+z_{n}\right)\right|$

Proposition VII.5.4

Proposition VII.5.4. Let $\operatorname{Re}(z)>-1$. Then the series $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_{n}$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges. Then, by the "Test for Divergence," from Calculus $2,\left|z_{n}\right| \rightarrow 0$ and $z_{n} \rightarrow 0$. So there is $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $\left|z_{n}\right|<1 / 2$. So by Lemma VII.5.B, for all $n \geq n_{0}$, $\left|\log \left(1+z_{n}\right)\right| \leq 3\left|z_{n}\right| / 2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3\left|z_{n}\right| / 2$ converges then $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges. That is, $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges. Then by the Test for Divergence, $\lim _{n \rightarrow \infty}\left|\log \left(1+z_{n}\right)\right|=0$ and so $\lim _{n \rightarrow \infty} z_{n}=0$. so there is $n_{1} \in \mathbb{N}$ such that for all $n \geq n_{1}$ we have $\left|z_{n}\right|<1 / 2$. By Lemma VII.5.B, for all $n \geq b_{1}$, $\left|z_{n}\right| / 2 \leq\left|\log \left(1+z_{n}\right)\right|$. By the Direct Comparison Test, since

Proposition VII.5.4

Proposition VII.5.4. Let $\operatorname{Re}(z)>-1$. Then the series $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_{n}$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges. Then, by the "Test for Divergence," from Calculus $2,\left|z_{n}\right| \rightarrow 0$ and $z_{n} \rightarrow 0$. So there is $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $\left|z_{n}\right|<1 / 2$. So by Lemma VII.5.B, for all $n \geq n_{0}$, $\left|\log \left(1+z_{n}\right)\right| \leq 3\left|z_{n}\right| / 2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3\left|z_{n}\right| / 2$ converges then $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges. That is, $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges. Then by the Test for Divergence, $\lim _{n \rightarrow \infty}\left|\log \left(1+z_{n}\right)\right|=0$ and so $\lim _{n \rightarrow \infty} z_{n}=0$. so there is $n_{1} \in \mathbb{N}$ such that for all $n \geq n_{1}$ we have $\left|z_{n}\right|<1 / 2$. By Lemma VII.5.B, for all $n \geq b_{1}$, $\left|z_{n}\right| / 2 \leq\left|\log \left(1+z_{n}\right)\right|$. By the Direct Comparison Test, since $\sum_{n=1}^{\infty}\left|\log \left(1+z_{n}\right)\right|$ converges then $\sum_{n=1}^{\infty}\left|z_{n}\right| / 2$ converges. That is, $\sum_{n=1}^{\infty} z_{n}$ converges absolutely.

Lemma VII.5.C

Lemma VII.5.C. Let $\left\{z_{n}\right\}$ be a sequence of complex numbers with $\operatorname{Re}\left(z_{n}\right)>0$ for all $n \in \mathbb{N}$ and suppose $\prod_{n=1}^{\infty} z_{n}$ converges absolutely. Then
(a) $\prod_{n=1}^{\infty} z_{n}$ converges; and
(b) any rearrangement of $\left\{z_{n}\right\}$, say $\left\{z_{m}\right\}$ (where $m=f(n)$ for some given one to one and onto $f: \mathbb{N} \rightarrow \mathbb{N}$) converges absolutely.
Proof. (a) Since $\prod_{n=1}^{\infty} z_{n}$ converges absolutely, by definition, the series $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. By Proposition III.1.1, this means that $\sum_{n=1}^{\infty} \log z_{n}$ converges. So by Proposition VII.5.2, $\prod_{n=1}^{\infty} z_{n}$ converges.

Lemma VII.5.C

Lemma VII.5.C. Let $\left\{z_{n}\right\}$ be a sequence of complex numbers with $\operatorname{Re}\left(z_{n}\right)>0$ for all $n \in \mathbb{N}$ and suppose $\prod_{n=1}^{\infty} z_{n}$ converges absolutely. Then
(a) $\prod_{n=1}^{\infty} z_{n}$ converges; and
(b) any rearrangement of $\left\{z_{n}\right\}$, say $\left\{z_{m}\right\}$ (where $m=f(n)$ for some given one to one and onto $f: \mathbb{N} \rightarrow \mathbb{N}$) converges absolutely.
Proof. (a) Since $\prod_{n=1}^{\infty} z_{n}$ converges absolutely, by definition, the series $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. By Proposition III.1.1, this means that $\sum_{n=1}^{\infty=1} \log z_{n}$ converges. So by Proposition VII.5.2, $\prod_{n=1}^{\infty} z_{n}$ converges.
(b) Since $\prod_{n=1}^{\infty} z_{n}$ converges absolutely then, by definition, the series $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. That is, $\sum_{n=1}^{\infty}\left|\log z_{n}\right|$ converges. With $m=f(n)$ as described above (and $\left\{z_{m}\right\}$ a rearrangement of $\left\{z_{n}\right\}$), then by the Rearrangement Theorem from Calculus 2,
$\sum_{n=1}^{\infty}\left|\log z_{n}\right|=\sum_{m=1}^{\infty}\left|\log z_{m}\right|$ and so $\sum_{m=1}^{\infty} \log z_{m}$ converges absolutely. So, by definition, $\prod_{m=1}^{\infty} z_{m}$ converges absolutely.

Lemma VII.5.C

Lemma VII.5.C. Let $\left\{z_{n}\right\}$ be a sequence of complex numbers with $\operatorname{Re}\left(z_{n}\right)>0$ for all $n \in \mathbb{N}$ and suppose $\prod_{n=1}^{\infty} z_{n}$ converges absolutely. Then
(a) $\prod_{n=1}^{\infty} z_{n}$ converges; and
(b) any rearrangement of $\left\{z_{n}\right\}$, say $\left\{z_{m}\right\}$ (where $m=f(n)$ for some given one to one and onto $f: \mathbb{N} \rightarrow \mathbb{N}$) converges absolutely.
Proof. (a) Since $\prod_{n=1}^{\infty} z_{n}$ converges absolutely, by definition, the series $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. By Proposition III.1.1, this means that $\sum_{n=1}^{\infty} \log z_{n}$ converges. So by Proposition VII.5.2, $\prod_{n=1}^{\infty} z_{n}$ converges.
(b) Since $\prod_{n=1}^{\infty} z_{n}$ converges absolutely then, by definition, the series $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. That is, $\sum_{n=1}^{\infty}\left|\log z_{n}\right|$ converges. With $m=f(n)$ as described above (and $\left\{z_{m}\right\}$ a rearrangement of $\left\{z_{n}\right\}$), then by the Rearrangement Theorem from Calculus 2,
$\sum_{n=1}^{\infty}\left|\log z_{n}\right|=\sum_{m=1}^{\infty}\left|\log z_{m}\right|$ and so $\sum_{m=1}^{\infty} \log z_{m}$ converges absolutely. So, by definition, $\prod_{m=1}^{\infty} z_{m}$ converges absolutely.

Corollary VII.5.6

Corollary VII.5.6. If $\operatorname{Re}\left(z_{n}\right)>0$ then the product $\prod_{n=1}^{\infty} z_{n}$ converges absolutely if and only if the series $\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely.

Proof. Suppose $\prod_{n=1}^{\infty} z_{n}$ converges absolutely. Then, by definition, $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. Define $z_{m}=z_{n}-1$. Then $\operatorname{Re}\left(z_{m}\right)>-1$
and $\sum_{n=1}^{\infty} \log z_{n}=\sum_{m=1}^{\infty} \log \left(1+z_{m}\right)$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} z_{m}=\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely.

Corollary VII.5.6

Corollary VII.5.6. If $\operatorname{Re}\left(z_{n}\right)>0$ then the product $\prod_{n=1}^{\infty} z_{n}$ converges absolutely if and only if the series $\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely.

Proof. Suppose $\prod_{n=1}^{\infty} z_{n}$ converges absolutely. Then, by definition, $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. Define $z_{m}=z_{n}-1$. Then $\operatorname{Re}\left(z_{m}\right)>-1$ and $\sum_{n=1}^{\infty} \log z_{n}=\sum_{m=1}^{\infty} \log \left(1+z_{m}\right)$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} z_{m}=\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely. Define $z_{m}=z_{1}-1$. Then $\operatorname{Re}\left(z_{m}\right)>-1$ and $\sum_{n=1}^{\infty}\left(z_{n}-1\right)=\sum_{m=1}^{\infty} z_{m}$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} \log \left(1+z_{n}\right)=\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. So, by definition, $\prod_{n=1}^{\infty} z_{n}$ converges absolutely.

Corollary VII.5.6

Corollary VII.5.6. If $\operatorname{Re}\left(z_{n}\right)>0$ then the product $\prod_{n=1}^{\infty} z_{n}$ converges absolutely if and only if the series $\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely.

