Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions

VII.5. The Weierstrass Factorization Theorem—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

Deringer

Table of contents

- 1
- Lemma VII.5.A
- Proposition VII.5.2
- Lemma VII.5.B
- Proposition VII.5.4
- Lemma VII.5.C
- 6 Corollary VII.5.6
 - 🔰 Lemma VII.5.7
 - Lemma VII.5.8
 - Theorem VII.5.9
- 10 Lemma VII.5.11
 - Theorem VII.5.12
 - 2 Theorem VII.5.14. The Weierstrass Factorization Theorem
 - Theorem VII.5.15
 - Corollary VII.5.20

Lemma VII.5.A. Let $\{z_n\}$ be a sequence of nonzero complex numbers. Suppose $\prod_{k=1}^{\infty} z_k$ exists. If $\prod_{k=1}^{\infty} a_k \neq 0$ then $\lim_{n\to\infty} z_n = 1$.

Proof. Denote $p_n = \prod_{k=1}^n z_k$. Suppose $\prod_{k=1}^n z_n$ exists and is not zero. Then no p_n is 0 and $p_n/p_{n-1} = z_n$.

Lemma VII.5.A. Let $\{z_n\}$ be a sequence of nonzero complex numbers. Suppose $\prod_{k=1}^{\infty} z_k$ exists. If $\prod_{k=1}^{\infty} a_k \neq 0$ then $\lim_{n\to\infty} z_n = 1$.

Proof. Denote $p_n = \prod_{k=1}^n z_k$. Suppose $\prod_{k=1}^n z_n$ exists and is not zero. Then no p_n is 0 and $p_n/p_{n-1} = z_n$. Since $\lim_{n\to\infty} p_n = z$, then

$$\lim_{n \to \infty} \frac{p_n}{p_{n-1}} = \lim_{n \to \infty} z_n \text{ implies } \frac{\lim_{n \to \infty} p_n}{\lim_{n \to \infty} p_{n-1}} = \lim_{n \to \infty} z_n$$

or $1 = z/z = \lim_{n \to \infty} z_n$.

Lemma VII.5.A. Let $\{z_n\}$ be a sequence of nonzero complex numbers. Suppose $\prod_{k=1}^{\infty} z_k$ exists. If $\prod_{k=1}^{\infty} a_k \neq 0$ then $\lim_{n\to\infty} z_n = 1$.

Proof. Denote $p_n = \prod_{k=1}^n z_k$. Suppose $\prod_{k=1}^n z_n$ exists and is not zero. Then no p_n is 0 and $p_n/p_{n-1} = z_n$. Since $\lim_{n\to\infty} p_n = z$, then

$$\lim_{n \to \infty} \frac{p_n}{p_{n-1}} = \lim_{n \to \infty} z_n \text{ implies } \frac{\lim_{n \to \infty} p_n}{\lim_{n \to \infty} p_{n-1}} = \lim_{n \to \infty} z_n$$

or $1 = z/z = \lim_{n \to \infty} z_n$.

Proposition VII.5.2. Let $\operatorname{Re}(z) > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_n$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_n$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_n$ converges (say to *s*) then $\prod_{k=1}^{\infty} z_n$ converges (to e^s). Now suppose $\prod_{n=1}^{\infty} z_n$ converges, say $\lim_{n\to\infty} p_n = z$ where $z = re^{i\theta}$ for some $-\pi < \theta \le \pi$. Define $\ell(p_n) = \log |p_n| + i\theta_n$ where $\theta - \pi < \theta_n \le \theta + \pi$.

Proposition VII.5.2. Let $\operatorname{Re}(z) > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_n$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_n$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_n$ converges (say to *s*) then $\prod_{k=1}^{\infty} z_n$ converges (to e^s). Now suppose $\prod_{n=1}^{\infty} z_n$ converges, say $\lim_{n\to\infty} p_n = z$ where $z = re^{i\theta}$ for some $-\pi < \theta \le \pi$. Define $\ell(p_n) = \log |p_n| + i\theta_n$ where $\theta - \pi < \theta_n \le \theta + \pi$. Since $\lim_{n\to\infty} p_n = z$ then $\lim_{n\to\infty} |p_n| = |z| = r$ and $\lim_{n\to\infty} \theta_n = \theta$; hence $\lim_{n\to\infty} \ell(p_n) = \lim_{n\to\infty} (\log |p_n| + i\theta_n) = \log |z| + i\theta$ (notice $\theta_n \in (\theta - \pi, \theta + \pi]$ for all $n \in \mathbb{N}$). If $s_n \sum_{k=1}^n \log z_k$ then $\exp(s_n) = p_n$ and so $s_n = \ell(p_n) + 2\pi i k_n$ for some $k \in \mathbb{Z}$.

Proposition VII.5.2. Let $\operatorname{Re}(z) > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_n$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_n$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_n$ converges (say to s) then $\prod_{k=1}^{\infty} z_n$ converges (to e^s). Now suppose $\prod_{n=1}^{\infty} z_n$ converges, say $\lim_{n\to\infty} p_n = z$ where $z = re^{i\theta}$ for some $-\pi < \theta < \pi$. Define $\ell(p_n) = \log |p_n| + i\theta_n$ where $\theta - \pi < \theta_n < \theta + \pi$. Since $\lim_{n \to \infty} p_n = z$ then $\lim_{n\to\infty} |p_n| = |z| = r$ and $\lim_{n\to\infty} \theta_n = \theta$; hence $\lim_{n\to\infty} \ell(p_n) = \lim_{n\to\infty} (\log |p_n| + i\theta_n) = \log |z| + i\theta \text{ (notice)}$ $\theta_n \in (\theta - \pi, \theta + \pi]$ for all $n \in \mathbb{N}$). If $s_n \sum_{k=1}^n \log z_k$ then $\exp(s_n) = p_n$ and so $s_n = \ell(p_n) + 2\pi i k_n$ for some $k \in \mathbb{Z}$. Since $p_n \to z$ then $s_n - s_{n-1} = \sum_{k=1}^n \log z_k - \sum_{k=1}^{n-1} \log z_k = \log z_n$ (where we use the principal branch of the logarithm here) and so $\lim_{n\to\infty} (s_n - s_{n-1}) = \lim_{n\to\infty} z_n = \log \lim_{n\to\infty} z_n = \log 1 = 0.$

Proposition VII.5.2. Let $\operatorname{Re}(z) > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_n$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_n$ converges.

Proof. We just showed that if $\sum_{n=1}^{\infty} \log z_n$ converges (say to s) then $\prod_{k=1}^{\infty} z_n$ converges (to e^s). Now suppose $\prod_{n=1}^{\infty} z_n$ converges, say $\lim_{n\to\infty} p_n = z$ where $z = re^{i\theta}$ for some $-\pi < \theta < \pi$. Define $\ell(p_n) = \log |p_n| + i\theta_n$ where $\theta - \pi < \theta_n < \theta + \pi$. Since $\lim_{n \to \infty} p_n = z$ then $\lim_{n\to\infty} |p_n| = |z| = r$ and $\lim_{n\to\infty} \theta_n = \theta$; hence $\lim_{n\to\infty} \ell(p_n) = \lim_{n\to\infty} (\log |p_n| + i\theta_n) = \log |z| + i\theta \text{ (notice)}$ $\theta_n \in (\theta - \pi, \theta + \pi]$ for all $n \in \mathbb{N}$). If $s_n \sum_{k=1}^n \log z_k$ then $\exp(s_n) = p_n$ and so $s_n = \ell(p_n) + 2\pi i k_n$ for some $k \in \mathbb{Z}$. Since $p_n \to z$ then $s_n - s_{n-1} = \sum_{k=1}^n \log z_k - \sum_{k=1}^{n-1} \log z_k = \log z_n$ (where we use the principal branch of the logarithm here) and so $\lim_{n\to\infty} (s_n - s_{n-1}) = \lim_{n\to\infty} z_n = \log \lim_{n\to\infty} z_n = \log 1 = 0.$

Proposition VII.5.2 (continued 1)

Proof (continued). Also

$$\ell(p_n) - \ell(p_{n-1}) = (\log |p_n| + i\theta_n) - (\log |p_{n-1}| + i\theta_{n-1})$$
$$= \log \left| \frac{p_n}{p_{n-1}} \right| + i(\theta_n - \theta_{n-1}) = \log |z_n| + i(\theta_n - \theta_{n-1})$$

and so

$$\lim_{n \to \infty} (\ell(p_n) - \ell(p_{n-1})) = \lim_{n \to \infty} (\log |z_n| + i(\theta_n - \theta_{n-1})) \log \left(\lim_{n \to \infty} z_n\right)$$
$$+ i \lim_{n \to \infty} (\theta_n - \theta_{n-1}) = \log 1 + i(\theta - \theta) = 0.$$
Since $s_n = \ell(p_n) + 2\pi i k_n$ then $\ell(p_n) = s_n - 2\pi i k_n$, and so
$$\ell(p_n) - \ell(p_{n-1}) = (s_n - 2\pi i k_n) - (s_{n-1} - 2\pi i k_{n-1}) = s_n - s_{n-1} - 2\pi i (k_n - k_{n-1})$$
and $\lim_{n \to \infty} ((s_n - s_{n-1}) - 2\pi i (k_n - k_{n-1})) = 0$, so
$$\lim_{n \to \infty} (k_n - k_{n-1}) = 0.$$
 But since $k_n \in \mathbb{Z}$ then there is some $n_0 \in \mathbb{N}$ such that $k_m = k_n = k$ for some fixed $k \in \mathbb{Z}$ and for all $m, n \ge n_0$.

Proposition VII.5.2 (continued 1)

Proof (continued). Also

$$\ell(p_n) - \ell(p_{n-1}) = (\log |p_n| + i\theta_n) - (\log |p_{n-1}| + i\theta_{n-1})$$
$$= \log \left| \frac{p_n}{p_{n-1}} \right| + i(\theta_n - \theta_{n-1}) = \log |z_n| + i(\theta_n - \theta_{n-1})$$

and so

$$\lim_{n \to \infty} (\ell(p_n) - \ell(p_{n-1})) = \lim_{n \to \infty} (\log |z_n| + i(\theta_n - \theta_{n-1})) \log \left(\lim_{n \to \infty} z_n\right)$$
$$+ i \lim_{n \to \infty} (\theta_n - \theta_{n-1}) = \log 1 + i(\theta - \theta) = 0.$$
Since $s_n = \ell(p_n) + 2\pi i k_n$ then $\ell(p_n) = s_n - 2\pi i k_n$, and so
$$\ell(p_n) - \ell(p_{n-1}) = (s_n - 2\pi i k_n) - (s_{n-1} - 2\pi i k_{n-1}) = s_n - s_{n-1} - 2\pi i (k_n - k_{n-1})$$
and $\lim_{n \to \infty} ((s_n - s_{n-1}) - 2\pi i (k_n - k_{n-1})) = 0$, so
$$\lim_{n \to \infty} (k_n - k_{n-1}) = 0.$$
 But since $k_n \in \mathbb{Z}$ then there is some $n_0 \in \mathbb{N}$ such that $k_m = k_n = k$ for some fixed $k \in \mathbb{Z}$ and for all $m, n \ge n_0$.

