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Lemma VII.5.A

Lemma VII.5.A

Lemma VII.5.A. Let {zn} be a sequence of nonzero complex numbers.
Suppose

∏∞
k=1 zk exists. If

∏∞
k=1 ak 6= 0 then limn→∞ zn = 1.

Proof. Denote pn =
∏n

k=1 zk . Suppose
∏n

k=1 zn exists and is not zero.
Then no pn is 0 and pn/pn−1 = zn.

Since limn→∞ pn = z , then

lim
n→∞

pn

pn−1
= lim

n→∞
zn implies

limn→∞ pn

limn→∞ pn−1
= lim

n→∞
zn,

or 1 = z/z = limn→∞ zn.
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Proposition VII.5.2

Proposition VII.5.2

Proposition VII.5.2. Let Re(z) > 0 for all n ∈ N. Then
∏∞

n=1 zn

converges to a nonzero complex number if and only if the series∑∞
n=1 log zn converges.

Proof. We just showed that if
∑∞

n=1 log zn converges (say to s) then∏∞
k=1 zn converges (to es). Now suppose

∏∞
n=1 zn converges, say

limn→∞ pn = z where z = re iθ for some −π < θ ≤ π. Define
`(pn) = log |pn|+ iθn where θ − π < θn ≤ θ + π.

Since limn→∞ pn = z
then limn→∞ |pn| = |z | = r and limn→∞ θn = θ; hence
limn→∞ `(pn) = limn→∞(log |pn|+ iθn) = log |z |+ iθ (notice
θn ∈ (θ − π, θ + π] for all n ∈ N). If sn

∑n
k=1 log zk then exp(sn) = pn and

so sn = `(pn) + 2πikn for some k ∈ Z. Since pn → z then
sn − sn−1 =

∑n
k=1 log zk −

∑n−1
k=1 log zk = log zn (where we use the

principal branch of the logarithm here) and so
limn→∞(sn − sn−1) = limn→∞ zn = log limn→∞ zn = log 1 = 0.
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Proposition VII.5.2

Proposition VII.5.2 (continued 1)

Proof (continued). Also

`(pn)− `(pn−1) = (log |pn|+ iθn)− (log |pn−1|+ iθn−1)

= log

∣∣∣∣ pn

pn−1

∣∣∣∣+ i(θn − θn−1) = log |zn|+ i(θn − θn−1)

and so

lim
n→∞

(`(pn)− `(pn−1)) = lim
n→∞

(log |zn|+ i(θn − θn−1)) log
(

lim
n→∞

zn

)
+i lim

n→∞
(θn − θn−1) = log 1 + i(θ − θ) = 0.

Since sn = `(pn) + 2πikn then `(pn) = sn − 2πikn, and so

`(pn)−`(pn−1) = (sn−2πikn)−(sn−1−2πikn−1) = sn−sn−1−2πi(kn−kn−1)

and limn→∞((sn − sn−1)− 2πi(kn − kn−1)) = 0, so
limn→∞(kn − kn−1) = 0. But since kn ∈ Z then there is some n0 ∈ N such
that km = kn = k for some fixed k ∈ Z and for all m, n ≥ n0.
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Proposition VII.5.2

Proposition VII.5.2 (continued 2)

Proposition VII.5.2. Let Re(z) > 0 for all n ∈ N. Then
∏∞

n=1 zn

converges to a nonzero complex number if and only if the series∑∞
n=1 log zn converges.

Proof (continued). Therefore

lim
n→∞

sn = lim
n→∞

(`(pn) + 2πikn) = lim
n→∞

`(pn) + 2πi lim
n→∞

kn = `(z) + 2πik.

That is,
∑∞

k=1 log zk converges.
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Lemma VII.5.B

Lemma VII.5.B

Lemma VII.5.B. If |z | < 1/2 then 1
2 |z | ≤ | log(1 + z)| ≤ 3

2 |z |.

Proof. The power series for log 1 + z about z = 0 is

log(1 + z) =
∞∑

n=1

(−1)n−1 zn

n
= z − z2

2
+

z3

3
− · · ·

which has radius of convergence 1.