Proof. Suppose $\prod_{n=1}^{\infty} z_{n}$ converges absolutely. Then, by definition, $\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. Define $z_{m}=z_{n}-1$. Then $\operatorname{Re}\left(z_{m}\right)>-1$ and $\sum_{n=1}^{\infty} \log z_{n}=\sum_{m=1}^{\infty} \log \left(1+z_{m}\right)$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} z_{m}=\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty}\left(z_{n}-1\right)$ converges absolutely. Define $z_{m}=z_{1}-1$. Then $\operatorname{Re}\left(z_{m}\right)>-1$ and $\sum_{n=1}^{\infty}\left(z_{n}-1\right)=\sum_{m=1}^{\infty} z_{m}$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} \log \left(1+z_{n}\right)=\sum_{n=1}^{\infty} \log z_{n}$ converges absolutely. So, by definition, $\prod_{n=1}^{\infty} z_{n}$ converges absolutely.

Lemma VII.5.7

Lemma VII.5.7. Let X be a set and let f, f_{1}, f_{2}, \ldots be functions from X into \mathbb{C} such that $f_{n}(z) \rightarrow f(z)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re}(f(z)) \leq a$ for all $x \in X$, then $\exp \left(f_{n}(x)\right) \rightarrow \exp (f(x))$ uniformly for $x \in X$.

Proof. Let $\varepsilon>0$. Since e^{z} is continuous at $z=0$, there is $\delta>0$ such that for $|z|<\delta$ such that for $|z|<\delta$ we have $\left|e^{z}-1\right|<\varepsilon e^{-a}$. Choose $n_{0} \in \mathbb{N}$ such that $n \geq n_{0}$ implies $\left|f_{n}(x)-f(x)\right|<\delta$ for all $x \in X$. Then for $n \geq n_{0}$ we have for all $x \in X$ that
$\varepsilon e^{-a}>\left|e^{f_{n}(x)-f(x)}-1\right|=\left|\exp \left(f_{n}(x)\right) / \exp (f(x))-1\right|$.

Lemma VII.5.7

Lemma VII.5.7. Let X be a set and let f, f_{1}, f_{2}, \ldots be functions from X into \mathbb{C} such that $f_{n}(z) \rightarrow f(z)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re}(f(z)) \leq a$ for all $x \in X$, then $\exp \left(f_{n}(x)\right) \rightarrow \exp (f(x))$ uniformly for $x \in X$.

Proof. Let $\varepsilon>0$. Since e^{z} is continuous at $z=0$, there is $\delta>0$ such that for $|z|<\delta$ such that for $|z|<\delta$ we have $\left|e^{z}-1\right|<\varepsilon e^{-a}$. Choose $n_{0} \in \mathbb{N}$ such that $n \geq n_{0}$ implies $\left|f_{n}(x)-f(x)\right|<\delta$ for all $x \in X$. Then for $n \geq n_{0}$ we have for all $x \in X$ that
$\varepsilon e^{-a}>\left|e^{f_{n}(x)-f(x)}-1\right|=\left|\exp \left(f_{n}(x)\right) / \exp (f(x))-1\right|$.

Lemma VII.5.7 (continued)

Lemma VII.5.7. Let X be a set and let f, f_{1}, f_{2}, \ldots be functions from X into \mathbb{C} such that $f_{n}(z) \rightarrow f(z)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re}(f(z)) \leq a$ for all $x \in X$, then $\exp \left(f_{n}(x)\right) \rightarrow \exp (f(x))$ uniformly for $x \in X$.

Proof (continued). So for all $n \geq n_{0}$ for all $x \in X$,

$$
\begin{aligned}
\left|\exp \left(f_{n}(x)\right)-\exp (f(x))\right| & <\varepsilon e^{-a}|\exp f(x)| \\
& =\varepsilon e^{-a} \exp (\operatorname{Re}(f(x)) \\
& \quad \operatorname{since}|\exp (f(x))|=\exp (\operatorname{Re}(f(x)) \\
& =\varepsilon \exp (\operatorname{Re}(f(x))-a) \\
& \leq \varepsilon \operatorname{since} \operatorname{Re}(f(x))-a \leq 0
\end{aligned}
$$

That is, $\left\{\exp \left(f_{n}(x)\right)\right\}$ converges to $\exp (f(x))$ uniformly on X.

Lemma VII.5.8

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\left\{g_{n}\right\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_{n}(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x)=\prod_{n=1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely and uniformly for $x \in X$. Also, there is $n_{0} \in \mathbb{N}$ such that $f(z)=0$ if and only if $g_{n}(x)=-1$ for some n where $1 \leq n \leq n_{0}$.

Proof. The absolute and uniform convergence of $\sum_{n=1}^{\infty} g_{n}(x)$ on X implies that $\sum_{n=1}^{\infty}\left|g_{n}(x)\right|$ converges uniformly on X for each $\varepsilon>0$ there is $n_{1} \in \mathbb{N}$ such that $\sum_{n=n_{1}}^{\infty}\left|g_{n}(x)\right|<\varepsilon$ for all $x \in X$. In particular, there is $n_{0} \in \mathbb{N}$ such that $\left|g_{n}(x)\right|<1 / 2$ for all $x \in X$ and $n>n_{0}$.

Lemma VII.5.8

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\left\{g_{n}\right\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_{n}(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x)=\prod_{n=1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely and uniformly for $x \in X$. Also, there is $n_{0} \in \mathbb{N}$ such that $f(z)=0$ if and only if $g_{n}(x)=-1$ for some n where $1 \leq n \leq n_{0}$.

Proof. The absolute and uniform convergence of $\sum_{n=1}^{\infty} g_{n}(x)$ on X implies that $\sum_{n=1}^{\infty}\left|g_{n}(x)\right|$ converges uniformly on X for each $\varepsilon>0$ there is $n_{1} \in \mathbb{N}$ such that $\sum_{n=n_{1}}^{\infty}\left|g_{n}(x)\right|<\varepsilon$ for all $x \in X$. In particular, there is $n_{0} \in \mathbb{N}$ such that $\left|g_{n}(x)\right|<1 / 2$ for all $x \in X$ and $n>n_{0}$. So for $n>n_{0}$, $\operatorname{Re}\left(1+g_{n}(x)\right)=\operatorname{Re}(1)+\operatorname{Re}\left(g_{n}(x)\right)>1-1 / 2=1 / 2>0$, since $\left|\operatorname{Re}\left(g_{n}(x)\right)\right| \leq\left|g_{n}(x)\right|<1 / 2$ and so $-1 / 2<\operatorname{Re}\left(g_{n}(x)\right)<1 / 2$, for all $x \in X$. So by Lemma VII.5.B $\left|\log \left(1+g_{n}(x)\right)\right| \leq 3\left|g_{n}(x)\right| / 2$ for $n>n_{0}$ and for all $x \in X$.

Lemma VII.5.8

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\left\{g_{n}\right\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_{n}(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x)=\prod_{n=1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely and uniformly for $x \in X$. Also, there is $n_{0} \in \mathbb{N}$ such that $f(z)=0$ if and only if $g_{n}(x)=-1$ for some n where $1 \leq n \leq n_{0}$.

Proof. The absolute and uniform convergence of $\sum_{n=1}^{\infty} g_{n}(x)$ on X implies that $\sum_{n=1}^{\infty}\left|g_{n}(x)\right|$ converges uniformly on X for each $\varepsilon>0$ there is $n_{1} \in \mathbb{N}$ such that $\sum_{n=n_{1}}^{\infty}\left|g_{n}(x)\right|<\varepsilon$ for all $x \in X$. In particular, there is $n_{0} \in \mathbb{N}$ such that $\left|g_{n}(x)\right|<1 / 2$ for all $x \in X$ and $n>n_{0}$. So for $n>n_{0}$, $\operatorname{Re}\left(1+g_{n}(x)\right)=\operatorname{Re}(1)+\operatorname{Re}\left(g_{n}(x)\right)>1-1 / 2=1 / 2>0$, since $\left|\operatorname{Re}\left(g_{n}(x)\right)\right| \leq\left|g_{n}(x)\right|<1 / 2$ and so $-1 / 2<\operatorname{Re}\left(g_{n}(x)\right)<1 / 2$, for all $x \in X$. So by Lemma VII.5.B $\left|\log \left(1+g_{n}(x)\right)\right| \leq 3\left|g_{n}(x)\right| / 2$ for $n>n_{0}$ and for all $x \in X$.

Lemma VII.5.8 (continued 1)

Proof (continued). Since $\sum_{n=1}^{\infty} 3\left|g_{n}(x)\right| / 2$ converges uniformly for $x \in X$ then $h(x)=\sum_{n=n_{0}+1}^{\infty} \log \left(1+g_{n}(x)\right)$ converges uniformly and absolutely for $x \in X$ (by a pointwise application of the Direct Comparison Test). Since each g_{n} is continuous then h is continuous by Theorem II.6.1. Since X is compact by hypothesis, then $h(X)$ is compact in \mathbb{C} by Theorem II.5.8 and so h is bounded (since $h(X)$ is closed and bounded by the Heine-Borel Theorem). So there is some constant a such that
$\operatorname{Re}(h(x))<a$ for all $x \in X$. So, by Theorem VII.5.7,
$\exp h(x)=\prod_{n=n_{0}+1}^{\infty}\left(1+g_{n}(x)\right)$ converges uniformly for $x \in X$. Notice that since $\sum_{n=n_{0}+1}^{\infty} \log \left(1+g_{n}(x)\right)$ converges absolutely then, by definition, $\prod_{n=n_{0}+1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely.