Proposition VII.5.2 (continued 2)

Proposition VII.5.2. Let $\operatorname{Re}(z) > 0$ for all $n \in \mathbb{N}$. Then $\prod_{n=1}^{\infty} z_n$ converges to a nonzero complex number if and only if the series $\sum_{n=1}^{\infty} \log z_n$ converges.

Proof (continued). Therefore

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} (\ell(p_n) + 2\pi i k_n) = \lim_{n\to\infty} \ell(p_n) + 2\pi i \lim_{n\to\infty} k_n = \ell(z) + 2\pi i k.$$

That is, $\sum_{k=1}^{\infty} \log z_k$ converges.

Lemma VII.5.B. If |z| < 1/2 then $\frac{1}{2}|z| \le |\log(1+z)| \le \frac{3}{2}|z|$.

Proof. The power series for $\log 1 + z$ about z = 0 is

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n} = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

which has radius of convergence 1.

Lemma VII.5.B

Lemma VII.5.B. If |z| < 1/2 then $\frac{1}{2}|z| \le |\log(1+z)| \le \frac{3}{2}|z|$.

Proof. The power series for $\log 1 + z$ about z = 0 is

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n} = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

which has radius of convergence 1. So for |z| < 1.

$$\left|1 - \frac{\log(1+z)}{z}\right| = \left|\frac{1}{2}z - \frac{1}{3}z^2 + \frac{1}{4}z^3 - \cdots\right|$$
$$\leq \frac{1}{2}|z| + \frac{1}{3}|z|^2 + \frac{1}{4}|z|^3 + \cdots \leq \frac{1}{2}(|z| + |z|^2 + |z|^3 + \cdots) = \frac{1}{2}\frac{|z|}{1-|z|}.$$

Lemma VII.5.B. If |z| < 1/2 then $\frac{1}{2}|z| \le |\log(1+z)| \le \frac{3}{2}|z|$.

Proof. The power series for $\log 1 + z$ about z = 0 is

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n} = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

which has radius of convergence 1. So for |z| < 1.

$$\begin{vmatrix} 1 - \frac{\log(1+z)}{z} \end{vmatrix} = \begin{vmatrix} \frac{1}{2}z - \frac{1}{3}z^2 + \frac{1}{4}z^3 - \cdots \end{vmatrix}$$

$$\leq \frac{1}{2}|z| + \frac{1}{3}|z|^2 + \frac{1}{4}|z|^3 + \cdots \leq \frac{1}{2}(|z| + |z|^2 + |z|^3 + \cdots) = \frac{1}{2}\frac{|z|}{1-|z|}.$$

For $|z| < 1/2$, $\begin{vmatrix} 1 - \frac{\log(1+z)}{z} \end{vmatrix} \leq \frac{1}{2}$ and $|z - \log(1+z)| \leq |z|/2$. So by
Exercise I.3.1, $|\log(1+z)| - |z| \leq |z|/2$ and so $|\log(1+z)| \leq 3|z|/2$.
Similarly, $|z| - |\log(1+z)| \leq |z|/2$ and so $|z|/2 \leq |\log(1+z)|.$

Lemma VII.5.B. If |z| < 1/2 then $\frac{1}{2}|z| \le |\log(1+z)| \le \frac{3}{2}|z|$.

Proof. The power series for $\log 1 + z$ about z = 0 is

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n} = z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

which has radius of convergence 1. So for |z| < 1.

$$\begin{aligned} \left|1 - \frac{\log(1+z)}{z}\right| &= \left|\frac{1}{2}z - \frac{1}{3}z^2 + \frac{1}{4}z^3 - \cdots\right| \\ &\leq \frac{1}{2}|z| + \frac{1}{3}|z|^2 + \frac{1}{4}|z|^3 + \cdots \leq \frac{1}{2}(|z| + |z|^2 + |z|^3 + \cdots) = \frac{1}{2}\frac{|z|}{1-|z|}. \end{aligned}$$
For $|z| < 1/2$, $\left|1 - \frac{\log(1+z)}{z}\right| \leq \frac{1}{2}$ and $|z - \log(1+z)| \leq |z|/2$. So by Exercise I.3.1, $|\log(1+z)| - |z| \leq |z|/2$ and so $|\log(1+z)| \leq 3|z|/2$. Similarly, $|z| - |\log(1+z)| \leq |z|/2$ and so $|z|/2 \leq |\log(1+z)|$.

Proposition VII.5.4. Let $\operatorname{Re}(z) > -1$. Then the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_n$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty} |z_n|$ converges. Then, by the "Test for Divergence," from Calculus 2, $|z_n| \to 0$ and $z_n \to 0$. So there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $|z_n| < 1/2$. So by Lemma VII.5.B, for all $n \ge n_0$, $|log(1 + z_n)| \le 3|z_n|/2$.

Proposition VII.5.4. Let $\operatorname{Re}(z) > -1$. Then the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_n$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty} |z_n|$ converges. Then, by the "Test for Divergence," from Calculus 2, $|z_n| \to 0$ and $z_n \to 0$. So there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $|z_n| < 1/2$. So by Lemma VII.5.B, for all $n \ge n_0$, $|log(1 + z_n)| \le 3|z_n|/2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3|z_n|/2$ converges then $\sum_{n=1}^{\infty} |\log(1 + z_n)|$ converges. That is, $\sum_{n=1}^{\infty} \log(1 + z_n)$ converges absolutely.

Complex Analysis

Proposition VII.5.4. Let $\operatorname{Re}(z) > -1$. Then the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_n$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty} |z_n|$ converges. Then, by the "Test for Divergence," from Calculus 2, $|z_n| \to 0$ and $z_n \to 0$. So there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $|z_n| < 1/2$. So by Lemma VII.5.B, for all $n \ge n_0$, $|log(1 + z_n)| \le 3|z_n|/2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3|z_n|/2$ converges then $\sum_{n=1}^{\infty} |\log(1 + z_n)|$ converges. That is, $\sum_{n=1}^{\infty} \log(1 + z_n)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty} |\log(1+z_n)|$ converges. Then by the Test for Divergence, $\lim_{n\to\infty} |\log(1+z_n)| = 0$ and so $\lim_{n\to\infty} z_n = 0$. so there is $n_1 \in \mathbb{N}$ such that for all $n \ge n_1$ we have $|z_n| < 1/2$. By Lemma VII.5.B, for all $n \ge b_1$, $|z_n|/2 \le |\log(1+z_n)|$.

Proposition VII.5.4. Let $\operatorname{Re}(z) > -1$. Then the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_n$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty} |z_n|$ converges. Then, by the "Test for Divergence," from Calculus 2, $|z_n| \to 0$ and $z_n \to 0$. So there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $|z_n| < 1/2$. So by Lemma VII.5.B, for all $n \ge n_0$, $|log(1 + z_n)| \le 3|z_n|/2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3|z_n|/2$ converges then $\sum_{n=1}^{\infty} |\log(1 + z_n)|$ converges. That is, $\sum_{n=1}^{\infty} \log(1 + z_n)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty} |\log(1+z_n)|$ converges. Then by the Test for Divergence, $\lim_{n\to\infty} |\log(1+z_n)| = 0$ and so $\lim_{n\to\infty} z_n = 0$. so there is $n_1 \in \mathbb{N}$ such that for all $n \ge n_1$ we have $|z_n| < 1/2$. By Lemma VII.5.B, for all $n \ge b_1$, $|z_n|/2 \le |\log(1+z_n)|$. By the Direct Comparison Test, since $\sum_{n=1}^{\infty} |\log(1+z_n)|$ converges then $\sum_{n=1}^{\infty} |z_n|/2$ converges. That is, $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Proposition VII.5.4. Let $\operatorname{Re}(z) > -1$. Then the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Proof. Suppose $\sum_{n=1} \infty z_n$ converges absolutely; that is, suppose $\sum_{n=1}^{\infty} |z_n|$ converges. Then, by the "Test for Divergence," from Calculus 2, $|z_n| \to 0$ and $z_n \to 0$. So there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $|z_n| < 1/2$. So by Lemma VII.5.B, for all $n \ge n_0$, $|log(1 + z_n)| \le 3|z_n|/2$. So by the Direct Comparison Test, since $\sum_{n=1}^{\infty} 3|z_n|/2$ converges then $\sum_{n=1}^{\infty} |\log(1 + z_n)|$ converges. That is, $\sum_{n=1}^{\infty} \log(1 + z_n)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty} |\log(1+z_n)|$ converges. Then by the Test for Divergence, $\lim_{n\to\infty} |\log(1+z_n)| = 0$ and so $\lim_{n\to\infty} z_n = 0$. so there is $n_1 \in \mathbb{N}$ such that for all $n \ge n_1$ we have $|z_n| < 1/2$. By Lemma VII.5.B, for all $n \ge b_1$, $|z_n|/2 \le |\log(1+z_n)|$. By the Direct Comparison Test, since $\sum_{n=1}^{\infty} |\log(1+z_n)|$ converges then $\sum_{n=1}^{\infty} |z_n|/2$ converges. That is, $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Lemma VII.5.C. Let $\{z_n\}$ be a sequence of complex numbers with $\operatorname{Re}(z_n) > 0$ for all $n \in \mathbb{N}$ and suppose $\prod_{n=1}^{\infty} z_n$ converges absolutely. Then

(a) $\prod_{n=1}^{\infty} z_n$ converges; and

(b) any rearrangement of $\{z_n\}$, say $\{z_m\}$ (where m = f(n) for some given one to one and onto $f : \mathbb{N} \to \mathbb{N}$) converges absolutely.

Proof. (a) Since $\prod_{n=1}^{\infty} z_n$ converges absolutely, by definition, the series $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. By Proposition III.1.1, this means that $\sum_{n=1}^{\infty} \log z_n$ converges. So by Proposition VII.5.2, $\prod_{n=1}^{\infty} z_n$ converges.

Lemma VII.5.C. Let $\{z_n\}$ be a sequence of complex numbers with $\operatorname{Re}(z_n) > 0$ for all $n \in \mathbb{N}$ and suppose $\prod_{n=1}^{\infty} z_n$ converges absolutely. Then

(a) $\prod_{n=1}^{\infty} z_n$ converges; and

(b) any rearrangement of $\{z_n\}$, say $\{z_m\}$ (where m = f(n) for some given one to one and onto $f : \mathbb{N} \to \mathbb{N}$) converges absolutely.