So for |z | < 1.∣∣∣∣1− log(1 + z)

z

∣∣∣∣ = ∣∣∣∣12z − 1

3
z2 +

1

4
z3 − · · ·

∣∣∣∣
≤ 1

2
|z |+ 1

3
|z |2 +

1

4
|z |3 + · · · ≤ 1

2
(|z |+ |z |2 + |z |3 + · · · ) =

1

2

|z |
1− |z |

.

For |z | < 1/2,

∣∣∣∣1− log(1 + z)

z

∣∣∣∣ ≤ 1

2
and |z − log(1 + z)| ≤ |z |/2. So by

Exercise I.3.1, | log(1 + z)| − |z | ≤ |z |/2 and so | log(1 + z)| ≤ 3|z |/2.
Similarly, |z | − | log(1 + z)| ≤ |z |/2 and so |z |/2 ≤ | log(1 + z)|.
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Proposition VII.5.4

Proposition VII.5.4

Proposition VII.5.4. Let Re(z) > −1. Then the series
∑∞

n=1 log(1 + zn)
converges absolutely if and only if the series

∑∞
n=1 zn converges absolutely.

Proof. Suppose
∑

n=1∞zn converges absolutely; that is, suppose∑∞
n=1 |zn| converges. Then, by the “Test for Divergence,” from Calculus

2, |zn| → 0 and zn → 0. So there is n0 ∈ N such that for all n ≥ n0 we
have |zn| < 1/2. So by Lemma VII.5.B, for all n ≥ n0,
|log(1 + zn)| ≤ 3|zn|/2.

So by the Direct Comparison Test, since∑∞
n=1 3|zn|/2 converges then

∑∞
n=1 | log(1 + zn)| converges. That is,∑∞

n=1 log(1 + zn) converges absolutely.

Suppose
∑∞

n=1 | log(1 + zn)| converges. Then by the Test for Divergence,
limn→∞ | log(1 + zn)| = 0 and so limn→∞ zn = 0. so there is n1 ∈ N such
that for all n ≥ n1 we have |zn| < 1/2. By Lemma VII.5.B, for all n ≥ b1,
|zn|/2 ≤ | log(1 + zn)|. By the Direct Comparison Test, since∑∞

n=1 | log(1 + zn)| converges then
∑∞

n=1 |zn|/2 converges. That is,∑∞
n=1 zn converges absolutely.
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Lemma VII.5.C

Lemma VII.5.C

Lemma VII.5.C. Let {zn} be a sequence of complex numbers with
Re(zn) > 0 for all n ∈ N and suppose

∏∞
n=1 zn converges absolutely. Then

(a)
∏∞

n=1 zn converges; and

(b) any rearrangement of {zn}, say {zm} (where m = f (n) for
some given one to one and onto f : N → N) converges
absolutely.

Proof. (a) Since
∏∞

n=1 zn converges absolutely, by definition, the series∑∞
n=1 log zn converges absolutely. By Proposition III.1.1, this means that∑∞
n=1 log zn converges. So by Proposition VII.5.2,

∏∞
n=1 zn converges.

(b) Since
∏∞
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Corollary VII.5.6

Corollary VII.5.6
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Lemma VII.5.7

Lemma VII.5.7

Lemma VII.5.7. Let X be a set and let f , f1, f2, . . . be functions from X
into C such that fn(z) → f (z) uniformly for x ∈ X . If there is a constant
a such that Re(f (z)) ≤ a for all x ∈ X , then exp(fn(x)) → exp(f (x))
uniformly for x ∈ X .

Proof. Let ε > 0. Since ez is continuous at z = 0, there is δ > 0 such
that for |z | < δ such that for |z | < δ we have |ez − 1| < εe−a. Choose
n0 ∈ N such that n ≥ n0 implies |fn(x)− f (x)| < δ for all x ∈ X . Then for
n ≥ n0 we have for all x ∈ X that
εe−a > |efn(x)−f (x) − 1| = | exp(fn(x))/ exp(f (x))− 1|.
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Lemma VII.5.7

Lemma VII.5.7 (continued)

Lemma VII.5.7. Let X be a set and let f , f1, f2, . . . be functions from X
into C such that fn(z) → f (z) uniformly for x ∈ X . If there is a constant
a such that Re(f (z)) ≤ a for all x ∈ X , then exp(fn(x)) → exp(f (x))
uniformly for x ∈ X .