Lemma VII.5.8 (continued 1)

Proof (continued). Since $\sum_{n=1}^{\infty} 3\left|g_{n}(x)\right| / 2$ converges uniformly for $x \in X$ then $h(x)=\sum_{n=n_{0}+1}^{\infty} \log \left(1+g_{n}(x)\right)$ converges uniformly and absolutely for $x \in X$ (by a pointwise application of the Direct Comparison Test). Since each g_{n} is continuous then h is continuous by Theorem II.6.1. Since X is compact by hypothesis, then $h(X)$ is compact in \mathbb{C} by Theorem II.5.8 and so h is bounded (since $h(X)$ is closed and bounded by the Heine-Borel Theorem). So there is some constant a such that $\operatorname{Re}(h(x))<a$ for all $x \in X$. So, by Theorem VII.5.7, $\exp h(x)=\prod_{n=n_{0}+1}^{\infty}\left(1+g_{n}(x)\right)$ converges uniformly for $x \in X$. Notice that since $\sum_{n=n_{0}+1}^{\infty} \log \left(1+g_{n}(x)\right)$ converges absolutely then, by definition, $\prod_{n=n_{0}+1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely. Therefore,

Lemma VII.5.8 (continued 1)

Proof (continued). Since $\sum_{n=1}^{\infty} 3\left|g_{n}(x)\right| / 2$ converges uniformly for $x \in X$ then $h(x)=\sum_{n=n_{0}+1}^{\infty} \log \left(1+g_{n}(x)\right)$ converges uniformly and absolutely for $x \in X$ (by a pointwise application of the Direct Comparison Test). Since each g_{n} is continuous then h is continuous by Theorem II.6.1. Since X is compact by hypothesis, then $h(X)$ is compact in \mathbb{C} by Theorem II.5.8 and so h is bounded (since $h(X)$ is closed and bounded by the Heine-Borel Theorem). So there is some constant a such that $\operatorname{Re}(h(x))<a$ for all $x \in X$. So, by Theorem VII.5.7, $\exp h(x)=\prod_{n=n_{0}+1}^{\infty}\left(1+g_{n}(x)\right)$ converges uniformly for $x \in X$. Notice that since $\sum_{n=n_{0}+1}^{\infty} \log \left(1+g_{n}(x)\right)$ converges absolutely then, by definition, $\prod_{n=n_{0}+1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely. Therefore,

$$
f(x)=\left(1+g_{1}(x)\right)\left(1+g_{2}(x)\right) \cdots\left(1+g_{n_{0}}(x)\right) \exp (h(x))=\prod_{n=1}^{\infty}\left(1+g_{n}(x)\right)
$$

converges uniformly and absolutely for x in X, as claimed.

Lemma VII.5.8 (continued 2)

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\left\{g_{n}\right\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_{n}(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x)=\prod_{n=1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely and uniformly for $x \in X$. Also, there is $n_{0} \in \mathbb{N}$ such that $f(z)=0$ if and only if $g_{n}(x)=-1$ for some n where $1 \leq n \leq n_{0}$.

Proof (continued). Finally, since $\exp (h(x)) \neq 0$, then $f(x)=0$ if and only if $1+g_{n}(x)=0$ for some $1 \leq n \leq n_{0}$; that is, if and only if $g_{n}(x)=-1$ for some $1 \leq n \leq n_{0}$.

Theorem VII.5.9

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\left\{f_{n}\right\}$ be a sequence in $H(G)$ (i.e., a sequence of analytic functions) such that no f_{n} is identically zero. If $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_{n}(z)$ converges in $H(G)$ to an analytic function $f(z)$. If a is a zero of f then a is a zero of only a finite number of the functions f_{n}, and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_{n} at a.

Proof. Since $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges uniformly and absolutely on compact subsets of G (by hypothesis), then by Lemma VII.5.8, $f(z)=\prod_{n=1}^{\infty} f_{n}(z)$ converges uniformly and absolutely on compact subsets of G. Recall that uniform convergence on compact subsets of G implies convergence with respect to metric ρ on space $H(G)$ (see Proposition VII.1.10(b)). So the infinite product $\prod_{n=1}^{\infty} f_{n}(z)$ converges in $H(G)$.

Theorem VII.5.9

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\left\{f_{n}\right\}$ be a sequence in $H(G)$ (i.e., a sequence of analytic functions) such that no f_{n} is identically zero. If $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_{n}(z)$ converges in $H(G)$ to an analytic function $f(z)$. If a is a zero of f then a is a zero of only a finite number of the functions f_{n}, and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_{n} at a.

Proof. Since $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges uniformly and absolutely on compact subsets of G (by hypothesis), then by Lemma VII.5.8, $f(z)=\prod_{n=1}^{\infty} f_{n}(z)$ converges uniformly and absolutely on compact subsets of G. Recall that uniform convergence on compact subsets of G implies convergence with respect to metric ρ on space $H(G)$ (see Proposition VII.1.10(b)). So the infinite product $\prod_{n=1}^{\infty} f_{n}(z)$ converges in $H(G)$.

Theorem VII. 5.9 (continued)

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\left\{f_{n}\right\}$ be a sequence in $H(G)$ (i.e., a sequence of analytic functions) such that no f_{n} is identically zero. If $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_{n}(z)$ converges in $H(G)$ to an analytic function $f(z)$. If a is a zero of f then a is a zero of only a finite number of the functions f_{n}, and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_{n} at a.

Proof (continued). Let $a \in G$ be a zero of f. Choose $r>0$ such that $\bar{B}(a ; r) \subset G$. Since $\bar{B}(a ; R) \subset G$ is compact, then $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges uniformly on $\bar{B}(a ; r)$ by hypothesis. By Lemma VII.5.8 (see the proof) there is $n_{0} \in \mathbb{N}$ such that $f(z)=f_{1}(z) f_{2}(z) \cdots f_{n}(z) g(z)$ where $g(z) \neq 0$ in $\bar{B}(a ; r)$. So a is a zero of only n finite number of the functions f_{n} and the multiplicity of zero a of f is the sum of the multiplicities of a as a zero of the function f_{n}, as claimed.

Theorem VII. 5.9 (continued)

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\left\{f_{n}\right\}$ be a sequence in $H(G)$ (i.e., a sequence of analytic functions) such that no f_{n} is identically zero. If $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_{n}(z)$ converges in $H(G)$ to an analytic function $f(z)$. If a is a zero of f then a is a zero of only a finite number of the functions f_{n}, and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_{n} at a.

Proof (continued). Let $a \in G$ be a zero of f. Choose $r>0$ such that $\bar{B}(a ; r) \subset G$. Since $\bar{B}(a ; R) \subset G$ is compact, then $\sum_{n=1}^{\infty}\left(f_{n}(z)-1\right)$ converges uniformly on $\bar{B}(a ; r)$ by hypothesis. By Lemma VII.5.8 (see the proof) there is $n_{0} \in \mathbb{N}$ such that $f(z)=f_{1}(z) f_{2}(z) \cdots f_{n}(z) g(z)$ where $g(z) \neq 0$ in $\bar{B}(a ; r)$. So a is a zero of only n finite number of the functions f_{n} and the multiplicity of zero a of f is the sum of the multiplicities of a as a zero of the function f_{n}, as claimed.

Lemma VII.5.11

Lemma VII.5.11. If $|z| \leq 1$ and $p \geq 0$ then $\left|1-E_{p}(z)\right| \leq|z|^{p+1}$.

Proof. For $p=0,\left|1-E_{0}(z)\right|=|1-(1-z)|=|z| \leq|z|^{p+1}$. For $p \geq 1$ fixed, $E_{p}(z)$ is analytic (entire, in fact) so $E_{p}(z)=1+\sum_{k=1}^{\infty} a_{k} z^{k}$ for some coefficients $a_{k}\left(E_{p}(0)=1\right.$, so $\left.a_{0}=1\right)$.

Lemma VII.5.11

Lemma VII.5.11. If $|z| \leq 1$ and $p \geq 0$ then $\left|1-E_{p}(z)\right| \leq|z|^{p+1}$.
Proof. For $p=0,\left|1-E_{0}(z)\right|=|1-(1-z)|=|z| \leq|z|^{p+1}$. For $p \geq 1$ fixed, $E_{p}(z)$ is analytic (entire, in fact) so $E_{p}(z)=1+\sum_{k=1}^{\infty} a_{k} z^{k}$ for some coefficients $a_{k}\left(E_{p}(0)=1\right.$, so $\left.a_{0}=1\right)$. Then from the definition of $E_{p}(z)$,

$$
E_{p}^{\prime}(z)=(-1) \exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right)
$$

Lemma VII.5.11

Lemma VII.5.11. If $|z| \leq 1$ and $p \geq 0$ then $\left|1-E_{p}(z)\right| \leq|z|^{p+1}$.
Proof. For $p=0,\left|1-E_{0}(z)\right|=|1-(1-z)|=|z| \leq|z|^{p+1}$. For $p \geq 1$ fixed, $E_{p}(z)$ is analytic (entire, in fact) so $E_{p}(z)=1+\sum_{k=1}^{\infty} a_{k} z^{k}$ for some coefficients $a_{k}\left(E_{p}(0)=1\right.$, so $\left.a_{0}=1\right)$. Then from the definition of $E_{p}(z)$,

$$
\begin{gather*}
E_{p}^{\prime}(z)=(-1) \exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right) \\
+(1-z) \exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right)\left(1+z+z^{2}+\cdots+z^{p-1}\right) \\
=\left(-1+\left(1-z^{p}\right)\right) \exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right) \\
=-z^{p} \exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right) \quad(*) \tag{*}
\end{gather*}
$$