Proof. (a) Since $\prod_{n=1}^{\infty} z_n$ converges absolutely, by definition, the series $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. By Proposition III.1.1, this means that $\sum_{n=1}^{\infty} \log z_n$ converges. So by Proposition VII.5.2, $\prod_{n=1}^{\infty} z_n$ converges.

(b) Since $\prod_{n=1}^{\infty} z_n$ converges absolutely then, by definition, the series $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. That is, $\sum_{n=1}^{\infty} |\log z_n|$ converges. With m = f(n) as described above (and $\{z_m\}$ a rearrangement of $\{z_n\}$), then by the Rearrangement Theorem from Calculus 2, $\sum_{n=1}^{\infty} |\log z_n| = \sum_{m=1}^{\infty} |\log z_m|$ and so $\sum_{m=1}^{\infty} \log z_m$ converges absolutely.

So, by definition, $\prod_{m=1}^{\infty} z_m$ converges absolutely.

Lemma VII.5.C. Let $\{z_n\}$ be a sequence of complex numbers with $\operatorname{Re}(z_n) > 0$ for all $n \in \mathbb{N}$ and suppose $\prod_{n=1}^{\infty} z_n$ converges absolutely. Then

(a) $\prod_{n=1}^{\infty} z_n$ converges; and

(b) any rearrangement of $\{z_n\}$, say $\{z_m\}$ (where m = f(n) for some given one to one and onto $f : \mathbb{N} \to \mathbb{N}$) converges absolutely.

Proof. (a) Since $\prod_{n=1}^{\infty} z_n$ converges absolutely, by definition, the series $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. By Proposition III.1.1, this means that $\sum_{n=1}^{\infty} \log z_n$ converges. So by Proposition VII.5.2, $\prod_{n=1}^{\infty} z_n$ converges. (b) Since $\prod_{n=1}^{\infty} z_n$ converges absolutely then, by definition, the series $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. That is, $\sum_{n=1}^{\infty} |\log z_n|$ converges. With m = f(n) as described above (and $\{z_m\}$ a rearrangement of $\{z_n\}$), then by the Rearrangement Theorem from Calculus 2, $\sum_{n=1}^{\infty} |\log z_n| = \sum_{m=1}^{\infty} |\log z_m|$ and so $\sum_{m=1}^{\infty} \log z_m$ converges absolutely. So, by definition, $\prod_{m=1}^{\infty} z_m$ converges absolutely.

Corollary VII.5.6

Corollary VII.5.6. If $\operatorname{Re}(z_n) > 0$ then the product $\prod_{n=1}^{\infty} z_n$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely.

Proof. Suppose $\prod_{n=1}^{\infty} z_n$ converges absolutely. Then, by definition, $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. Define $z_m = z_n - 1$. Then $\operatorname{Re}(z_m) > -1$ and $\sum_{n=1}^{\infty} \log z_n = \sum_{m=1}^{\infty} \log(1 + z_m)$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} z_m = \sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely. **Corollary VII.5.6.** If $\operatorname{Re}(z_n) > 0$ then the product $\prod_{n=1}^{\infty} z_n$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely.

Proof. Suppose $\prod_{n=1}^{\infty} z_n$ converges absolutely. Then, by definition, $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. Define $z_m = z_n - 1$. Then $\operatorname{Re}(z_m) > -1$ and $\sum_{n=1}^{\infty} \log z_n = \sum_{m=1}^{\infty} \log(1 + z_m)$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} z_m = \sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely.

Suppose $\sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely. Define $z_m = z_1 - 1$. Then $\operatorname{Re}(z_m) > -1$ and $\sum_{n=1}^{\infty} (z_n - 1) = \sum_{m=1}^{\infty} z_m$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} \log(1 + z_n) = \sum_{n=1}^{\infty} \log z_n$ converges absolutely. So, by definition, $\prod_{n=1}^{\infty} z_n$ converges absolutely.

Corollary VII.5.6. If $\operatorname{Re}(z_n) > 0$ then the product $\prod_{n=1}^{\infty} z_n$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely.

Proof. Suppose $\prod_{n=1}^{\infty} z_n$ converges absolutely. Then, by definition, $\sum_{n=1}^{\infty} \log z_n$ converges absolutely. Define $z_m = z_n - 1$. Then $\operatorname{Re}(z_m) > -1$ and $\sum_{n=1}^{\infty} \log z_n = \sum_{m=1}^{\infty} \log(1 + z_m)$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} z_m = \sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely. Suppose $\sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely. Define $z_m = z_1 - 1$. Then $\operatorname{Re}(z_m) > -1$ and $\sum_{n=1}^{\infty} (z_n - 1) = \sum_{m=1}^{\infty} z_m$ converges absolutely. So by Proposition VII.5.4, $\sum_{m=1}^{\infty} \log(1 + z_n) = \sum_{m=1}^{\infty} z_m$ converges absolutely.

So, by definition, $\prod_{n=1}^{\infty} z_n$ converges absolutely.

Lemma VII.5.7. Let X be a set and let $f, f_1, f_2, ...$ be functions from X into \mathbb{C} such that $f_n(z) \to f(z)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re}(f(z)) \leq a$ for all $x \in X$, then $\exp(f_n(x)) \to \exp(f(x))$ uniformly for $x \in X$.

Proof. Let $\varepsilon > 0$. Since e^z is continuous at z = 0, there is $\delta > 0$ such that for $|z| < \delta$ such that for $|z| < \delta$ we have $|e^z - 1| < \varepsilon e^{-a}$. Choose $n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies $|f_n(x) - f(x)| < \delta$ for all $x \in X$. Then for $n \ge n_0$ we have for all $x \in X$ that $\varepsilon e^{-a} > |e^{f_n(x) - f(x)} - 1| = |\exp(f_n(x)) / \exp(f(x)) - 1|$.

Lemma VII.5.7. Let X be a set and let $f, f_1, f_2, ...$ be functions from X into \mathbb{C} such that $f_n(z) \to f(z)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re}(f(z)) \leq a$ for all $x \in X$, then $\exp(f_n(x)) \to \exp(f(x))$ uniformly for $x \in X$.

Proof. Let $\varepsilon > 0$. Since e^z is continuous at z = 0, there is $\delta > 0$ such that for $|z| < \delta$ such that for $|z| < \delta$ we have $|e^z - 1| < \varepsilon e^{-a}$. Choose $n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies $|f_n(x) - f(x)| < \delta$ for all $x \in X$. Then for $n \ge n_0$ we have for all $x \in X$ that $\varepsilon e^{-a} > |e^{f_n(x) - f(x)} - 1| = |\exp(f_n(x)) / \exp(f(x)) - 1|$.

Lemma VII.5.7 (continued)

Lemma VII.5.7. Let X be a set and let $f, f_1, f_2, ...$ be functions from X into \mathbb{C} such that $f_n(z) \to f(z)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re}(f(z)) \leq a$ for all $x \in X$, then $\exp(f_n(x)) \to \exp(f(x))$ uniformly for $x \in X$.

Proof (continued). So for all $n \ge n_0$ for all $x \in X$,

$$\begin{aligned} |\exp(f_n(x)) - \exp(f(x))| &< \varepsilon e^{-a} |\exp f(x)| \\ &= \varepsilon e^{-a} \exp(\operatorname{Re}(f(x))) \\ &\quad \operatorname{since} |\exp(f(x))| = \exp(\operatorname{Re}(f(x))) \\ &= \varepsilon \exp(\operatorname{Re}(f(x)) - a) \\ &\leq \varepsilon \operatorname{since} \operatorname{Re}(f(x)) - a \leq 0, \end{aligned}$$

That is, $\{\exp(f_n(x))\}\$ converges to $\exp(f(x))\$ uniformly on X.

Lemma VII.5.8

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\{g_n\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_n(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x) = \prod_{n=1}^{\infty} (1 + g_n(x))$ converges absolutely and uniformly for $x \in X$. Also, there is $n_0 \in \mathbb{N}$ such that f(z) = 0 if and only if $g_n(x) = -1$ for some n where $1 \le n \le n_0$.

Proof. The absolute and uniform convergence of $\sum_{n=1}^{\infty} g_n(x)$ on X implies that $\sum_{n=1}^{\infty} |g_n(x)|$ converges uniformly on X for each $\varepsilon > 0$ there is $n_1 \in \mathbb{N}$ such that $\sum_{n=n_1}^{\infty} |g_n(x)| < \varepsilon$ for all $x \in X$. In particular, there is $n_0 \in \mathbb{N}$ such that $|g_n(x)| < 1/2$ for all $x \in X$ and $n > n_0$.

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\{g_n\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_n(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x) = \prod_{n=1}^{\infty} (1 + g_n(x))$ converges absolutely and uniformly for $x \in X$. Also, there is $n_0 \in \mathbb{N}$ such that f(z) = 0 if and only if $g_n(x) = -1$ for some n where $1 \le n \le n_0$.

Proof. The absolute and uniform convergence of $\sum_{n=1}^{\infty} g_n(x)$ on X implies that $\sum_{n=1}^{\infty} |g_n(x)|$ converges uniformly on X for each $\varepsilon > 0$ there is $n_1 \in \mathbb{N}$ such that $\sum_{n=n_1}^{\infty} |g_n(x)| < \varepsilon$ for all $x \in X$. In particular, there is $n_0 \in \mathbb{N}$ such that $|g_n(x)| < 1/2$ for all $x \in X$ and $n > n_0$. So for $n > n_0$, $\operatorname{Re}(1 + g_n(x)) = \operatorname{Re}(1) + \operatorname{Re}(g_n(x)) > 1 - 1/2 = 1/2 > 0$, since $|\operatorname{Re}(g_n(x))| \le |g_n(x)| < 1/2$ and so $-1/2 < \operatorname{Re}(g_n(x)) < 1/2$, for all $x \in X$. So by Lemma VII.5.B $|\log(1 + g_n(x))| \le 3|g_n(x)|/2$ for $n > n_0$ and for all $x \in X$.

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\{g_n\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_n(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x) = \prod_{n=1}^{\infty} (1 + g_n(x))$ converges absolutely and uniformly for $x \in X$. Also, there is $n_0 \in \mathbb{N}$ such that f(z) = 0 if and only if $g_n(x) = -1$ for some n where $1 \le n \le n_0$.