Proof (continued). So for all n ≥ n0 for all x ∈ X ,

| exp(fn(x))− exp(f (x))| < εe−a| exp f (x)|
= εe−a exp(Re(f (x))

since | exp(f (x))| = exp(Re(f (x))

= ε exp(Re(f (x))− a)

≤ ε since Re(f (x))− a ≤ 0,

That is, {exp(fn(x))} converges to exp(f (x)) uniformly on X .
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Lemma VII.5.8

Lemma VII.5.8

Lemma VII.5.8. Let (X , d) be a compact metric space and let {gn} be a
sequence of continuous functions from X to C such that

∑∞
n=1 gn(x)

converges absolutely and uniformly for x ∈ X . Then the product
f (x) =

∏∞
n=1(1 + gn(x)) converges absolutely and uniformly for x ∈ X .

Also, there is n0 ∈ N such that f (z) = 0 if and only if gn(x) = −1 for
some n where 1 ≤ n ≤ n0.

Proof. The absolute and uniform convergence of
∑∞

n=1 gn(x) on X
implies that

∑∞
n=1 |gn(x)| converges uniformly on X for each ε > 0 there

is n1 ∈ N such that
∑∞

n=n1
|gn(x)| < ε for all x ∈ X . In particular, there is

n0 ∈ N such that |gn(x)| < 1/2 for all x ∈ X and n > n0.

So for n > n0,
Re(1 + gn(x)) = Re(1) + Re(gn(x)) > 1− 1/2 = 1/2 > 0, since
|Re(gn(x))| ≤ |gn(x)| < 1/2 and so −1/2 < Re(gn(x)) < 1/2, for all
x ∈ X . So by Lemma VII.5.B | log(1 + gn(x))| ≤ 3|gn(x)|/2 for n > n0

and for all x ∈ X .
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Lemma VII.5.8

Lemma VII.5.8 (continued 1)

Proof (continued). Since
∑∞

n=1 3|gn(x)|/2 converges uniformly for
x ∈ X then h(x) =

∑∞
n=n0+1 log(1 + gn(x)) converges uniformly and

absolutely for x ∈ X (by a pointwise application of the Direct Comparison
Test). Since each gn is continuous then h is continuous by Theorem II.6.1.
Since X is compact by hypothesis, then h(X ) is compact in C by Theorem
II.5.8 and so h is bounded (since h(X ) is closed and bounded by the
Heine-Borel Theorem). So there is some constant a such that
Re(h(x)) < a for all x ∈ X . So, by Theorem VII.5.7,
exp h(x) =

∏∞
n=n0+1(1 + gn(x)) converges uniformly for x ∈ X . Notice

that since
∑∞

n=n0+1 log(1 + gn(x)) converges absolutely then, by
definition,

∏∞
n=n0+1(1 + gn(x)) converges absolutely.

Therefore,

f (x) = (1 + g1(x))(1 + g2(x)) · · · (1 + gn0(x)) exp(h(x)) =
∞∏

n=1

(1 + gn(x))

converges uniformly and absolutely for x in X , as claimed.
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Lemma VII.5.8

Lemma VII.5.8 (continued 2)

Lemma VII.5.8. Let (X , d) be a compact metric space and let {gn} be a
sequence of continuous functions from X to C such that

∑∞
n=1 gn(x)

converges absolutely and uniformly for x ∈ X . Then the product
f (x) =

∏∞
n=1(1 + gn(x)) converges absolutely and uniformly for x ∈ X .

Also, there is n0 ∈ N such that f (z) = 0 if and only if gn(x) = −1 for
some n where 1 ≤ n ≤ n0.

Proof (continued). Finally, since exp(h(x)) 6= 0, then f (x) = 0 if and
only if 1 + gn(x) = 0 for some 1 ≤ n ≤ n0; that is, if and only if
gn(x) = −1 for some 1 ≤ n ≤ n0.