Lemma VII.5.11 (continued 1)

Proof (continued). and from the power series representation

$$
\begin{equation*}
E_{p}^{\prime}(z)=\sum_{k=1}^{\infty} k a_{k} z^{k-1} \tag{*}
\end{equation*}
$$

We see from $(*)$ and $(* *)$ that $a_{1}=a_{2}=\cdots=a_{p}=0$. Now in the series expansion of $\exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right)$ about $z=0$, all coefficients are positive (since they are products and sums of exponential functions, which are 1 when evaluated at $z=0$, and polynomials and their derivatives which are 0 when evaluated at $z=0$), say

Lemma VII.5.11 (continued 1)

Proof (continued). and from the power series representation

$$
\begin{equation*}
E_{p}^{\prime}(z)=\sum_{k=1}^{\infty} k a_{k} z^{k-1} \tag{*}
\end{equation*}
$$

We see from $(*)$ and $(* *)$ that $a_{1}=a_{2}=\cdots=a_{p}=0$. Now in the series expansion of $\exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right)$ about $z=0$, all coefficients are positive (since they are products and sums of exponential functions, which are 1 when evaluated at $z=0$, and polynomials and their derivatives which are 0 when evaluated at $z=0$), say

$$
\exp \left(z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots+\frac{z^{p}}{p}\right)=1+\sum_{k=1}^{\infty} b_{k} z^{k} \text { where } b_{k}>0
$$

Lemma VII.5.11 (continued 2)

Proof (continued). So from (*),

$$
\begin{aligned}
E_{p}^{\prime}(z) & =-2^{p}\left(1+\sum_{k=1}^{\infty} b_{k} z^{k}\right)=-2^{p}-\sum_{k=1}^{\infty} b_{k} z^{k+p} \\
& =\sum_{k=1}^{\infty} k a_{k} z^{k-1} \text { by }(* *)
\end{aligned}
$$

and so $k a_{k}<0$ for $k=p+1, p+2, \ldots$ Thus $\left|a_{k}\right|=-a_{k}$ for $k \geq p+1$. So for $z=1,0=E_{p}(1)=1+\sum_{k=p+1}^{\infty} a_{k}$ since $a_{1}=a_{2}=\cdots=a=0$, or $\sum_{k=p+1}^{\infty}\left|a_{k}\right|=-\sum_{k=p+1}^{\infty} a_{k}=1$. so for $|a| \leq 1$,

$$
\begin{aligned}
\left|1-E_{p}(z)\right| & =\left|E_{p}(z)-1\right|=\left|\left(\sum_{k=p+1}^{\infty} a_{k} z^{k}\right)-1\right| \\
& =\left|\sum_{k=p+1}^{\infty} a_{k} z^{k}\right|=|z| p+1\left|\sum_{k=p+1}^{\infty} a_{k} z^{k-p-1}\right|
\end{aligned}
$$

Lemma VII.5.11 (continued 2)

Proof (continued). So from (*),

$$
\begin{aligned}
E_{p}^{\prime}(z) & =-2^{p}\left(1+\sum_{k=1}^{\infty} b_{k} z^{k}\right)=-2^{p}-\sum_{k=1}^{\infty} b_{k} z^{k+p} \\
& =\sum_{k=1}^{\infty} k a_{k} z^{k-1} \text { by }(* *)
\end{aligned}
$$

and so $k a_{k}<0$ for $k=p+1, p+2, \ldots$ Thus $\left|a_{k}\right|=-a_{k}$ for $k \geq p+1$. So for $z=1,0=E_{p}(1)=1+\sum_{k=p+1}^{\infty} a_{k}$ since $a_{1}=a_{2}=\cdots=a=0$, or $\sum_{k=p+1}^{\infty}\left|a_{k}\right|=-\sum_{k=p+1}^{\infty} a_{k}=1$. so for $|a| \leq 1$,

$$
\begin{aligned}
\left|1-E_{p}(z)\right| & =\left|E_{p}(z)-1\right|=\left|\left(1+\sum_{k=p+1}^{\infty} a_{k} z^{k}\right)-1\right| \\
& =\left|\sum_{k=p+1}^{\infty} a_{k} z^{k}\right|=|z|^{p+1}\left|\sum_{k=p+1}^{\infty} a_{k} z^{k-p-1}\right| \ldots
\end{aligned}
$$

Lemma VII.5.11 (continued 3)

Lemma VII.5.11. If $|z| \leq 1$ and $p \geq 0$ then $\left|1-E_{p}(z)\right| \leq|z|^{p+1}$.

Proof (continued).

$$
\begin{aligned}
&\left|1-E_{p}(z)\right| \leq|z|^{p+1} \sum_{k=p+1}^{\infty}\left|a_{k}\right||z|^{k-p-1} \text { by the Triangle Inequality } \\
& \text { and limits } \\
& \leq|z|^{p+1} \sum_{k=p+1}^{\infty}\left|a_{k}\right| \text { since }|z| \leq 1 \\
&=|z|^{p+1} \text { since } \sum_{k=p+1}^{\infty}\left|a_{k}\right|=1
\end{aligned}
$$

and this is the claim.

Theorem VII.5.12

Theorem VII.5.12. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{C} such that $\lim _{n \rightarrow \infty}\left|z_{n}\right|=\infty$ and $a_{z} \neq 0$ for all $n \geq 1$. Suppose that no complex number is repeated in the sequence an infinite number of times. If $\left\{p_{n}\right\}$ is any sequence of nonnegative integers such that

$$
\sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}<\infty
$$

for all $r>0$, then $f(z)=\prod_{n=1}^{\infty} E_{p_{n}}(z / a)$ converges in $H(\mathbb{C})$ (and so is analytic on \mathbb{C}). The function f is an entire function with zeros only at the points a_{n} If z_{0} occurs in the sequence $\left\{a_{n}\right\}$ exactly n times then f has a zero at $z=z_{0}$ of multiplicity m. Furthermore, if $p_{n}=n-1$ then (5.13) will be satisfied.

Proof. Suppose integers $\left\{p_{n}\right\}$ exist such that (5.13) is satisfied.

Theorem VII.5.12

Theorem VII.5.12. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{C} such that $\lim _{n \rightarrow \infty}\left|z_{n}\right|=\infty$ and $a_{z} \neq 0$ for all $n \geq 1$. Suppose that no complex number is repeated in the sequence an infinite number of times. If $\left\{p_{n}\right\}$ is any sequence of nonnegative integers such that

$$
\sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}<\infty
$$

for all $r>0$, then $f(z)=\prod_{n=1}^{\infty} E_{p_{n}}(z / a)$ converges in $H(\mathbb{C})$ (and so is analytic on \mathbb{C}). The function f is an entire function with zeros only at the points a_{n} If z_{0} occurs in the sequence $\left\{a_{n}\right\}$ exactly n times then f has a zero at $z=z_{0}$ of multiplicity m. Furthermore, if $p_{n}=n-1$ then (5.13) will be satisfied.

Proof. Suppose integers $\left\{p_{n}\right\}$ exist such that (5.13) is satisfied.

Theorem VII.5.12 (continued 1)

Proof (continued). Then

$$
\begin{aligned}
\left|1-E_{p_{n}}\left(\frac{z}{a}\right)\right| & \leq\left|\frac{z}{a}\right|^{p_{n}+1} \text { by Lemma VII.5.11 } \\
& \leq\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}
\end{aligned}
$$

for $|z| \leq r$ and for $r \leq\left|a_{n}\right|$ (so that $\left|z / a_{n}\right| \leq r /\left|a_{n}\right| \leq 1$). For a fixed $r>0$ there is $N \in \mathbb{N}$ such that $\left|a_{n}\right|>r$ for all $n \geq N$ since $\left|a_{n}\right| \rightarrow \infty$. So for given $r>0$ we have

$$
\sum_{n=1}^{\infty}\left|1-E_{p_{n}}\left(\frac{z}{a_{n}}\right)\right| \leq \sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1} \text { for } z \in \bar{B}(0 ; r) \text {. }
$$

Theorem VII.5.12 (continued 1)

Proof (continued). Then

$$
\begin{aligned}
\left|1-E_{p_{n}}\left(\frac{z}{a}\right)\right| & \leq\left|\frac{z}{a}\right|^{p_{n}+1} \text { by Lemma VII.5.11 } \\
& \leq\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}
\end{aligned}
$$

for $|z| \leq r$ and for $r \leq\left|a_{n}\right|$ (so that $\left|z / a_{n}\right| \leq r /\left|a_{n}\right| \leq 1$). For a fixed $r>0$ there is $N \in \mathbb{N}$ such that $\left|a_{n}\right|>r$ for all $n \geq N$ since $\left|a_{n}\right| \rightarrow \infty$. So for given $r>0$ we have

$$
\sum_{n=1}^{\infty}\left|1-E_{p_{n}}\left(\frac{z}{a_{n}}\right)\right| \leq \sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1} \text { for } z \in \bar{B}(0 ; r)
$$

By (5.13), the right hand side is finite and so $\sum_{n=1}^{\infty}\left(1-E_{p_{n}}\left(\frac{z}{a_{n}}\right)\right)$
converges absolutely on $\bar{B}(0 ; r)$. So $\prod_{n=1}^{\infty} E_{p_{n}}\left(z / a_{n}\right)$ converges in $H(G)$. Why does it converge uniformly?