Proof. The absolute and uniform convergence of $\sum_{n=1}^{\infty} g_n(x)$ on X implies that $\sum_{n=1}^{\infty} |g_n(x)|$ converges uniformly on X for each $\varepsilon > 0$ there is $n_1 \in \mathbb{N}$ such that $\sum_{n=n_1}^{\infty} |g_n(x)| < \varepsilon$ for all $x \in X$. In particular, there is $n_0 \in \mathbb{N}$ such that $|g_n(x)| < 1/2$ for all $x \in X$ and $n > n_0$. So for $n > n_0$, $\operatorname{Re}(1 + g_n(x)) = \operatorname{Re}(1) + \operatorname{Re}(g_n(x)) > 1 - 1/2 = 1/2 > 0$, since $|\operatorname{Re}(g_n(x))| \le |g_n(x)| < 1/2$ and so $-1/2 < \operatorname{Re}(g_n(x)) < 1/2$, for all $x \in X$. So by Lemma VII.5.B $|\log(1 + g_n(x))| \le 3|g_n(x)|/2$ for $n > n_0$ and for all $x \in X$.

Lemma VII.5.8 (continued 1)

Proof (continued). Since $\sum_{n=1}^{\infty} 3|g_n(x)|/2$ converges uniformly for $x \in X$ then $h(x) = \sum_{n=n_0+1}^{\infty} \log(1+g_n(x))$ converges uniformly and absolutely for $x \in X$ (by a pointwise application of the Direct Comparison Test). Since each g_n is continuous then h is continuous by Theorem II.6.1. Since X is compact by hypothesis, then h(X) is compact in \mathbb{C} by Theorem II.5.8 and so h is bounded (since h(X) is closed and bounded by the Heine-Borel Theorem). So there is some constant a such that $\operatorname{Re}(h(x)) < a$ for all $x \in X$. So, by Theorem VII.5.7, exp $h(x) = \prod_{n=n+1}^{\infty} (1 + g_n(x))$ converges uniformly for $x \in X$. Notice that since $\sum_{n=n_0+1}^{\infty} \log(1+g_n(x))$ converges absolutely then, by definition, $\prod_{n=n_0+1}^{\infty} (1+g_n(x))$ converges absolutely.

Lemma VII.5.8 (continued 1)

Proof (continued). Since $\sum_{n=1}^{\infty} 3|g_n(x)|/2$ converges uniformly for $x \in X$ then $h(x) = \sum_{n=n_0+1}^{\infty} \log(1+g_n(x))$ converges uniformly and absolutely for $x \in X$ (by a pointwise application of the Direct Comparison Test). Since each g_n is continuous then h is continuous by Theorem II.6.1. Since X is compact by hypothesis, then h(X) is compact in \mathbb{C} by Theorem II.5.8 and so h is bounded (since h(X) is closed and bounded by the Heine-Borel Theorem). So there is some constant *a* such that $\operatorname{Re}(h(x)) < a$ for all $x \in X$. So, by Theorem VII.5.7, exp $h(x) = \prod_{n=n_0+1}^{\infty} (1 + g_n(x))$ converges uniformly for $x \in X$. Notice that since $\sum_{n=n_0+1}^{\infty} \log(1+g_n(x))$ converges absolutely then, by definition, $\prod_{n=n_0+1}^{\infty} (1+g_n(x))$ converges absolutely. Therefore,

$$f(x) = (1 + g_1(x))(1 + g_2(x)) \cdots (1 + g_{n_0}(x)) \exp(h(x)) = \prod_{n=1}^{\infty} (1 + g_n(x))$$

converges uniformly and absolutely for x in X, as claimed.

Lemma VII.5.8 (continued 1)

Proof (continued). Since $\sum_{n=1}^{\infty} 3|g_n(x)|/2$ converges uniformly for $x \in X$ then $h(x) = \sum_{n=n_0+1}^{\infty} \log(1+g_n(x))$ converges uniformly and absolutely for $x \in X$ (by a pointwise application of the Direct Comparison Test). Since each g_n is continuous then h is continuous by Theorem II.6.1. Since X is compact by hypothesis, then h(X) is compact in \mathbb{C} by Theorem II.5.8 and so h is bounded (since h(X) is closed and bounded by the Heine-Borel Theorem). So there is some constant *a* such that $\operatorname{Re}(h(x)) < a$ for all $x \in X$. So, by Theorem VII.5.7, exp $h(x) = \prod_{n=n_0+1}^{\infty} (1 + g_n(x))$ converges uniformly for $x \in X$. Notice that since $\sum_{n=n_0+1}^{\infty} \log(1+g_n(x))$ converges absolutely then, by definition, $\prod_{n=n_0+1}^{\infty} (1+g_n(x))$ converges absolutely. Therefore,

$$f(x) = (1 + g_1(x))(1 + g_2(x)) \cdots (1 + g_{n_0}(x)) \exp(h(x)) = \prod_{n=1}^{\infty} (1 + g_n(x))$$

converges uniformly and absolutely for x in X, as claimed.
Lemma VII.5.8 (continued 2)

Lemma VII.5.8. Let (X, d) be a compact metric space and let $\{g_n\}$ be a sequence of continuous functions from X to \mathbb{C} such that $\sum_{n=1}^{\infty} g_n(x)$ converges absolutely and uniformly for $x \in X$. Then the product $f(x) = \prod_{n=1}^{\infty} (1 + g_n(x))$ converges absolutely and uniformly for $x \in X$. Also, there is $n_0 \in \mathbb{N}$ such that f(z) = 0 if and only if $g_n(x) = -1$ for some n where $1 \le n \le n_0$.

Proof (continued). Finally, since $\exp(h(x)) \neq 0$, then f(x) = 0 if and only if $1 + g_n(x) = 0$ for some $1 \le n \le n_0$; that is, if and only if $g_n(x) = -1$ for some $1 \le n \le n_0$.

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\{f_n\}$ be a sequence in H(G) (i.e., a sequence of analytic functions) such that no f_n is identically zero. If $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_n(z)$ converges in H(G) to an analytic function f(z). If a is a zero of f then a is a zero of only a finite number of the functions f_n , and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_n at a.

Proof. Since $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges uniformly and absolutely on compact subsets of *G* (by hypothesis), then by Lemma VII.5.8, $f(z) = \prod_{n=1}^{\infty} f_n(z)$ converges uniformly and absolutely on compact subsets of *G*. Recall that uniform convergence on compact subsets of *G* implies convergence with respect to metric ρ on space H(G) (see Proposition VII.1.10(b)). So the infinite product $\prod_{n=1}^{\infty} f_n(z)$ converges in H(G).

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\{f_n\}$ be a sequence in H(G) (i.e., a sequence of analytic functions) such that no f_n is identically zero. If $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_n(z)$ converges in H(G) to an analytic function f(z). If a is a zero of f then a is a zero of only a finite number of the functions f_n , and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_n at a.

Proof. Since $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges uniformly and absolutely on compact subsets of *G* (by hypothesis), then by Lemma VII.5.8, $f(z) = \prod_{n=1}^{\infty} f_n(z)$ converges uniformly and absolutely on compact subsets of *G*. Recall that uniform convergence on compact subsets of *G* implies convergence with respect to metric ρ on space H(G) (see Proposition VII.1.10(b)). So the infinite product $\prod_{n=1}^{\infty} f_n(z)$ converges in H(G).

Theorem VII.5.9 (continued)

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\{f_n\}$ be a sequence in H(G) (i.e., a sequence of analytic functions) such that no f_n is identically zero. If $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_n(z)$ converges in H(G) to an analytic function f(z). If a is a zero of f then a is a zero of only a finite number of the functions f_n , and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_n at a.

Proof (continued). Let $a \in G$ be a zero of f. Choose r > 0 such that $\overline{B}(a; r) \subset G$. Since $\overline{B}(a; R) \subset G$ is compact, then $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges uniformly on $\overline{B}(a; r)$ by hypothesis. By Lemma VII.5.8 (see the proof) there is $n_0 \in \mathbb{N}$ such that $f(z) = f_1(z)f_2(z)\cdots f_n(z)g(z)$ where $g(z) \neq 0$ in $\overline{B}(a; r)$. So a is a zero of only n finite number of the functions f_n and the multiplicity of zero a of f is the sum of the multiplicities of a as a zero of the function f_n , as claimed.

Theorem VII.5.9 (continued)

Theorem VII.5.9. Let G be a region in \mathbb{C} and let $\{f_n\}$ be a sequence in H(G) (i.e., a sequence of analytic functions) such that no f_n is identically zero. If $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges absolutely and uniformly on compact subsets of G, then $\prod_{n=1}^{\infty} f_n(z)$ converges in H(G) to an analytic function f(z). If a is a zero of f then a is a zero of only a finite number of the functions f_n , and the multiplicity of the zero of f at a is the sum of the multiplicities of the zeros of the function f_n at a.

Proof (continued). Let $a \in G$ be a zero of f. Choose r > 0 such that $\overline{B}(a; r) \subset G$. Since $\overline{B}(a; R) \subset G$ is compact, then $\sum_{n=1}^{\infty} (f_n(z) - 1)$ converges uniformly on $\overline{B}(a; r)$ by hypothesis. By Lemma VII.5.8 (see the proof) there is $n_0 \in \mathbb{N}$ such that $f(z) = f_1(z)f_2(z)\cdots f_n(z)g(z)$ where $g(z) \neq 0$ in $\overline{B}(a; r)$. So a is a zero of only n finite number of the functions f_n and the multiplicity of zero a of f is the sum of the multiplicities of a as a zero of the function f_n , as claimed.

Lemma VII.5.11

Lemma VII.5.11. If $|z| \le 1$ and $p \ge 0$ then $|1 - E_p(z)| \le |z|^{p+1}$.

Proof. For p = 0, $|1 - E_0(z)| = |1 - (1 - z)| = |z| \le |z|^{p+1}$. For $p \ge 1$ fixed, $E_p(z)$ is analytic (entire, in fact) so $E_p(z) = 1 + \sum_{k=1}^{\infty} a_k z^k$ for some coefficients a_k ($E_p(0) = 1$, so $a_0 = 1$).

Lemma VII.5.11

Lemma VII.5.11. If $|z| \le 1$ and $p \ge 0$ then $|1 - E_p(z)| \le |z|^{p+1}$.

Proof. For p = 0, $|1 - E_0(z)| = |1 - (1 - z)| = |z| \le |z|^{p+1}$. For $p \ge 1$ fixed, $E_p(z)$ is analytic (entire, in fact) so $E_p(z) = 1 + \sum_{k=1}^{\infty} a_k z^k$ for some coefficients a_k ($E_p(0) = 1$, so $a_0 = 1$). Then from the definition of $E_p(z)$,

$$E'_p(z) = (-1) \exp\left(z + \frac{z^2}{2} + \frac{z^3}{3} + \dots + \frac{z^p}{p}\right)$$

$$+(1-z)\exp\left(z+\frac{z^2}{2}+\frac{z^3}{3}+\cdots+\frac{z^p}{p}\right)(1+z+z^2+\cdots+z^{p-1})$$

$$= (-1 + (1 - z^{p})) \exp\left(z + \frac{z^{2}}{2} + \frac{z^{3}}{3} + \dots + \frac{z^{p}}{p}\right)$$

 $= -z^{p} \exp\left(z + \frac{z^{2}}{2} + \frac{z^{3}}{3} + \dots + \frac{z^{p}}{p}\right) \qquad (*)$

Lemma VII.5.11

Lemma VII.5.11. If $|z| \le 1$ and $p \ge 0$ then $|1 - E_p(z)| \le |z|^{p+1}$.