() Complex Analysis August 14, 2017 15 / 36



Theorem VII.5.9

Theorem VII.5.9

Theorem VII.5.9. Let G be a region in C and let {fn} be a sequence in
H(G ) (i.e., a sequence of analytic functions) such that no fn is identically
zero. If

∑∞
n=1(fn(z)− 1) converges absolutely and uniformly on compact

subsets of G , then
∏∞

n=1 fn(z) converges in H(G ) to an analytic function
f (z). If a is a zero of f then a is a zero of only a finite number of the
functions fn, and the multiplicity of the zero of f at a is the sum of the
multiplicities of the zeros of the function fn at a.

Proof. Since
∑∞

n=1(fn(z)− 1) converges uniformly and absolutely on
compact subsets of G (by hypothesis), then by Lemma VII.5.8,
f (z) =

∏∞
n=1 fn(z) converges uniformly and absolutely on compact subsets

of G . Recall that uniform convergence on compact subsets of G implies
convergence with respect to metric ρ on space H(G ) (see Proposition
VII.1.10(b)). So the infinite product

∏∞
n=1 fn(z) converges in H(G ).
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Theorem VII.5.9

Theorem VII.5.9 (continued)

Theorem VII.5.9. Let G be a region in C and let {fn} be a sequence in
H(G ) (i.e., a sequence of analytic functions) such that no fn is identically
zero. If

∑∞
n=1(fn(z)− 1) converges absolutely and uniformly on compact

subsets of G , then
∏∞

n=1 fn(z) converges in H(G ) to an analytic function
f (z). If a is a zero of f then a is a zero of only a finite number of the
functions fn, and the multiplicity of the zero of f at a is the sum of the
multiplicities of the zeros of the function fn at a.

Proof (continued). Let a ∈ G be a zero of f . Choose r > 0 such that
B(a; r) ⊂ G . Since B(a;R) ⊂ G is compact, then

∑∞
n=1(fn(z)− 1)

converges uniformly on B(a; r) by hypothesis. By Lemma VII.5.8 (see the
proof) there is n0 ∈ N such that f (z) = f1(z)f2(z) · · · fn(z)g(z) where
g(z) 6= 0 in B(a; r). So a is a zero of only n finite number of the functions
fn and the multiplicity of zero a of f is the sum of the multiplicities of a as
a zero of the function fn, as claimed.
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Lemma VII.5.11

Lemma VII.5.11

Lemma VII.5.11. If |z | ≤ 1 and p ≥ 0 then |1− Ep(z)| ≤ |z |p+1.

Proof. For p = 0, |1− E0(z)| = |1− (1− z)| = |z | ≤ |z |p+1. For p ≥ 1
fixed, Ep(z) is analytic (entire, in fact) so Ep(z) = 1+

∑∞
k=1 akzk for some

coefficients ak (Ep(0) = 1, so a0 = 1).

Then from the definition of Ep(z),

E ′p(z) = (−1) exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)

+(1− z) exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)
(1 + z + z2 + · · ·+ zp−1)

= (−1 + (1− zp)) exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)
= −zp exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)
(∗)
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2
+

z3

3
+ · · ·+ zp

p

)

+(1− z) exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)
(1 + z + z2 + · · ·+ zp−1)

= (−1 + (1− zp)) exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)
= −zp exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)
(∗)
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Lemma VII.5.11

Lemma VII.5.11 (continued 1)

Proof (continued). and from the power series representation

E ′p(z) =
∞∑

k=1

kakzk−1. (∗)

We see from (∗) and (∗∗) that a1 = a2 = · · · = ap = 0. Now in the series

expansion of exp
(
z + z2

2 + z3

3 + · · ·+ zp

p

)
about z = 0, all coefficients are

positive (since they are products and sums of exponential functions, which
are 1 when evaluated at z = 0, and polynomials and their derivatives
which are 0 when evaluated at z = 0), say

exp

(
z +

z2

2
+

z3

3
+ · · ·+ zp

p

)
= 1 +

∞∑
k=1

bkzk where bk > 0.
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Lemma VII.5.11