Theorem VII.5.12 (continued 1)

Proof (continued). Then

$$
\begin{aligned}
\left|1-E_{p_{n}}\left(\frac{z}{a}\right)\right| & \leq\left|\frac{z}{a}\right|^{p_{n}+1} \text { by Lemma VII.5.11 } \\
& \leq\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}
\end{aligned}
$$

for $|z| \leq r$ and for $r \leq\left|a_{n}\right|$ (so that $\left|z / a_{n}\right| \leq r /\left|a_{n}\right| \leq 1$). For a fixed $r>0$ there is $N \in \mathbb{N}$ such that $\left|a_{n}\right|>r$ for all $n \geq N$ since $\left|a_{n}\right| \rightarrow \infty$. So for given $r>0$ we have

$$
\sum_{n=1}^{\infty}\left|1-E_{p_{n}}\left(\frac{z}{a_{n}}\right)\right| \leq \sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1} \text { for } z \in \bar{B}(0 ; r)
$$

By (5.13), the right hand side is finite and so $\sum_{n=1}^{\infty}\left(1-E_{p_{n}}\left(\frac{z}{a_{n}}\right)\right)$ converges absolutely on $\bar{B}(0 ; r)$. So $\prod_{n=1}^{\infty} E_{p_{n}}\left(z / a_{n}\right)$ converges in $H(G)$. Why does it converge uniformly?

Theorem VII.5.12 (continued 2)

Proof (continued). To show that $\left\{p_{n}\right\}$ can be found so that (5.13) holds for all r is easy; since $\left|a_{n}\right| \rightarrow \infty$ then "eventually" $\left|z_{n}\right|>r$ (for a given r) and we can take $p_{n}=n-1$ so that $\sum_{n=1}^{\infty}\left(r /\left|a_{n}\right|\right)^{p_{n}+1}$ can eventually be compared to a geometric series with ration less than 1 . In particular, there is $N \in \mathbb{N}$ such that for all $n \geq N,\left|a_{n}\right|>2 r$ and $r /\left|a_{n}\right|<1 / 2$. then

Theorem VII.5.12 (continued 2)

Proof (continued). To show that $\left\{p_{n}\right\}$ can be found so that (5.13) holds for all r is easy; since $\left|a_{n}\right| \rightarrow \infty$ then "eventually" $\left|z_{n}\right|>r$ (for a given r) and we can take $p_{n}=n-1$ so that $\sum_{n=1}^{\infty}\left(r /\left|a_{n}\right|\right)^{p_{n}+1}$ can eventually be compared to a geometric series with ration less than 1. In particular, there is $N \in \mathbb{N}$ such that for all $n \geq N,\left|a_{n}\right|>2 r$ and $r /\left|a_{n}\right|<1 / 2$. then

$$
\sum_{n=1}^{\infty}\left(r /\left|a_{n}\right|\right)^{p_{n}+1}=\sum_{n=1}^{\infty}\left(r /\left|a_{n}\right|\right)^{n}<\sum_{n=1}^{N}\left(r /\left|a_{n}\right|\right)^{n}+\sum_{n=N+1}^{\infty}(1 / 2)^{n}<\infty
$$

Theorem VII.5.14

Theorem VII.5.14. The Weierstrass Factorization Theorem. Let f be an entire function and let $\left\{a_{n}\right\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at $z=0$ of order $m \geq 0$ (a zero of order $m=0$ at 0 means $f(0) \neq 0$). Then there is an entire function g and a sequence of integers $\left\{p_{n}\right\}$ such that

$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

Proof. Since f is entire, by Theorem VII.5.12, there are nonnegative integers $\left\{p_{n}\right\}$ such that

$$
h(z)=z^{m} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

has the same zeros as f with the same multiplicities. So $f(z) / h(z)$ has a removable singularities at $a=0, a_{1}, a_{2}$,

Theorem VII.5.14

Theorem VII.5.14. The Weierstrass Factorization Theorem.

 Let f be an entire function and let $\left\{a_{n}\right\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at $z=0$ of order $m \geq 0$ (a zero of order $m=0$ at 0 means $f(0) \neq 0$). Then there is an entire function g and a sequence of integers $\left\{p_{n}\right\}$ such that$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

Proof. Since f is entire, by Theorem VII.5.12, there are nonnegative integers $\left\{p_{n}\right\}$ such that

$$
h(z)=z^{m} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

has the same zeros as f with the same multiplicities. So $f(z) / h(z)$ has a removable singularities at $a=0, a_{1}, a_{2}, \ldots$.

Theorem VII.5.14 (continued)

Theorem VII.5.14. The Weierstrass Factorization Theorem.

 Let f be an entire function and let $\left\{a_{n}\right\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at $z=0$ of order $m \geq 0$ (a zero of order $m=0$ at 0 means $f(0) \neq 0$). Then there is an entire function g and a sequence of integers $\left\{p_{n}\right\}$ such that$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

Proof (continued). Thus, f / h (reduced and the removable singularities removed) is nonzero then there is a branch of the logarithm defined on $(f / h)(\mathbb{C})$. So there is entire g such that $g(z)=\log (f(z) / h(z))$ or $f(z) / h(z)=e^{g(z)}$. Then

$$
f(z)=h(z) e^{g(z)}=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

Theorem VII.5.14 (continued)

Theorem VII.5.14. The Weierstrass Factorization Theorem.

 Let f be an entire function and let $\left\{a_{n}\right\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at $z=0$ of order $m \geq 0$ (a zero of order $m=0$ at 0 means $f(0) \neq 0$). Then there is an entire function g and a sequence of integers $\left\{p_{n}\right\}$ such that$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

Proof (continued). Thus, f / h (reduced and the removable singularities removed) is nonzero then there is a branch of the logarithm defined on $(f / h)(\mathbb{C})$. So there is entire g such that $g(z)=\log (f(z) / h(z))$ or $f(z) / h(z)=e^{g(z)}$. Then

$$
f(z)=h(z) e^{g(z)}=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

Theorem VII.5.15

Theorem VII.5.15. Let G be a region and let $\left\{a_{j}\right\}$ be a sequence of distinct points in G with no limit points in G. Let $\left\{m_{j}\right\}$ be a sequence of nonnegative integers. Then there is an analytic function f defined on G whose only zeros are at the points a_{j}. Furthermore, a_{j} is a zero of f of multiplicity m_{j}.

Proof. (I) In Part I of the proof, we show that if the claim can be established for the special case where there is $R>0$ such that

$$
\begin{equation*}
\left\{z||z|>R\} \subset G \text { and }\left|a_{j}\right| \leq R \text { for all } j \geq 1,\right. \tag{5.16}
\end{equation*}
$$

then the claim will hold.

Theorem VII.5.15

Theorem VII.5.15. Let G be a region and let $\left\{a_{j}\right\}$ be a sequence of distinct points in G with no limit points in G. Let $\left\{m_{j}\right\}$ be a sequence of nonnegative integers. Then there is an analytic function f defined on G whose only zeros are at the points a_{j}. Furthermore, a_{j} is a zero of f of multiplicity m_{j}.

Proof. (I) In Part I of the proof, we show that if the claim can be established for the special case where there is $R>0$ such that

$$
\begin{equation*}
\left\{z||z|>R\} \subset G \text { and }\left|a_{j}\right| \leq R \text { for all } j \geq 1\right. \tag{5.16}
\end{equation*}
$$

then the claim will hold. So hypothesize that f satisfying (5.16) exists with the added property that

$$
\lim _{z \rightarrow \infty} f(z)=1
$$

and let G_{1} be an arbitrary open set in \mathbb{C} with $\left\{\alpha_{j}\right\}$ a sequence of distinct points in G_{1} with no limit point and let $\left\{m_{j}\right\}$ be a sequence of integers.

Theorem VII.5.15

Theorem VII.5.15. Let G be a region and let $\left\{a_{j}\right\}$ be a sequence of distinct points in G with no limit points in G. Let $\left\{m_{j}\right\}$ be a sequence of nonnegative integers. Then there is an analytic function f defined on G whose only zeros are at the points a_{j}. Furthermore, a_{j} is a zero of f of multiplicity m_{j}.

Proof. (I) In Part I of the proof, we show that if the claim can be established for the special case where there is $R>0$ such that

$$
\begin{equation*}
\left\{z||z|>R\} \subset G \text { and }\left|a_{j}\right| \leq R \text { for all } j \geq 1\right. \tag{5.16}
\end{equation*}
$$

then the claim will hold. So hypothesize that f satisfying (5.16) exists with the added property that

$$
\begin{equation*}
\lim _{z \rightarrow \infty} f(z)=1 \tag{5.17}
\end{equation*}
$$

and let G_{1} be an arbitrary open set in \mathbb{C} with $\left\{\alpha_{j}\right\}$ a sequence of distinct points in G_{1} with no limit point and let $\left\{m_{j}\right\}$ be a sequence of integers.