Proof. For p = 0, $|1 - E_0(z)| = |1 - (1 - z)| = |z| \le |z|^{p+1}$. For $p \ge 1$ fixed, $E_p(z)$ is analytic (entire, in fact) so $E_p(z) = 1 + \sum_{k=1}^{\infty} a_k z^k$ for some coefficients a_k ($E_p(0) = 1$, so $a_0 = 1$). Then from the definition of $E_p(z)$,

$$E'_p(z) = (-1) \exp\left(z + \frac{z^2}{2} + \frac{z^3}{3} + \dots + \frac{z^p}{p}\right)$$

$$+(1-z)\exp\left(z+\frac{z^2}{2}+\frac{z^3}{3}+\cdots+\frac{z^p}{p}\right)(1+z+z^2+\cdots+z^{p-1})$$

$$= (-1 + (1 - z^{p})) \exp\left(z + \frac{z^{2}}{2} + \frac{z^{3}}{3} + \dots + \frac{z^{p}}{p}\right)$$

$$= -z^{p} \exp\left(z + \frac{z^{2}}{2} + \frac{z^{3}}{3} + \dots + \frac{z^{p}}{p}\right) \qquad (*)$$

Lemma VII.5.11 (continued 1)

Proof (continued). and from the power series representation

$$E'_{p}(z) = \sum_{k=1}^{\infty} k a_{k} z^{k-1}.$$
 (*)

We see from (*) and (**) that $a_1 = a_2 = \cdots = a_p = 0$. Now in the series expansion of $\exp\left(z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots + \frac{z^p}{p}\right)$ about z = 0, all coefficients are positive (since they are products and sums of exponential functions, which are 1 when evaluated at z = 0, and polynomials and their derivatives which are 0 when evaluated at z = 0), say

$$\exp\left(z+\frac{z^2}{2}+\frac{z^3}{3}+\cdots+\frac{z^p}{p}\right) = 1+\sum_{k=1}^{\infty}b_kz^k$$
 where $b_k > 0$.

Lemma VII.5.11 (continued 1)

Proof (continued). and from the power series representation

$$E'_{p}(z) = \sum_{k=1}^{\infty} k a_{k} z^{k-1}.$$
 (*)

We see from (*) and (**) that $a_1 = a_2 = \cdots = a_p = 0$. Now in the series expansion of $\exp\left(z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots + \frac{z^p}{p}\right)$ about z = 0, all coefficients are positive (since they are products and sums of exponential functions, which are 1 when evaluated at z = 0, and polynomials and their derivatives which are 0 when evaluated at z = 0), say

$$\exp\left(z+rac{z^2}{2}+rac{z^3}{3}+\cdots+rac{z^p}{p}
ight)=1+\sum_{k=1}^{\infty}b_kz^k ext{ where } b_k>0.$$

Lemma VII.5.11 (continued 2)

Proof (continued). So from (*),

$$E'_{p}(z) = -2^{p} \left(1 + \sum_{k=1}^{\infty} b_{k} z^{k} \right) = -2^{p} - \sum_{k=1}^{\infty} b_{k} z^{k+p}$$
$$= \sum_{k=1}^{\infty} k a_{k} z^{k-1} \text{ by } (**)$$

and so $ka_k < 0$ for k = p + 1, p + 2, ... Thus $|a_k| = -a_k$ for $k \ge p + 1$. So for $z = 1, 0 = E_p(1) = 1 + \sum_{k=p+1}^{\infty} a_k$ since $a_1 = a_2 = \cdots = a = 0$, or $\sum_{k=p+1}^{\infty} |a_k| = -\sum_{k=p+1}^{\infty} a_k = 1$. so for $|a| \le 1$, $|1 - E_p(z)| = |E_p(z) - 1| = \left| \left(1 + \sum_{k=p+1}^{\infty} a_k z^k \right) - 1 \right|$

 $= \left| \sum_{k=p+1}^{\infty} a_k z^k \right| = |z|^{p+1} \left| \sum_{k=p+1}^{\infty} a_k z^{k-p-1} \right| \dots$

Lemma VII.5.11 (continued 2)

Proof (continued). So from (*),

$$E'_{p}(z) = -2^{p} \left(1 + \sum_{k=1}^{\infty} b_{k} z^{k} \right) = -2^{p} - \sum_{k=1}^{\infty} b_{k} z^{k+p}$$
$$= \sum_{k=1}^{\infty} k a_{k} z^{k-1} \text{ by } (**)$$

and so $ka_k < 0$ for k = p + 1, p + 2, ... Thus $|a_k| = -a_k$ for $k \ge p + 1$. So for $z = 1, 0 = E_p(1) = 1 + \sum_{k=p+1}^{\infty} a_k$ since $a_1 = a_2 = \cdots = a = 0$, or $\sum_{k=p+1}^{\infty} |a_k| = -\sum_{k=p+1}^{\infty} a_k = 1$. so for $|a| \le 1$, $|1 - E_p(z)| = |E_p(z) - 1| = \left| \left(1 + \sum_{k=p+1}^{\infty} a_k z^k \right) - 1 \right|$ $= \left| \sum_{k=p+1}^{\infty} a_k z^k \right| = |z|^{p+1} \left| \sum_{k=p+1}^{\infty} a_k z^{k-p-1} \right| \dots$

Lemma VII.5.11 (continued 3)

Lemma VII.5.11. If $|z| \le 1$ and $p \ge 0$ then $|1 - E_p(z)| \le |z|^{p+1}$.

Proof (continued).

$$\begin{aligned} |1 - E_p(z)| &\leq |z|^{p+1} \sum_{k=p+1}^{\infty} |a_k| |z|^{k-p-1} \text{ by the Triangle Inequality} \\ &\text{and limits} \\ &\leq |z|^{p+1} \sum_{k=p+1}^{\infty} |a_k| \text{ since } |z| \leq 1 \\ &= |z|^{p+1} \text{ since } \sum_{k=p+1}^{\infty} |a_k| = 1, \end{aligned}$$

and this is the claim.

Theorem VII.5.12. Let $\{a_n\}$ be a sequence in \mathbb{C} such that $\lim_{n\to\infty} |z_n| = \infty$ and $a_z \neq 0$ for all $n \ge 1$. Suppose that no complex number is repeated in the sequence an infinite number of times. If $\{p_n\}$ is any sequence of nonnegative integers such that

$$\sum_{n=1}^{\infty} \left(\frac{r}{|a_n|}\right)^{p_n+1} < \infty$$

for all r > 0, then $f(z) = \prod_{n=1}^{\infty} E_{p_n}(z/a)$ converges in $H(\mathbb{C})$ (and so is analytic on \mathbb{C}). The function f is an entire function with zeros only at the points a_n If z_0 occurs in the sequence $\{a_n\}$ exactly n times then f has a zero at $z = z_0$ of multiplicity m. Furthermore, if $p_n = n - 1$ then (5.13) will be satisfied.

Proof. Suppose integers $\{p_n\}$ exist such that (5.13) is satisfied.

Theorem VII.5.12. Let $\{a_n\}$ be a sequence in \mathbb{C} such that $\lim_{n\to\infty} |z_n| = \infty$ and $a_z \neq 0$ for all $n \ge 1$. Suppose that no complex number is repeated in the sequence an infinite number of times. If $\{p_n\}$ is any sequence of nonnegative integers such that

$$\sum_{n=1}^{\infty} \left(\frac{r}{|a_n|}\right)^{p_n+1} < \infty$$

for all r > 0, then $f(z) = \prod_{n=1}^{\infty} E_{p_n}(z/a)$ converges in $H(\mathbb{C})$ (and so is analytic on \mathbb{C}). The function f is an entire function with zeros only at the points a_n If z_0 occurs in the sequence $\{a_n\}$ exactly n times then f has a zero at $z = z_0$ of multiplicity m. Furthermore, if $p_n = n - 1$ then (5.13) will be satisfied.

Proof. Suppose integers $\{p_n\}$ exist such that (5.13) is satisfied.

Theorem VII.5.12 (continued 1)

Proof (continued). Then

$$\begin{aligned} \left| 1 - E_{p_n} \left(\frac{z}{a} \right) \right| &\leq \left| \frac{z}{a} \right|^{p_n + 1} \text{ by Lemma VII.5.11} \\ &\leq \left(\frac{r}{|a_n|} \right)^{p_n + 1} \end{aligned}$$

for $|z| \leq r$ and for $r \leq |a_n|$ (so that $|z/a_n| \leq r/|a_n| \leq 1$). For a fixed r > 0 there is $N \in \mathbb{N}$ such that $|a_n| > r$ for all $n \geq N$ since $|a_n| \to \infty$. So for given r > 0 we have

$$\sum_{n=1}^{\infty} \left| 1 - E_{p_n} \left(\frac{z}{a_n} \right) \right| \le \sum_{n=1}^{\infty} \left(\frac{r}{|a_n|} \right)^{p_n+1} \text{ for } z \in \overline{B}(0; r).$$

Theorem VII.5.12 (continued 1)

Proof (continued). Then

$$\begin{aligned} \left| 1 - E_{p_n} \left(\frac{z}{a} \right) \right| &\leq \left| \frac{z}{a} \right|^{p_n + 1} \text{ by Lemma VII.5.11} \\ &\leq \left(\frac{r}{|a_n|} \right)^{p_n + 1} \end{aligned}$$

for $|z| \leq r$ and for $r \leq |a_n|$ (so that $|z/a_n| \leq r/|a_n| \leq 1$). For a fixed r > 0 there is $N \in \mathbb{N}$ such that $|a_n| > r$ for all $n \ge N$ since $|a_n| \to \infty$. So for given r > 0 we have

$$\sum_{n=1}^{\infty} \left| 1 - E_{p_n} \left(\frac{z}{a_n} \right) \right| \le \sum_{n=1}^{\infty} \left(\frac{r}{|a_n|} \right)^{p_n+1} \text{ for } z \in \overline{B}(0; r).$$

By (5.13), the right hand side is finite and so $\sum_{n=1}^{\infty} \left(1 - E_{p_n}\left(\frac{z}{a_n}\right)\right)$ converges absolutely on $\overline{B}(0; r)$. So $\prod_{n=1}^{\infty} E_{p_n}(z/a_n)$ converges in H(G). August 14, 2017

Theorem VII.5.12 (continued 1)

Proof (continued). Then

$$\begin{aligned} \left| 1 - E_{p_n} \left(\frac{z}{a} \right) \right| &\leq \left| \frac{z}{a} \right|^{p_n + 1} \text{ by Lemma VII.5.11} \\ &\leq \left(\frac{r}{|a_n|} \right)^{p_n + 1} \end{aligned}$$

for $|z| \leq r$ and for $r \leq |a_n|$ (so that $|z/a_n| \leq r/|a_n| \leq 1$). For a fixed r > 0 there is $N \in \mathbb{N}$ such that $|a_n| > r$ for all $n \geq N$ since $|a_n| \to \infty$. So for given r > 0 we have

$$\sum_{n=1}^{\infty} \left| 1 - E_{p_n} \left(\frac{z}{a_n} \right) \right| \le \sum_{n=1}^{\infty} \left(\frac{r}{|a_n|} \right)^{p_n+1} \text{ for } z \in \overline{B}(0;r)$$

By (5.13), the right hand side is finite and so $\sum_{n=1}^{\infty} \left(1 - E_{p_n}\left(\frac{z}{a_n}\right)\right)$ converges absolutely on $\overline{B}(0; r)$. So $\prod_{n=1}^{\infty} E_{p_n}(z/a_n)$ converges in H(G). Why does it converge uniformly?