Lemma VII.5.11 (continued 2)

Proof (continued). So from (∗),

E ′p(z) = −2p

(
1 +

∞∑
k=1

bkzk

)
= −2p −

∞∑
k=1

bkzk+p

=
∞∑

k=1

kakzk−1 by (∗∗)

and so kak < 0 for k = p + 1, p + 2, . . .. Thus |ak | = −ak for k ≥ p + 1.
So for z = 1, 0 = Ep(1) = 1 +

∑∞
k=p+1 ak since a1 = a2 = · · · = a = 0, or∑∞

k=p+1 |ak | = −
∑∞

k=p+1 ak = 1. so for |a| ≤ 1,

|1− Ep(z)| = |Ep(z)− 1| =

∣∣∣∣∣∣
1 +

∞∑
k=p+1

akzk

− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

k=p+1

akzk

∣∣∣∣∣∣ = |z |p+1

∣∣∣∣∣∣
∞∑

k=p+1

akzk−p−1

∣∣∣∣∣∣ . . .
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Lemma VII.5.11

Lemma VII.5.11 (continued 3)

Lemma VII.5.11. If |z | ≤ 1 and p ≥ 0 then |1− Ep(z)| ≤ |z |p+1.

Proof (continued).

|1− Ep(z)| ≤ |z |p+1
∞∑

k=p+1

|ak ||z |k−p−1 by the Triangle Inequality

and limits

≤ |z |p+1
∞∑

k=p+1

|ak | since |z | ≤ 1

= |z |p+1 since
∞∑

k=p+1

|ak | = 1,

and this is the claim.
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Theorem VII.5.12

Theorem VII.5.12

Theorem VII.5.12. Let {an} be a sequence in C such that
limn→∞ |zn| = ∞ and az 6= 0 for all n ≥ 1. Suppose that no complex
number is repeated in the sequence an infinite number of times. If {pn} is
any sequence of nonnegative integers such that

∞∑
n=1

(
r

|an|

)pn+1

< ∞ (5.13)

for all r > 0, then f (z) =
∏∞

n=1 Epn(z/a) converges in H(C) (and so is
analytic on C). The function f is an entire function with zeros only at the
points an If z0 occurs in the sequence {an} exactly n times then f has a
zero at z = z0 of multiplicity m. Furthermore, if pn = n − 1 then (5.13)
will be satisfied.

Proof. Suppose integers {pn} exist such that (5.13) is satisfied.
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Theorem VII.5.12

Theorem VII.5.12 (continued 1)

Proof (continued). Then∣∣∣1− Epn

(z

a

)∣∣∣ ≤
∣∣∣z
a

∣∣∣pn+1
by Lemma VII.5.11

≤
(

r

|an|

)pn+1

for |z | ≤ r and for r ≤ |an| (so that |z/an| ≤ r/|an| ≤ 1). For a fixed
r > 0 there is N ∈ N such that |an| > r for all n ≥ N since |an| → ∞. So
for given r > 0 we have

∞∑
n=1

∣∣∣∣1− Epn

(
z

an

)∣∣∣∣ ≤ ∞∑
n=1

(
r

|an|

)pn+1

for z ∈ B(0; r).

By (5.13), the right hand side is finite and so
∞∑

n=1

(
1− Epn

(
z

an

))
converges absolutely on B(0; r). So

∏∞
n=1 Epn(z/an) converges in H(G ).