Theorem VII.5.15 (continued 1)

Proof (continued). If $\bar{B}(a ; r)$ is a disk in G, such that $\alpha_{j} \notin B(a ; r)$ for all $j>1$, consider the Möbius transformation $T(z)=(z-a)^{-1}$. Set $G=T\left(G_{1}\right) \backslash\{\infty\} \subset \mathbb{C}$. Then G satisfies (5.16) where $a_{j}=T\left(\alpha_{j}\right)=\left(\alpha_{j}-a\right)^{-1}$ since $\alpha_{j} \notin B(a ; r)$ implies $a_{j}=T\left(\alpha_{j}\right) \in \bar{B}\left(a^{\prime} ; R^{\prime}\right)$ for some $a^{\prime} \in \mathbb{C},{ }^{\prime} \in \mathbb{R}$, since T maps circles to circles (by Theorem III.3.14) and also $\mathbb{C} \backslash \bar{B}\left(a^{\prime} ; R^{\prime}\right) \subset G$. If there is $f \in H(G)$ with a zero at each a_{j} of multiplicity m_{j} with no other zeros and such that f satisfies (5.17), then $g(z)=f(T(z))$ is analytic in $G_{1} \backslash\{a\}$. Now

```
\(\lim _{z \rightarrow a} g(z)=\lim _{z \rightarrow a} f(T(z))\)
\(=\lim _{z \rightarrow \infty} f(z)\) since \(T(a)=\infty\)
\(=1\) by (5.17),
```

so g has a removable singularity at $z=a$.

Theorem VII.5.15 (continued 1)

Proof (continued). If $\bar{B}(a ; r)$ is a disk in G, such that $\alpha_{j} \notin B(a ; r)$ for all $j>1$, consider the Möbius transformation $T(z)=(z-a)^{-1}$. Set $G=T\left(G_{1}\right) \backslash\{\infty\} \subset \mathbb{C}$. Then G satisfies (5.16) where $a_{j}=T\left(\alpha_{j}\right)=\left(\alpha_{j}-a\right)^{-1}$ since $\alpha_{j} \notin B(a ; r)$ implies $a_{j}=T\left(\alpha_{j}\right) \in \bar{B}\left(a^{\prime} ; R^{\prime}\right)$ for some $a^{\prime} \in \mathbb{C},{ }^{\prime} \in \mathbb{R}$, since T maps circles to circles (by Theorem III.3.14) and also $\mathbb{C} \backslash \bar{B}\left(a^{\prime} ; R^{\prime}\right) \subset G$. If there is $f \in H(G)$ with a zero at each a_{j} of multiplicity m_{j} with no other zeros and such that f satisfies (5.17), then $g(z)=f(T(z))$ is analytic in $G_{1} \backslash\{a\}$. Now

$$
\begin{aligned}
\lim _{z \rightarrow a} g(z) & =\lim _{z \rightarrow a} f(T(z)) \\
& =\lim _{z \rightarrow \infty} f(z) \text { since } T(a)=\infty \\
& =1 \text { by }(5.17),
\end{aligned}
$$

so g has a removable singularity at $z=a$. Furthermore, g has a zero at α_{j} of multiplicity m_{j} (since f has a zero at $a_{j}=T\left(\alpha_{j}\right)$ of multiplicity m_{j}). So g (with the removable discontinuity removed) is the desired function analytic on open set G_{1}.

Theorem VII.5.15 (continued 1)

Proof (continued). If $\bar{B}(a ; r)$ is a disk in G, such that $\alpha_{j} \notin B(a ; r)$ for all $j>1$, consider the Möbius transformation $T(z)=(z-a)^{-1}$. Set $G=T\left(G_{1}\right) \backslash\{\infty\} \subset \mathbb{C}$. Then G satisfies (5.16) where $a_{j}=T\left(\alpha_{j}\right)=\left(\alpha_{j}-a\right)^{-1}$ since $\alpha_{j} \notin B(a ; r)$ implies $a_{j}=T\left(\alpha_{j}\right) \in \bar{B}\left(a^{\prime} ; R^{\prime}\right)$ for some $a^{\prime} \in \mathbb{C},{ }^{\prime} \in \mathbb{R}$, since T maps circles to circles (by Theorem III.3.14) and also $\mathbb{C} \backslash \bar{B}\left(a^{\prime} ; R^{\prime}\right) \subset G$. If there is $f \in H(G)$ with a zero at each a_{j} of multiplicity m_{j} with no other zeros and such that f satisfies (5.17), then $g(z)=f(T(z))$ is analytic in $G_{1} \backslash\{a\}$. Now

$$
\begin{aligned}
\lim _{z \rightarrow a} g(z) & =\lim _{z \rightarrow a} f(T(z)) \\
& =\lim _{z \rightarrow \infty} f(z) \text { since } T(a)=\infty \\
& =1 \text { by }(5.17)
\end{aligned}
$$

so g has a removable singularity at $z=a$. Furthermore, g has a zero at α_{j} of multiplicity m_{j} (since f has a zero at $a_{j}=T\left(\alpha_{j}\right)$ of multiplicity m_{j}). So g (with the removable discontinuity removed) is the desired function analytic on open set G_{1}.

Theorem VII.5.15 (continued 2)

Proof (continued). (II) Assume G satisfies (5.16). Define a sequence $\left\{z_{n}\right\}$ consisting of the points in $\left\{a_{j}\right\}$, but such that each a_{j} is repeated according to its multiplicity m_{j}. Since G is open and $\{z||z|>R\} \subset G$ then $\mathbb{C} \backslash G$ is closed and bounded and so compact. So by Corollary II.5.14, for each $n \in \mathbb{N}$ there is $w_{n} \in \mathbb{C} \backslash G$ such that $\left|w_{n}-z_{n}\right|=d\left(z_{n}, \mathbb{C} \backslash G\right)$. Notice that condition (5.160 implies $\left|a_{j}\right| \leq R$ for all j, so if there are an infinite number of a_{j} 'a then they must have a limit point by the Bolzano-Weierstrass Theorem (see http://faculty.etsu.edu/ gardnerr/4217/notes/2-3.pdf for a statement in \mathbb{R}). since by hypothesis $\left\{a_{j}\right\}$ has no limit point in G so the limit point of $\left\{a_{j}\right\}$ is not in G and so $G \neq \mathbb{C}$. (If $\left\{a_{j}\right\}$ is finite, the result holds for a polynomial.)

Theorem VII.5.15 (continued 2)

Proof (continued). (II) Assume G satisfies (5.16). Define a sequence $\left\{z_{n}\right\}$ consisting of the points in $\left\{a_{j}\right\}$, but such that each a_{j} is repeated according to its multiplicity m_{j}. Since G is open and $\{z||z|>R\} \subset G$ then $\mathbb{C} \backslash G$ is closed and bounded and so compact. So by Corollary II.5.14, for each $n \in \mathbb{N}$ there is $w_{n} \in \mathbb{C} \backslash G$ such that $\left|w_{n}-z_{n}\right|=d\left(z_{n}, \mathbb{C} \backslash G\right)$. Notice that condition (5.160 implies $\left|a_{j}\right| \leq R$ for all j, so if there are an infinite number of a_{j} 'a then they must have a limit point by the Bolzano-Weierstrass Theorem (see http://faculty.etsu.edu/ gardnerr/4217/notes/2-3.pdf for a statement in \mathbb{R}). since by hypothesis $\left\{a_{j}\right\}$ has no limit point in G so the limit point of $\left\{a_{j}\right\}$ is not in G and so $G \neq \mathbb{C}$. (If $\left\{a_{j}\right\}$ is finite, the result holds for a polynomial.) Now for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that for all $n \geq N$ we have
$d\left(z_{n}, \mathbb{C} \backslash G\right)<\varepsilon$, or else we could construct an infinite subsequence of
$\left\{z_{n}\right\}$, say $\left\{z_{n^{\prime}}\right\}$ is an infinite founded set since $\left|z_{n^{\prime}}\right| \leq R$ for all $n^{\prime} \in \mathbb{N}$ and so $\left.z_{n^{\prime}}\right\}$ has a limit point by the Bolzano-Weierstrass Theorem.

Theorem VII.5.15 (continued 2)

Proof (continued). (II) Assume G satisfies (5.16). Define a sequence $\left\{z_{n}\right\}$ consisting of the points in $\left\{a_{j}\right\}$, but such that each a_{j} is repeated according to its multiplicity m_{j}. Since G is open and $\{z||z|>R\} \subset G$ then $\mathbb{C} \backslash G$ is closed and bounded and so compact. So by Corollary II.5.14, for each $n \in \mathbb{N}$ there is $w_{n} \in \mathbb{C} \backslash G$ such that $\left|w_{n}-z_{n}\right|=d\left(z_{n}, \mathbb{C} \backslash G\right)$. Notice that condition (5.160 implies $\left|a_{j}\right| \leq R$ for all j, so if there are an infinite number of a_{j} 'a then they must have a limit point by the Bolzano-Weierstrass Theorem (see http://faculty.etsu.edu/ gardnerr/4217/notes/2-3.pdf for a statement in \mathbb{R}). since by hypothesis $\left\{a_{j}\right\}$ has no limit point in G so the limit point of $\left\{a_{j}\right\}$ is not in G and so $G \neq \mathbb{C}$. (If $\left\{a_{j}\right\}$ is finite, the result holds for a polynomial.) Now for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that for all $n \geq N$ we have $d\left(z_{n}, \mathbb{C} \backslash G\right)<\varepsilon$, or else we could construct an infinite subsequence of $\left\{z_{n}\right\}$, say $\left\{z_{n^{\prime}}\right\}$ is an infinite founded set since $\left|z_{n^{\prime}}\right| \leq R$ for all $n^{\prime} \in \mathbb{N}$ and so $\left.z_{n^{\prime}}\right\}$ has a limit point by the Bolzano-Weierstrass Theorem.