Theorem VII.5.12 (continued 2)

Proof (continued). To show that $\{p_n\}$ can be found so that (5.13) holds for all r is easy; since $|a_n| \to \infty$ then "eventually" $|z_n| > r$ (for a given r) and we can take $p_n = n - 1$ so that $\sum_{n=1}^{\infty} (r/|a_n|)^{p_n+1}$ can eventually be compared to a geometric series with ration less than 1. In particular, there is $N \in \mathbb{N}$ such that for all $n \ge N$, $|a_n| > 2r$ and $r/|a_n| < 1/2$. then

$$\sum_{n=1}^{\infty} (r/|a_n|)^{p_n+1} = \sum_{n=1}^{\infty} (r/|a_n|)^n < \sum_{n=1}^{N} (r/|a_n|)^n + \sum_{n=N+1}^{\infty} (1/2)^n < \infty.$$

Theorem VII.5.12 (continued 2)

Proof (continued). To show that $\{p_n\}$ can be found so that (5.13) holds for all r is easy; since $|a_n| \to \infty$ then "eventually" $|z_n| > r$ (for a given r) and we can take $p_n = n - 1$ so that $\sum_{n=1}^{\infty} (r/|a_n|)^{p_n+1}$ can eventually be compared to a geometric series with ration less than 1. In particular, there is $N \in \mathbb{N}$ such that for all $n \ge N$, $|a_n| > 2r$ and $r/|a_n| < 1/2$. then

$$\sum_{n=1}^{\infty} (r/|a_n|)^{p_n+1} = \sum_{n=1}^{\infty} (r/|a_n|)^n < \sum_{n=1}^{N} (r/|a_n|)^n + \sum_{n=N+1}^{\infty} (1/2)^n < \infty.$$

Theorem VII.5.14. The Weierstrass Factorization Theorem.

Let f be an entire function and let $\{a_n\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at z = 0 of order $m \ge 0$ (a zero of order m = 0 at 0 means $f(0) \ne 0$). Then there is an entire function g and a sequence of integers $\{p_n\}$ such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right).$$

Proof. Since f is entire, by Theorem VII.5.12, there are nonnegative integers $\{p_n\}$ such that

$$h(z) = z^m \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right)$$

has the same zeros as f with the same multiplicities. So f(z)/h(z) has a removable singularities at $a = 0, a_1, a_2, ...$

Theorem VII.5.14. The Weierstrass Factorization Theorem.

Let f be an entire function and let $\{a_n\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at z = 0 of order $m \ge 0$ (a zero of order m = 0 at 0 means $f(0) \ne 0$). Then there is an entire function g and a sequence of integers $\{p_n\}$ such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right).$$

Proof. Since f is entire, by Theorem VII.5.12, there are nonnegative integers $\{p_n\}$ such that

$$h(z) = z^m \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right)$$

has the same zeros as f with the same multiplicities. So f(z)/h(z) has a removable singularities at $a = 0, a_1, a_2, \ldots$

Theorem VII.5.14 (continued)

Theorem VII.5.14. The Weierstrass Factorization Theorem.

Let f be an entire function and let $\{a_n\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at z = 0 of order $m \ge 0$ (a zero of order m = 0 at 0 means $f(0) \ne 0$). Then there is an entire function g and a sequence of integers $\{p_n\}$ such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right).$$

Proof (continued). Thus, f/h (reduced and the removable singularities removed) is nonzero then there is a branch of the logarithm defined on $(f/h)(\mathbb{C})$. So there is entire g such that $g(z) = \log(f(z)/h(z))$ or $f(z)/h(z) = e^{g(z)}$. Then

$$f(z) = h(z)e^{g(z)} = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right).$$

Theorem VII.5.14 (continued)

Theorem VII.5.14. The Weierstrass Factorization Theorem.

Let f be an entire function and let $\{a_n\}$ be the nonzero zeros of f repeated according to multiplicity. Suppose f has a zero at z = 0 of order $m \ge 0$ (a zero of order m = 0 at 0 means $f(0) \ne 0$). Then there is an entire function g and a sequence of integers $\{p_n\}$ such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right).$$

Proof (continued). Thus, f/h (reduced and the removable singularities removed) is nonzero then there is a branch of the logarithm defined on $(f/h)(\mathbb{C})$. So there is entire g such that $g(z) = \log(f(z)/h(z))$ or $f(z)/h(z) = e^{g(z)}$. Then

$$f(z) = h(z)e^{g(z)} = z^m e^{g(z)} \prod_{n=1}^{\infty} E_{p_n}\left(\frac{z}{a_n}\right).$$

Theorem VII.5.15. Let G be a region and let $\{a_j\}$ be a sequence of distinct points in G with no limit points in G. Let $\{m_j\}$ be a sequence of nonnegative integers. Then there is an analytic function f defined on G whose only zeros are at the points a_j . Furthermore, a_j is a zero of f of multiplicity m_j .

Proof. (I) In Part I of the proof, we show that if the claim can be established for the special case where there is R > 0 such that

$$\{z \mid |z| > R\} \subset G \text{ and } |a_j| \le R \text{ for all } j \ge 1, \qquad (5.16)$$

then the claim will hold.

Theorem VII.5.15. Let G be a region and let $\{a_j\}$ be a sequence of distinct points in G with no limit points in G. Let $\{m_j\}$ be a sequence of nonnegative integers. Then there is an analytic function f defined on G whose only zeros are at the points a_j . Furthermore, a_j is a zero of f of multiplicity m_j .

Proof. (I) In Part I of the proof, we show that if the claim can be established for the special case where there is R > 0 such that

$$\{z \mid |z| > R\} \subset G \text{ and } |a_j| \le R \text{ for all } j \ge 1,$$
 (5.16)

then the claim will hold. So hypothesize that f satisfying (5.16) exists with the added property that

$$\lim_{z \to \infty} f(z) = 1 \qquad (5.17)$$

and let G_1 be an arbitrary open set in \mathbb{C} with $\{\alpha_j\}$ a sequence of distinct points in G_1 with no limit point and let $\{m_j\}$ be a sequence of integers.

Theorem VII.5.15. Let G be a region and let $\{a_j\}$ be a sequence of distinct points in G with no limit points in G. Let $\{m_j\}$ be a sequence of nonnegative integers. Then there is an analytic function f defined on G whose only zeros are at the points a_j . Furthermore, a_j is a zero of f of multiplicity m_j .

Proof. (I) In Part I of the proof, we show that if the claim can be established for the special case where there is R > 0 such that

$$\{z \mid |z| > R\} \subset G \text{ and } |a_j| \le R \text{ for all } j \ge 1, \qquad (5.16)$$

then the claim will hold. So hypothesize that f satisfying (5.16) exists with the added property that

$$\lim_{z\to\infty}f(z)=1\qquad(5.17)$$

and let G_1 be an arbitrary open set in \mathbb{C} with $\{\alpha_j\}$ a sequence of distinct points in G_1 with no limit point and let $\{m_j\}$ be a sequence of integers.

Theorem VII.5.15 (continued 1)

Proof (continued). If $\overline{B}(a; r)$ is a disk in G, such that $\alpha_i \notin B(a; r)$ for all j > 1, consider the Möbius transformation $T(z) = (z - a)^{-1}$. Set $G = T(G_1) \setminus \{\infty\} \subset \mathbb{C}$. Then G satisfies (5.16) where $a_i = T(\alpha_i) = (\alpha_i - a)^{-1}$ since $\alpha_i \notin B(a; r)$ implies $a_i = T(\alpha_i) \in \overline{B}(a'; R')$ for some $a' \in \mathbb{C}$, $i \in \mathbb{R}$, since T maps circles to circles (by Theorem III.3.14) and also $\mathbb{C} \setminus \overline{B}(a'; R') \subset G$. If there is $f \in H(G)$ with a zero at each a_i of multiplicity m_i with no other zeros and such that f satisfies (5.17), then g(z) = f(T(z)) is analytic in $G_1 \setminus \{a\}$. Now $\lim_{z \to a} g(z) = \lim_{z \to a} f(T(z))$ = $\lim_{z \to \infty} f(z)$ since $T(a) = \infty$ = 1 by (5.17),

so g has a removable singularity at z = a.

Theorem VII.5.15 (continued 1)

Proof (continued). If $\overline{B}(a; r)$ is a disk in G, such that $\alpha_i \notin B(a; r)$ for all j > 1, consider the Möbius transformation $T(z) = (z - a)^{-1}$. Set $G = T(G_1) \setminus \{\infty\} \subset \mathbb{C}$. Then G satisfies (5.16) where $a_i = T(\alpha_i) = (\alpha_i - a)^{-1}$ since $\alpha_i \notin B(a; r)$ implies $a_i = T(\alpha_i) \in \overline{B}(a'; R')$ for some $a' \in \mathbb{C}$, $i' \in \mathbb{R}$, since T maps circles to circles (by Theorem III.3.14) and also $\mathbb{C} \setminus \overline{B}(a'; R') \subset G$. If there is $f \in H(G)$ with a zero at each a_i of multiplicity m_i with no other zeros and such that f satisfies (5.17), then g(z) = f(T(z)) is analytic in $G_1 \setminus \{a\}$. Now $\lim_{z \to a} g(z) = \lim_{z \to a} f(T(z))$ $\lim_{z \to a} f(z) \text{ since } T(a) = \infty$

$$= \lim_{z \to \infty} f(z) \text{ since } I(a)$$
$$= 1 \text{ by } (5.17),$$

so g has a removable singularity at z = a. Furthermore, g has a zero at α_j of multiplicity m_j (since f has a zero at $a_j = T(\alpha_j)$ of multiplicity m_j). So g (with the removable discontinuity removed) is the desired function analytic on open set G_1 .