Why does it converge uniformly?
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Theorem VII.5.12

Theorem VII.5.12 (continued 2)

Proof (continued). To show that {pn} can be found so that (5.13) holds
for all r is easy; since |an| → ∞ then “eventually” |zn| > r (for a given r)
and we can take pn = n − 1 so that

∑∞
n=1(r/|an|)pn+1 can eventually be

compared to a geometric series with ration less than 1. In particular, there
is N ∈ N such that for all n ≥ N, |an| > 2r and r/|an| < 1/2. then

∞∑
n=1

(r/|an|)pn+1 =
∞∑

n=1

(r/|an|)n <

N∑
n=1

(r/|an|)n +
∞∑

n=N+1

(1/2)n < ∞.
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Theorem VII.5.14. The Weierstrass Factorization Theorem

Theorem VII.5.14

Theorem VII.5.14. The Weierstrass Factorization Theorem.
Let f be an entire function and let {an} be the nonzero zeros of f
repeated according to multiplicity. Suppose f has a zero at z = 0 of order
m ≥ 0 (a zero of order m = 0 at 0 means f (0) 6= 0). Then there is an
entire function g and a sequence of integers {pn} such that

f (z) = zmeg(z)
∞∏

n=1

Epn

(
z

an

)
.

Proof. Since f is entire, by Theorem VII.5.12, there are nonnegative
integers {pn} such that

h(z) = zm
∞∏

n=1

Epn

(
z

an

)
has the same zeros as f with the same multiplicities. So f (z)/h(z) has a
removable singularities at a = 0, a1, a2, . . ..
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Theorem VII.5.14. The Weierstrass Factorization Theorem

Theorem VII.5.14 (continued)

Theorem VII.5.14. The Weierstrass Factorization Theorem.
Let f be an entire function and let {an} be the nonzero zeros of f
repeated according to multiplicity. Suppose f has a zero at z = 0 of order
m ≥ 0 (a zero of order m = 0 at 0 means f (0) 6= 0). Then there is an
entire function g and a sequence of integers {pn} such that

f (z) = zmeg(z)
∞∏

n=1

Epn

(
z

an

)
.

Proof (continued). Thus, f /h (reduced and the removable singularities
removed) is nonzero then there is a branch of the logarithm defined on
(f /h)(C). So there is entire g such that g(z) = log(f (z)/h(z)) or
f (z)/h(z) = eg(z). Then

f (z) = h(z)eg(z) = zmeg(z)
∞∏

n=1

Epn

(
z

an

)
.
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Theorem VII.5.15

Theorem VII.5.15

Theorem VII.5.15. Let G be a region and let {aj} be a sequence of
distinct points in G with no limit points in G . Let {mj} be a sequence of
nonnegative integers. Then there is an analytic function f defined on G
whose only zeros are at the points aj . Furthermore, aj is a zero of f of
multiplicity mj .

Proof. (I) In Part I of the proof, we show that if the claim can be
established for the special case where there is R > 0 such that

{z | |z | > R} ⊂ G and |aj | ≤ R for all j ≥ 1, (5.16)

then the claim will hold.

So hypothesize that f satisfying (5.16) exists
with the added property that

lim
z→∞

f (z) = 1 (5.17)

and let G1 be an arbitrary open set in C with {αj} a sequence of distinct
points in G1 with no limit point and let {mj} be a sequence of integers.
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Theorem VII.5.15

Theorem VII.5.15 (continued 1)

Proof (continued). If B(a; r) is a disk in G , such that αj 6∈ B(a; r) for all
j > 1, consider the Möbius transformation T (z) = (z − a)−1. Set
G = T (G1) \ {∞} ⊂ C. Then G satisfies (5.16) where
aj = T (αj) = (αj − a)−1 since αj 6∈ B(a; r) implies aj = T (αj) ∈ B(a′;R ′)
for some a′ ∈ C, ′ ∈ R, since T maps circles to circles (by Theorem
III.3.14) and also C \ B(a′;R ′) ⊂ G . If there is f ∈ H(G ) with a zero at
each aj of multiplicity mj with no other zeros and such that f satisfies
(5.17), then g(z) = f (T (z)) is analytic in G1 \ {a}. Now

lim
z→a

g(z) = lim
z→a

f (T (z))

= lim
z→∞

f (z) since T (a) = ∞

= 1 by (5.17),
so g has a removable singularity at z = a.