Theorem VII.5.15 (continued 3)

Proof (continued). But the limit point is not in $\mathbb{C} \backslash G$ by the condition $d\left(z_{n^{\prime}}, \mathbb{C} \backslash G\right) \geq \varepsilon$, and so the limit point is in G, contradicting the hypothesis that $\left\{a_{n}\right\}$ has no limit point in G. So $\lim _{n \rightarrow \infty} d\left(z_{n}, \mathbb{C} \backslash G\right)=0$ and hence $\lim _{n \rightarrow \infty}\left|z_{n}-w_{n}\right|=0$. Consider the functions $E_{n}\left(\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right)$. Each has a simple zero at $z=z_{n}$ (where we take $\left.\left(z_{n}-w_{z}\right) / z-w_{n}\right)$ to be 1 at $\left.z=z_{n}\right)$, and so the infinite product of the E_{n} 's has the required zeros with the appropriate multiplicities. In Part III we show that the infinite product converges in $H(G)$.

Theorem VII.5.15 (continued 3)

Proof (continued). But the limit point is not in $\mathbb{C} \backslash G$ by the condition $d\left(z_{n^{\prime}}, \mathbb{C} \backslash G\right) \geq \varepsilon$, and so the limit point is in G, contradicting the hypothesis that $\left\{a_{n}\right\}$ has no limit point in G. So $\lim _{n \rightarrow \infty} d\left(z_{n}, \mathbb{C} \backslash G\right)=0$ and hence $\lim _{n \rightarrow \infty}\left|z_{n}-w_{n}\right|=0$. Consider the functions $E_{n}\left(\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right)$. Each has a simple zero at $z=z_{n}$ (where we take $\left.\left(z_{n}-w_{z}\right) / z-w_{n}\right)$ to be 1 at $\left.z=z_{n}\right)$, and so the infinite product of the E_{n} 's has the required zeros with the appropriate multiplicities. In Part III we show that the infinite product converges in $H(G)$.
(III) Let K be a compact subset in G. Then since both K and $\mathbb{C} \backslash G$ are compact, by Theorem II.5.17, $d(\mathbb{C} \backslash G, K)>0$. For any $z \in K$ $d\left(w_{n}, K\right) \leq\left|z-w_{n}\right|$ and

since $w_{n} \in \mathbb{C} \backslash G$ and so $d(\mathbb{C} \backslash G, K) \leq d\left(w_{n}, K\right)$.

Theorem VII.5.15 (continued 3)

Proof (continued). But the limit point is not in $\mathbb{C} \backslash G$ by the condition $d\left(z_{n^{\prime}}, \mathbb{C} \backslash G\right) \geq \varepsilon$, and so the limit point is in G, contradicting the hypothesis that $\left\{a_{n}\right\}$ has no limit point in G. So $\lim _{n \rightarrow \infty} d\left(z_{n}, \mathbb{C} \backslash G\right)=0$ and hence $\lim _{n \rightarrow \infty}\left|z_{n}-w_{n}\right|=0$. Consider the functions $E_{n}\left(\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right)$. Each has a simple zero at $z=z_{n}$ (where we take $\left.\left(z_{n}-w_{z}\right) / z-w_{n}\right)$ to be 1 at $\left.z=z_{n}\right)$, and so the infinite product of the E_{n} 's has the required zeros with the appropriate multiplicities. In Part III we show that the infinite product converges in $H(G)$.
(III) Let K be a compact subset in G. Then since both K and $\mathbb{C} \backslash G$ are compact, by Theorem II.5.17, $d(\mathbb{C} \backslash G, K)>0$. For any $z \in K$ $d\left(w_{n}, K\right) \leq\left|z-w_{n}\right|$ and

$$
\left|\frac{z_{n}-w_{n}}{z-w_{n}}\right| \leq\left|z_{n}-w_{n}\right|\left(d\left(w_{n}, K\right)\right)^{-1} \leq\left|a_{n}-w_{n}\right|(d(\mathbb{C} \backslash G, K))^{-1}
$$

since $w_{n} \in \mathbb{C} \backslash G$ and so $d(\mathbb{C} \backslash G, K) \leq d\left(w_{n}, K\right)$.

Theorem VII.5.15 (continued 4)

Proof (continued). As shown above, $\lim _{n \rightarrow \infty}\left|z_{n}-w_{n}\right|=0$, so for any $0<\delta<1$, there is $N \in \mathbb{N}$ such that for all $n \geq N$, $\left|\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right|<\delta$ for all $z \in K$. By Lemma VII.5.11, we have

$$
\begin{equation*}
\left|E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right| \leq \delta^{n+1} \tag{5.18}
\end{equation*}
$$

for all $n \geq N$ and $z \in K$. This gives (using the Direct Comparison Test and a geometric series with ration δ) that $\sum_{n=1}^{\infty}\left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right)$ converges absolutely and uniformly on K. By Theorem VII.5.9,
$f(z)=\prod_{n=1}^{\infty} E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)$ converges in $H(G)$, so f is analytic on G.

Theorem VII.5.15 (continued 4)

Proof (continued). As shown above, $\lim _{n \rightarrow \infty}\left|z_{n}-w_{n}\right|=0$, so for any $0<\delta<1$, there is $N \in \mathbb{N}$ such that for all $n \geq N$, $\left|\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right|<\delta$ for all $z \in K$. By Lemma VII.5.11, we have

$$
\begin{equation*}
\left|E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right| \leq \delta^{n+1} \tag{5.18}
\end{equation*}
$$

for all $n \geq N$ and $z \in K$. This gives (using the Direct Comparison Test and a geometric series with ration δ) that $\sum_{n=1}^{\infty}\left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right)$ converges absolutely and uniformly on K. By Theorem VII.5.9, $f(z)=\prod_{n=1}^{\infty} E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)$ converges in $H(G)$, so f is analytic on G. The second part of Theorem VII.5.9 implies that the points $\left\{a_{j}\right\}$ are the only zeros of f and m_{j} is the order of the zero at $z=a_{j}$ (because a_{j} occurs m_{j} times in the sequence $\left\{z_{n}\right\}$).

Theorem VII.5.15 (continued 4)

Proof (continued). As shown above, $\lim _{n \rightarrow \infty}\left|z_{n}-w_{n}\right|=0$, so for any $0<\delta<1$, there is $N \in \mathbb{N}$ such that for all $n \geq N$, $\left|\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right|<\delta$ for all $z \in K$. By Lemma VII.5.11, we have

$$
\begin{equation*}
\left|E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right| \leq \delta^{n+1} \tag{5.18}
\end{equation*}
$$

for all $n \geq N$ and $z \in K$. This gives (using the Direct Comparison Test and a geometric series with ration δ) that $\sum_{n=1}^{\infty}\left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right)$ converges absolutely and uniformly on K. By Theorem VII.5.9,
$f(z)=\prod_{n=1}^{\infty} E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)$ converges in $H(G)$, so f is analytic on G. The second part of Theorem VII.5.9 implies that the points $\left\{a_{j}\right\}$ are the only zeros of f and m_{j} is the order of the zero at $z=a_{j}$ (because a_{j} occurs m_{j} times in the sequence $\left\{z_{n}\right\}$).

Theorem VII.5.15 (continued 5)

Proof (continued). To show (5.17) that $\lim _{z \rightarrow \infty} f(z)=1$, let $\varepsilon>0$ be an arbitrary number and let $R_{1}>R$. If $|z| \geq R_{1}$ then, because $\left|z_{n}\right| \leq R$ and $w_{n} \in \mathbb{C} \backslash G \subset B(0 ; R),\left|\frac{z_{n}-w_{n}}{z-w_{n}}\right| \leq \frac{2 R}{R-1-R}$. So if $R_{1}>R$ satisfies $2 R<\delta\left(R_{1}-R\right)$ (that is, $R_{1}>R+2 R / \delta$ and $\left|\frac{z_{n}-w_{n}}{z-w_{n}}\right| \leq \frac{2 R}{R_{1}-R}<\delta$) for some $0<\delta<1$ then (5.18) holds for $|z| \geq R_{1}$ and for all $n \in \mathbb{N}$. In particular, $\operatorname{Re}\left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)>0$ for all $n \in \mathbb{N}$ and $|z| \geq R_{1}$ (for if this is less than or equal to 0 , then
$\left|\operatorname{Re}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)=1\right| \geq 1$ and (5.18) is violated).