Theorem VII.5.15 (continued 1)

Proof (continued). If $\overline{B}(a; r)$ is a disk in G, such that $\alpha_i \notin B(a; r)$ for all j > 1, consider the Möbius transformation $T(z) = (z - a)^{-1}$. Set $G = T(G_1) \setminus \{\infty\} \subset \mathbb{C}$. Then G satisfies (5.16) where $a_i = T(\alpha_i) = (\alpha_i - a)^{-1}$ since $\alpha_i \notin B(a; r)$ implies $a_i = T(\alpha_i) \in \overline{B}(a'; R')$ for some $a' \in \mathbb{C}$, $i \in \mathbb{R}$, since T maps circles to circles (by Theorem III.3.14) and also $\mathbb{C} \setminus \overline{B}(a'; R') \subset G$. If there is $f \in H(G)$ with a zero at each a_i of multiplicity m_i with no other zeros and such that f satisfies (5.17), then g(z) = f(T(z)) is analytic in $G_1 \setminus \{a\}$. Now $\lim_{z \to a} g(z) = \lim_{z \to a} f(T(z))$ = $\lim_{z \to \infty} f(z)$ since $T(a) = \infty$

= 1 by (5.17),

so g has a removable singularity at z = a. Furthermore, g has a zero at α_j of multiplicity m_j (since f has a zero at $a_j = T(\alpha_j)$ of multiplicity m_j). So g (with the removable discontinuity removed) is the desired function analytic on open set G_1 .

Theorem VII.5.15 (continued 2)

Proof (continued). (II) Assume G satisfies (5.16). Define a sequence $\{z_n\}$ consisting of the points in $\{a_i\}$, but such that each a_i is repeated according to its multiplicity m_i . Since G is open and $\{z \mid |z| > R\} \subset G$ then $\mathbb{C} \setminus G$ is closed and bounded and so compact. So by Corollary II.5.14, for each $n \in \mathbb{N}$ there is $w_n \in \mathbb{C} \setminus G$ such that $|w_n - z_n| = d(z_n, \mathbb{C} \setminus G)$. Notice that condition (5.160 implies $|a_i| \leq R$ for all j, so if there are an infinite number of a_i 'a then they must have a limit point by the Bolzano-Weierstrass Theorem (see http://faculty.etsu.edu/ gardnerr/4217/notes/2-3.pdf for a statement in \mathbb{R}). since by hypothesis $\{a_i\}$ has no limit point in G so the limit point of $\{a_i\}$ is not in G and so $G \neq \mathbb{C}$. (If $\{a_i\}$ is finite, the result holds for a polynomial.)

Theorem VII.5.15 (continued 2)

Proof (continued). (II) Assume G satisfies (5.16). Define a sequence $\{z_n\}$ consisting of the points in $\{a_i\}$, but such that each a_i is repeated according to its multiplicity m_i . Since G is open and $\{z \mid |z| > R\} \subset G$ then $\mathbb{C} \setminus G$ is closed and bounded and so compact. So by Corollary II.5.14, for each $n \in \mathbb{N}$ there is $w_n \in \mathbb{C} \setminus G$ such that $|w_n - z_n| = d(z_n, \mathbb{C} \setminus G)$. Notice that condition (5.160 implies $|a_i| \leq R$ for all j, so if there are an infinite number of a_i 'a then they must have a limit point by the Bolzano-Weierstrass Theorem (see http://faculty.etsu.edu/ gardnerr/4217/notes/2-3.pdf for a statement in \mathbb{R}). since by hypothesis $\{a_i\}$ has no limit point in G so the limit point of $\{a_i\}$ is not in *G* and so $G \neq \mathbb{C}$. (If $\{a_i\}$ is finite, the result holds for a polynomial.) Now for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all $n \ge N$ we have $d(z_n, \mathbb{C} \setminus G) < \varepsilon$, or else we could construct an infinite subsequence of $\{z_n\}$, say $\{z_{n'}\}$ is an infinite founded set since $|z_{n'}| \leq R$ for all $n' \in \mathbb{N}$ and so $z_{n'}$ has a limit point by the Bolzano-Weierstrass Theorem.

Theorem VII.5.15 (continued 2)

Proof (continued). (II) Assume G satisfies (5.16). Define a sequence $\{z_n\}$ consisting of the points in $\{a_i\}$, but such that each a_i is repeated according to its multiplicity m_i . Since G is open and $\{z \mid |z| > R\} \subset G$ then $\mathbb{C} \setminus G$ is closed and bounded and so compact. So by Corollary II.5.14, for each $n \in \mathbb{N}$ there is $w_n \in \mathbb{C} \setminus G$ such that $|w_n - z_n| = d(z_n, \mathbb{C} \setminus G)$. Notice that condition (5.160 implies $|a_i| \leq R$ for all j, so if there are an infinite number of a_i 'a then they must have a limit point by the Bolzano-Weierstrass Theorem (see http://faculty.etsu.edu/ gardnerr/4217/notes/2-3.pdf for a statement in \mathbb{R}). since by hypothesis $\{a_i\}$ has no limit point in G so the limit point of $\{a_i\}$ is not in *G* and so $G \neq \mathbb{C}$. (If $\{a_i\}$ is finite, the result holds for a polynomial.) Now for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all $n \ge N$ we have $d(z_n, \mathbb{C} \setminus G) < \varepsilon$, or else we could construct an infinite subsequence of $\{z_n\}$, say $\{z_{n'}\}$ is an infinite founded set since $|z_{n'}| \leq R$ for all $n' \in \mathbb{N}$ and so $z_{n'}$ has a limit point by the Bolzano-Weierstrass Theorem.

Theorem VII.5.15 (continued 3)

Proof (continued). But the limit point is not in $\mathbb{C} \setminus G$ by the condition $d(z_{n'}, \mathbb{C} \setminus G) \ge \varepsilon$, and so the limit point is in G, contradicting the hypothesis that $\{a_n\}$ has no limit point in G. So $\lim_{n\to\infty} d(z_n, \mathbb{C} \setminus G) = 0$ and hence $\lim_{n\to\infty} |z_n - w_n| = 0$. Consider the functions $E_n((z_n - w_n)/(z - w_n))$. Each has a simple zero at $z = z_n$ (where we take $(z_n - w_z)/(z - w_n)$) to be 1 at $z = z_n$), and so the infinite product of the E_n 's has the required zeros with the appropriate multiplicities. In Part III we show that the infinite product converges in H(G).

Theorem VII.5.15 (continued 3)

Proof (continued). But the limit point is not in $\mathbb{C} \setminus G$ by the condition $d(z_{n'}, \mathbb{C} \setminus G) \ge \varepsilon$, and so the limit point is in G, contradicting the hypothesis that $\{a_n\}$ has no limit point in G. So $\lim_{n\to\infty} d(z_n, \mathbb{C} \setminus G) = 0$ and hence $\lim_{n\to\infty} |z_n - w_n| = 0$. Consider the functions $E_n((z_n - w_n)/(z - w_n))$. Each has a simple zero at $z = z_n$ (where we take $(z_n - w_z)/(z - w_n)$ to be 1 at $z = z_n$), and so the infinite product of the E_n 's has the required zeros with the appropriate multiplicities. In Part III we show that the infinite product converges in H(G).

(III) Let K be a compact subset in G. Then since both K and $\mathbb{C} \setminus G$ are compact, by Theorem II.5.17, $d(\mathbb{C} \setminus G, K) > 0$. For any $z \in K$ $d(w_n, K) \leq |z - w_n|$ and

$$\left|\frac{z_n - w_n}{z - w_n}\right| \le |z_n - w_n| (d(w_n, K))^{-1} \le |a_n - w_n| (d(\mathbb{C} \setminus G, K))^{-1}$$

since $w_n \in \mathbb{C} \setminus G$ and so $d(\mathbb{C} \setminus G, K) \leq d(w_n, K)$.

Theorem VII.5.15 (continued 3)

Proof (continued). But the limit point is not in $\mathbb{C} \setminus G$ by the condition $d(z_{n'}, \mathbb{C} \setminus G) \ge \varepsilon$, and so the limit point is in G, contradicting the hypothesis that $\{a_n\}$ has no limit point in G. So $\lim_{n\to\infty} d(z_n, \mathbb{C} \setminus G) = 0$ and hence $\lim_{n\to\infty} |z_n - w_n| = 0$. Consider the functions $E_n((z_n - w_n)/(z - w_n))$. Each has a simple zero at $z = z_n$ (where we take $(z_n - w_z)/(z - w_n)$) to be 1 at $z = z_n$), and so the infinite product of the E_n 's has the required zeros with the appropriate multiplicities. In Part III we show that the infinite product converges in H(G).

(III) Let K be a compact subset in G. Then since both K and $\mathbb{C} \setminus G$ are compact, by Theorem II.5.17, $d(\mathbb{C} \setminus G, K) > 0$. For any $z \in K$ $d(w_n, K) \leq |z - w_n|$ and

$$\left|\frac{z_n-w_n}{z-w_n}\right| \leq |z_n-w_n|(d(w_n,K))^{-1} \leq |a_n-w_n|(d(\mathbb{C}\setminus G,K))^{-1}$$

since $w_n \in \mathbb{C} \setminus G$ and so $d(\mathbb{C} \setminus G, K) \leq d(w_n, K)$.
Theorem VII.5.15 (continued 4)

Proof (continued). As shown above, $\lim_{n\to\infty} |z_n - w_n| = 0$, so for any $0 < \delta < 1$, there is $N \in \mathbb{N}$ such that for all $n \ge N$, $|(z_n - w_n)/(z - w_n)| < \delta$ for all $z \in K$. By Lemma VII.5.11, we have

$$\left| E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right| \le \delta^{n+1} \qquad (5.18)$$

for all $n \ge N$ and $z \in K$. This gives (using the Direct Comparison Test and a geometric series with ration δ) that $\sum_{n=1}^{\infty} \left(E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right)$ converges absolutely and uniformly on K. By Theorem VII.5.9, $f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{z_n - w_n}{z - w_n} \right)$ converges in H(G), so f is analytic on G.

Theorem VII.5.15 (continued 4)

Proof (continued). As shown above, $\lim_{n\to\infty} |z_n - w_n| = 0$, so for any $0 < \delta < 1$, there is $N \in \mathbb{N}$ such that for all $n \ge N$, $|(z_n - w_n)/(z - w_n)| < \delta$ for all $z \in K$. By Lemma VII.5.11, we have

$$\left| E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right| \le \delta^{n+1} \qquad (5.18)$$

for all $n \ge N$ and $z \in K$. This gives (using the Direct Comparison Test and a geometric series with ration δ) that $\sum_{n=1}^{\infty} \left(E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right)$ converges absolutely and uniformly on K. By Theorem VII.5.9,

 $f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{z_n - w_n}{z - w_n} \right) \text{ converges in } H(G), \text{ so } f \text{ is analytic on } G. \text{ The}$

second part of Theorem VII.5.9 implies that the points $\{a_j\}$ are the only zeros of f and m_j is the order of the zero at $z = a_j$ (because a_j occurs m_j times in the sequence $\{z_n\}$).