Furthermore, g has a zero at αj

of multiplicity mj (since f has a zero at aj = T (αj) of multiplicity mj). So
g (with the removable discontinuity removed) is the desired function
analytic on open set G1.
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Theorem VII.5.15

Theorem VII.5.15 (continued 2)

Proof (continued). (II) Assume G satisfies (5.16). Define a sequence
{zn} consisting of the points in {aj}, but such that each aj is repeated
according to its multiplicity mj . Since G is open and {z | |z | > R} ⊂ G
then C \G is closed and bounded and so compact. So by Corollary II.5.14,
for each n ∈ N there is wn ∈ C \ G such that |wn − zn| = d(zn, C \ G ).
Notice that condition (5.160 implies |aj | ≤ R for all j , so if there are an
infinite number of aj ’a then they must have a limit point by the
Bolzano-Weierstrass Theorem (see http://faculty.etsu.edu/
gardnerr/4217/notes/2-3.pdf for a statement in R). since by
hypothesis {aj} has no limit point in G so the limit point of {aj} is not in
G and so G 6= C. (If {aj} is finite, the result holds for a polynomial.)

Now
for any ε > 0, there is N ∈ N such that for all n ≥ N we have
d(zn, C \ G ) < ε, or else we could construct an infinite subsequence of
{zn}, say {zn′} is an infinite founded set since |zn′ | ≤ R for all n′ ∈ N and
so zn′} has a limit point by the Bolzano-Weierstrass Theorem.
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Theorem VII.5.15

Theorem VII.5.15 (continued 3)

Proof (continued). But the limit point is not in C \ G by the condition
d(zn′ , C \ G ) ≥ ε, and so the limit point is in G , contradicting the
hypothesis that {an} has no limit point in G . So limn→∞ d(zn, C \ G ) = 0
and hence limn→∞ |zn − wn| = 0. Consider the functions
En((zn − wn)/(z − wn)). Each has a simple zero at z = zn (where we take
(zn − wz)/z − wn) to be 1 at z = zn), and so the infinite product of the
En’s has the required zeros with the appropriate multiplicities. In Part III
we show that the infinite product converges in H(G ).

(III) Let K be a compact subset in G . Then since both K and C \ G are
compact, by Theorem II.5.17, d(C \ G ,K ) > 0. For any z ∈ K
d(wn,K ) ≤ |z − wn| and∣∣∣∣zn − wn

z − wn

∣∣∣∣ ≤ |zn − wn|(d(wn,K ))−1 ≤ |an − wn|(d(C \ G ,K ))−1

since wn ∈ C \ G and so d(C \ G ,K ) ≤ d(wn,K ).
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Theorem VII.5.15

Theorem VII.5.15 (continued 4)

Proof (continued). As shown above, limn→∞ |zn − wn| = 0, so for any
0 < δ < 1, there is N ∈ N such that for all n ≥ N,
|(zn − wn)/(z − wn)| < δ for all z ∈ K . By Lemma VII.5.11, we have∣∣∣∣En

(
zn − wn

z − wn

)
− 1

∣∣∣∣ ≤ δn+1 (5.18)

for all n ≥ N and z ∈ K . This gives (using the Direct Comparison Test

and a geometric series with ration δ) that
∞∑

n=1

(
En

(
zn − wn

z − wn

)
− 1

)
converges absolutely and uniformly on K . By Theorem VII.5.9,

f (z) =
∞∏

n=1

En

(
zn − wn

z − wn

)
converges in H(G ), so f is analytic on G .

The

second part of Theorem VII.5.9 implies that the points {aj} are the only
zeros of f and mj is the order of the zero at z = aj (because aj occurs mj

times in the sequence {zn}).
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Theorem VII.5.15

Theorem VII.5.15 (continued 5)

Proof (continued). To show (5.17) that limz→∞ f (z) = 1, let ε > 0 be
an arbitrary number and let R1 > R. If |z | ≥ R1 then, because |zn| ≤ R

and wn ∈ C \ G ⊂ B(0;R),

∣∣∣∣zn − wn

z − wn

∣∣∣∣ ≤ 2R

R − 1− R
. So if R1 > R

satisfies 2R < δ(R1 − R) (that is, R1 > R + 2R/δ and∣∣∣∣zn − wn

z − wn

∣∣∣∣ ≤ 2R

R1 − R
< δ) for some 0 < δ < 1 then (5.18) holds for

|z | ≥ R1 and for all n ∈ N. In particular, Re

(
En

(
zn − wn

z − wn

))
> 0 for all

n ∈ N and |z | ≥ R1 (for if this is less than or equal to 0, then∣∣∣∣Re

(
zn − wn

z − wn

)
= 1

∣∣∣∣ ≥ 1 and (5.18) is violated).
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Theorem VII.5.15