Theorem VII.5.15 (continued 5)

Proof (continued). To show (5.17) that $\lim _{z \rightarrow \infty} f(z)=1$, let $\varepsilon>0$ be an arbitrary number and let $R_{1}>R$. If $|z| \geq R_{1}$ then, because $\left|z_{n}\right| \leq R$ and $w_{n} \in \mathbb{C} \backslash G \subset B(0 ; R),\left|\frac{z_{n}-w_{n}}{z-w_{n}}\right| \leq \frac{2 R}{R-1-R}$. So if $R_{1}>R$ satisfies $2 R<\delta\left(R_{1}-R\right)$ (that is, $R_{1}>R+2 R / \delta$ and $\left|\frac{z_{n}-w_{n}}{z-w_{n}}\right| \leq \frac{2 R}{R_{1}-R}<\delta$) for some $0<\delta<1$ then (5.18) holds for $|z| \geq R_{1}$ and for all $n \in \mathbb{N}$. In particular, $\operatorname{Re}\left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)>0$ for all $n \in \mathbb{N}$ and $|z| \geq R_{1}$ (for if this is less than or equal to 0 , then
$\left|\operatorname{Re}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)=1\right| \geq 1$ and (5.18) is violated).

Theorem VII.5.15 (continued 6)

Proof (continued). So
$|f(z)-1|=\left|\prod_{n=1}^{\infty} E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right|=\left|\exp \left(\sum_{n=1}^{\infty} \log E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)=1\right|$
(5.19) is a "meaningful equation" (that is, $E_{n}\left(\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right) \neq 0$ for $|z| \geq R_{1}$ and for $n \in \mathbb{N}$, and so there is a branch of the logarithm defined for all such $E_{n}\left(\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right)$, say the principal branch $)$. Now we restrict $0<\delta<1 / 2$ so that (5.18) now gives for $|z| \geq R_{1}$ that $\left|F_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right| \leq\left(\frac{1}{2}\right)^{n+1} \leq \frac{1}{2}$ for all $n \in \mathbb{N}$, and then by Lemma

$$
\begin{gathered}
\log \left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)=\log \left(\left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right)+1\right) \\
\leq \frac{3}{2}\left|E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right|
\end{gathered}
$$

Theorem VII.5.15 (continued 6)

Proof (continued). So
$|f(z)-1|=\left|\prod_{n=1}^{\infty} E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right|=\left|\exp \left(\sum_{n=1}^{\infty} \log E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)=1\right|$
(5.19) is a "meaningful equation" (that is, $E_{n}\left(\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right) \neq 0$ for $|z| \geq R_{1}$ and for $n \in \mathbb{N}$, and so there is a branch of the logarithm defined for all such $E_{n}\left(\left(z_{n}-w_{n}\right) /\left(z-w_{n}\right)\right)$, say the principal branch). Now we restrict $0<\delta<1 / 2$ so that (5.18) now gives for $|z| \geq R_{1}$ that $\left|F_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right| \leq\left(\frac{1}{2}\right)^{n+1} \leq \frac{1}{2}$ for all $n \in \mathbb{N}$, and then by Lemma VII.5.B,

$$
\begin{gathered}
\log \left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)=\log \left(\left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right)+1\right) \\
\leq \frac{3}{2}\left|E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right|
\end{gathered}
$$

for all $|z| \geq R_{1}$ and for all $n \in \mathbb{N}$.

Theorem VII.5.15 (continued 7)

Proof (continued). We now have

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} \log \left(E_{n}\left(\frac{z_{a}-w_{n}}{z-w_{n}}\right)\right)\right| & \leq \sum_{n=1}^{\infty}\left|\log E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right| \\
& \leq \sum_{n=1}^{\infty} \frac{3}{2}\left|E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right| \\
& \leq \sum_{n=1}^{\infty} \frac{3}{2} \delta^{n+1} \text { by (5.18) (notice the choice of } \\
& \left.R_{1} \text { implies that (5.18) holds for all } n \in \mathbb{N}\right) \\
& =\frac{3}{2} \frac{\delta^{2}}{1-\delta}
\end{aligned}
$$

for all $|z| \geq R_{1}$. By the continuity of e^{z} at $z=0$, we can further restrict
$0<\delta<1 / 2$ so that $|w|<\frac{3}{2} \frac{\delta^{2}}{1-\delta}$ implies $\left|e^{w}-1\right|<\varepsilon$ (so that we now

Theorem VII.5.15 (continued 7)

Proof (continued). We now have

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} \log \left(E_{n}\left(\frac{z_{a}-w_{n}}{z-w_{n}}\right)\right)\right| & \leq \sum_{n=1}^{\infty}\left|\log E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right| \\
& \leq \sum_{n=1}^{\infty} \frac{3}{2}\left|E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)-1\right| \\
& \leq \sum_{n=1}^{\infty} \frac{3}{2} \delta^{n+1} \text { by (5.18) (notice the choice of } \\
& R_{1} \text { implies that (5.18) holds for all } n \in \mathbb{N} \text {) } \\
& =\frac{3}{2} \frac{\delta^{2}}{1-\delta}
\end{aligned}
$$

for all $|z| \geq R_{1}$. By the continuity of e^{z} at $z=0$, we can further restrict $0<\delta<1 / 2$ so that $|w|<\frac{3}{2} \frac{\delta^{2}}{1-\delta}$ implies $\left|e^{w}-1\right|<\varepsilon$ (so that we now have δ "fixed").

Theorem VII.5.15 (continued 8)

Proof (continued). Then for $|z| \geq R_{1}$, equation (5.19) with our choice of δ (and with $\left.w=\sum_{n=1}^{\infty} \log \left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)\right)$ gives
$|f(z)-1|=\left|e^{w}-1\right|<\varepsilon$. Since $\varepsilon>0$ was arbitrary (R_{1} is chosen based on δ and δ is chosen based on ε, so ultimately R_{1} depends on ε), then $\lim _{z \rightarrow \infty} f(z)=1$.
(IV) Combining Part III with Part II, gives an analytic function
$f(z)=\prod_{n=1}^{\infty} E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)$ which has a simple zero at $z=z_{n}$ for all $n \in \mathbb{N}$, and so has a zero at $z=a_{j}$ of multiplicity m_{j} for each $j \in \mathbb{N}$, on a set G satisfying (5.16) and such that $\lim _{z \rightarrow \infty} f(z)=1$. By Part I, f can be modified to give the desired function g on any region G (in the proof of Part I the zeros of f are denoted as α_{j} instead of a_{j}).

Theorem VII.5.15 (continued 8)

Proof (continued). Then for $|z| \geq R_{1}$, equation (5.19) with our choice of δ (and with $w=\sum_{n=1}^{\infty} \log \left(E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)\right)$) gives
$|f(z)-1|=\left|e^{w}-1\right|<\varepsilon$. Since $\varepsilon>0$ was arbitrary (R_{1} is chosen based on δ and δ is chosen based on ε, so ultimately R_{1} depends on ε), then $\lim _{z \rightarrow \infty} f(z)=1$.
(IV) Combining Part III with Part II, gives an analytic function
$f(z)=\prod_{n=1}^{\infty} E_{n}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)$ which has a simple zero at $z=z_{n}$ for all $n \in \mathbb{N}$,
and so has a zero at $z=a_{j}$ of multiplicity m_{j} for each $j \in \mathbb{N}$, on a set G satisfying (5.16) and such that $\lim _{z \rightarrow \infty} f(z)=1$. By Part I, f can be modified to give the desired function g on any region G (in the proof of Part I the zeros of f are denoted as α_{j} instead of a_{j}).

Corollary VII.5.20

Corollary VII.5.20. If f is a meromorphic function on an open set G then there are analytic functions g and h on G such that $f=g / h$.

Proof. Let $\left\{a_{j}\right\}$ be the poles of f and let m_{j} be the order of the pole at a_{j}. By Theorem VII.5.15, there is an analytic function h on G with a zero of multiplicity m_{j} at a_{j} for each $j \in \mathbb{N}$ and with not other zeros.

Corollary VII.5.20

Corollary VII.5.20. If f is a meromorphic function on an open set G then there are analytic functions g and h on G such that $f=g / h$.

Proof. Let $\left\{a_{j}\right\}$ be the poles of f and let m_{j} be the order of the pole at a_{j}. By Theorem VII.5.15, there is an analytic function h on G with a zero of multiplicity m_{j} at a_{j} for each $j \in \mathbb{N}$ and with not other zeros. So $h(z) f(z)$ has removable singularities at each point $a_{j}, j \in \mathbb{N}$. Setting $g=h f$ (reduced and removing the removable singularities), g is then analytic on G and $f=g / h$, as claimed.

Corollary VII.5.20

Corollary VII.5.20. If f is a meromorphic function on an open set G then there are analytic functions g and h on G such that $f=g / h$.

Proof. Let $\left\{a_{j}\right\}$ be the poles of f and let m_{j} be the order of the pole at a_{j}. By Theorem VII.5.15, there is an analytic function h on G with a zero of multiplicity m_{j} at a_{j} for each $j \in \mathbb{N}$ and with not other zeros. So $h(z) f(z)$ has removable singularities at each point $a_{j}, j \in \mathbb{N}$. Setting $g=h f$ (reduced and removing the removable singularities), g is then analytic on G and $f=g / h$, as claimed.