Theorem VII.5.15 (continued 6)

Proof (continued). So

|f (z)−1| =

∣∣∣∣∣
∞∏

n=1

En

(
zn − wn

z − wn

)
− 1

∣∣∣∣∣ =
∣∣∣∣∣exp

( ∞∑
n=1

log En

(
zn − wn

z − wn

))
= 1

∣∣∣∣∣
(5.19) is a “meaningful equation” (that is, En((zn −wn)/(z −wn)) 6= 0 for
|z | ≥ R1 and for n ∈ N, and so there is a branch of the logarithm defined
for all such En((zn − wn)/(z − wn)), say the principal branch). Now we
restrict 0 < δ < 1/2 so that (5.18) now gives for |z | ≥ R1 that∣∣∣∣Fn

(
zn − wn

z − wn

)
− 1

∣∣∣∣ ≤ (1

2

)n+1

≤ 1

2
for all n ∈ N, and then by Lemma

VII.5.B,

log

(
En

(
zn − wn

z − wn

))
= log

((
En

(
zn − wn

z − wn

)
− 1

)
+ 1

)
≤ 3

2

∣∣∣∣En

(
zn − wn

z − wn

)
− 1

∣∣∣∣
for all |z | ≥ R1 and for all n ∈ N.
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Theorem VII.5.15

Theorem VII.5.15 (continued 7)

Proof (continued). We now have∣∣∣∣∣
∞∑

n=1

log

(
En

(
za − wn

z − wn

))∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣log En

(
zn − wn

z − wn

)∣∣∣∣
≤

∞∑
n=1

3

2

∣∣∣∣En

(
zn − wn

z − wn

)
− 1

∣∣∣∣
≤

∞∑
n=1

3

2
δn+1 by (5.18) (notice the choice of

R1 implies that (5.18) holds for all n ∈ N)

=
3

2

δ2

1− δ

for all |z | ≥ R1. By the continuity of ez at z = 0, we can further restrict

0 < δ < 1/2 so that |w | < 3

2

δ2

1− δ
implies |ew − 1| < ε (so that we now

have δ “fixed”).
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Theorem VII.5.15

Theorem VII.5.15 (continued 8)

Proof (continued). Then for |z | ≥ R1, equation (5.19) with our choice of

δ (and with w =
∞∑

n=1

log

(
En

(
zn − wn

z − wn

))
) gives

|f (z)− 1| = |ew − 1| < ε. Since ε > 0 was arbitrary (R1 is chosen based
on δ and δ is chosen based on ε, so ultimately R1 depends on ε), then
limz→∞ f (z) = 1.

(IV) Combining Part III with Part II, gives an analytic function

f (z) =
∞∏

n=1

En

(
zn − wn

z − wn

)
which has a simple zero at z = zn for all n ∈ N,

and so has a zero at z = aj of multiplicity mj for each j ∈ N, on a set G
satisfying (5.16) and such that limz→∞ f (z) = 1. By Part I, f can be
modified to give the desired function g on any region G (in the proof of
Part I the zeros of f are denoted as αj instead of aj).
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Corollary VII.5.20

Corollary VII.5.20

Corollary VII.5.20. If f is a meromorphic function on an open set G then
there are analytic functions g and h on G such that f = g/h.

Proof. Let {aj} be the poles of f and let mj be the order of the pole at
aj . By Theorem VII.5.15, there is an analytic function h on G with a zero
of multiplicity mj at aj for each j ∈ N and with not other zeros.

So
h(z)f (z) has removable singularities at each point aj , j ∈ N. Setting
g = hf (reduced and removing the removable singularities), g is then
analytic on G and f = g/h, as claimed.
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