Theorem VII.5.15 (continued 4)

Proof (continued). As shown above, $\lim_{n\to\infty} |z_n - w_n| = 0$, so for any $0 < \delta < 1$, there is $N \in \mathbb{N}$ such that for all $n \ge N$, $|(z_n - w_n)/(z - w_n)| < \delta$ for all $z \in K$. By Lemma VII.5.11, we have

$$\left| E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right| \le \delta^{n+1} \qquad (5.18)$$

for all $n \ge N$ and $z \in K$. This gives (using the Direct Comparison Test and a geometric series with ration δ) that $\sum_{n=1}^{\infty} \left(E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right)$ converges absolutely and uniformly on K. By Theorem VII.5.9,

 $f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{z_n - w_n}{z - w_n} \right) \text{ converges in } H(G), \text{ so } f \text{ is analytic on } G. \text{ The}$

second part of Theorem VII.5.9 implies that the points $\{a_j\}$ are the only zeros of f and m_j is the order of the zero at $z = a_j$ (because a_j occurs m_j times in the sequence $\{z_n\}$).

Theorem VII.5.15 (continued 5)

Proof (continued). To show (5.17) that $\lim_{z\to\infty} f(z) = 1$, let $\varepsilon > 0$ be an arbitrary number and let $R_1 > R$. If $|z| \ge R_1$ then, because $|z_n| \le R$ and $w_n \in \mathbb{C} \setminus G \subset B(0; R), \left| \frac{z_n - w_n}{z - w_n} \right| \leq \frac{2R}{R - 1 - R}$. So if $R_1 > R$ satisfies $2R < \delta(R_1 - R)$ (that is, $R_1 > R + 2R/\delta$ and $\left|\frac{z_n - w_n}{z - w_n}\right| \le \frac{2R}{R_1 - R} < \delta$ for some $0 < \delta < 1$ then (5.18) holds for $|z| \ge R_1$ and for all $n \in \mathbb{N}$. In particular, $\operatorname{Re}\left(E_n\left(\frac{z_n - w_n}{z - w_n}\right)\right) > 0$ for all $n \in \mathbb{N}$ and $|z| \ge R_1$ (for if this is less than or equal to 0, then $\left|\operatorname{Re}\left(\frac{z_n-w_n}{z-w_n}\right)=1\right|\geq 1 \text{ and } (5.18) \text{ is violated}.$

Theorem VII.5.15 (continued 5)

Proof (continued). To show (5.17) that $\lim_{z\to\infty} f(z) = 1$, let $\varepsilon > 0$ be an arbitrary number and let $R_1 > R$. If $|z| \ge R_1$ then, because $|z_n| \le R$ and $w_n \in \mathbb{C} \setminus G \subset B(0; R), \left| \frac{z_n - w_n}{z - w_n} \right| \leq \frac{2R}{R - 1 - R}$. So if $R_1 > R$ satisfies $2R < \delta(R_1 - R)$ (that is, $R_1 > R + 2R/\delta$ and $\left|\frac{z_n - w_n}{z - w_n}\right| \le \frac{2R}{R_1 - R} < \delta$ for some $0 < \delta < 1$ then (5.18) holds for $|z| \ge R_1$ and for all $n \in \mathbb{N}$. In particular, $\operatorname{Re}\left(E_n\left(\frac{z_n - w_n}{z - w_n}\right)\right) > 0$ for all $n \in \mathbb{N}$ and $|z| \geq R_1$ (for if this is less than or equal to 0, then $\left|\operatorname{Re}\left(\frac{z_n-w_n}{z-w_n}\right)=1\right|\geq 1 \text{ and } (5.18) \text{ is violated}.$

Theorem VII.5.15 (continued 6)

Proof (continued). So

$$|f(z)-1| = \left|\prod_{n=1}^{\infty} E_n\left(\frac{z_n - w_n}{z - w_n}\right) - 1\right| = \left|\exp\left(\sum_{n=1}^{\infty} \log E_n\left(\frac{z_n - w_n}{z - w_n}\right)\right) = 1\right|$$

(5.19) is a "meaningful equation" (that is, $E_n((z_n - w_n)/(z - w_n)) \neq 0$ for $|z| > R_1$ and for $n \in \mathbb{N}$, and so there is a branch of the logarithm defined for all such $E_n((z_n - w_n)/(z - w_n))$, say the principal branch). Now we restrict $0 < \delta < 1/2$ so that (5.18) now gives for $|z| \ge R_1$ that $\left|F_n\left(\frac{z_n-w_n}{z-w_n}\right)-1\right| \leq \left(\frac{1}{2}\right)^{n+1} \leq \frac{1}{2}$ for all $n \in \mathbb{N}$, and then by Lemma VII.5.B $\log\left(E_n\left(\frac{z_n-w_n}{z-w_n}\right)\right) = \log\left(\left(E_n\left(\frac{z_n-w_n}{z-w_n}\right)-1\right)+1\right)$ $\leq \frac{3}{2} \left| E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right|$

for all $|z| \geq R_1$ and for all $n \in \mathbb{N}$.

Theorem VII.5.15 (continued 6)

Proof (continued). So

$$|f(z)-1| = \left|\prod_{n=1}^{\infty} E_n\left(\frac{z_n - w_n}{z - w_n}\right) - 1\right| = \left|\exp\left(\sum_{n=1}^{\infty} \log E_n\left(\frac{z_n - w_n}{z - w_n}\right)\right) = 1\right|$$

(5.19) is a "meaningful equation" (that is, $E_n((z_n - w_n)/(z - w_n)) \neq 0$ for $|z| \geq R_1$ and for $n \in \mathbb{N}$, and so there is a branch of the logarithm defined for all such $E_n((z_n - w_n)/(z - w_n))$, say the principal branch). Now we restrict $0 < \delta < 1/2$ so that (5.18) now gives for $|z| \ge R_1$ that $\left|F_n\left(rac{z_n-w_n}{z-w_n}
ight)-1
ight|\leq \left(rac{1}{2}
ight)^{n+1}\leq rac{1}{2}$ for all $n\in\mathbb{N}$, and then by Lemma VII.5.B. $\log\left(E_n\left(\frac{z_n-w_n}{z-w_n}\right)\right) = \log\left(\left(E_n\left(\frac{z_n-w_n}{z-w_n}\right)-1\right)+1\right)$ $\leq \frac{3}{2} \left| E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right|$

for all $|z| \ge R_1$ and for all $n \in \mathbb{N}$.

Theorem VII.5.15

Theorem VII.5.15 (continued 7)

Proof (continued). We now have

$$\begin{aligned} \left| \sum_{n=1}^{\infty} \log \left(E_n \left(\frac{z_a - w_n}{z - w_n} \right) \right) \right| &\leq \sum_{n=1}^{\infty} \left| \log E_n \left(\frac{z_n - w_n}{z - w_n} \right) \right| \\ &\leq \sum_{n=1}^{\infty} \frac{3}{2} \left| E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right| \\ &\leq \sum_{n=1}^{\infty} \frac{3}{2} \delta^{n+1} \text{ by (5.18) (notice the choice of} \\ &R_1 \text{ implies that (5.18) holds for all } n \in \mathbb{N}) \\ &= \frac{3}{2} \frac{\delta^2}{1 - \delta} \end{aligned}$$

for all $|z| \ge R_1$. By the continuity of e^z at z = 0, we can further restrict $0 < \delta < 1/2$ so that $|w| < \frac{3}{2} \frac{\delta^2}{1-\delta}$ implies $|e^w - 1| < \varepsilon$ (so that we now have δ "fixed").

Theorem VII.5.15

Theorem VII.5.15 (continued 7)

Proof (continued). We now have

$$\begin{aligned} \left| \sum_{n=1}^{\infty} \log \left(E_n \left(\frac{z_a - w_n}{z - w_n} \right) \right) \right| &\leq \sum_{n=1}^{\infty} \left| \log E_n \left(\frac{z_n - w_n}{z - w_n} \right) \right| \\ &\leq \sum_{n=1}^{\infty} \frac{3}{2} \left| E_n \left(\frac{z_n - w_n}{z - w_n} \right) - 1 \right| \\ &\leq \sum_{n=1}^{\infty} \frac{3}{2} \delta^{n+1} \text{ by (5.18) (notice the choice of} \\ &R_1 \text{ implies that (5.18) holds for all } n \in \mathbb{N}) \\ &= \frac{3}{2} \frac{\delta^2}{1 - \delta} \end{aligned}$$

for all $|z| \ge R_1$. By the continuity of e^z at z = 0, we can further restrict $0 < \delta < 1/2$ so that $|w| < \frac{3}{2} \frac{\delta^2}{1-\delta}$ implies $|e^w - 1| < \varepsilon$ (so that we now have δ "fixed").

Theorem VII.5.15 (continued 8)

Proof (continued). Then for $|z| \ge R_1$, equation (5.19) with our choice of

$$\delta$$
 (and with $w = \sum_{n=1} \log \left(E_n \left(\frac{z_n - w_n}{z - w_n} \right) \right)$ gives

 $|f(z) - 1| = |e^w - 1| < \varepsilon$. Since $\varepsilon > 0$ was arbitrary (R_1 is chosen based on δ and δ is chosen based on ε , so ultimately R_1 depends on ε), then $\lim_{z\to\infty} f(z) = 1$.

(IV) Combining Part III with Part II, gives an analytic function $f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{z_n - w_n}{z - w_n} \right) \text{ which has a simple zero at } z = z_n \text{ for all } n \in \mathbb{N},$

and so has a zero at $z = a_j$ of multiplicity m_j for each $j \in \mathbb{N}$, on a set G satisfying (5.16) and such that $\lim_{z\to\infty} f(z) = 1$. By Part I, f can be modified to give the desired function g on any region G (in the proof of Part I the zeros of f are denoted as α_j instead of a_j).

Theorem VII.5.15 (continued 8)

Proof (continued). Then for $|z| \ge R_1$, equation (5.19) with our choice of

$$\delta$$
 (and with $w = \sum_{n=1} \log \left(E_n \left(\frac{z_n - w_n}{z - w_n} \right) \right)$ gives

 $|f(z) - 1| = |e^w - 1| < \varepsilon$. Since $\varepsilon > 0$ was arbitrary (R_1 is chosen based on δ and δ is chosen based on ε , so ultimately R_1 depends on ε), then $\lim_{z\to\infty} f(z) = 1$.

(IV) Combining Part III with Part II, gives an analytic function $f(z) = \prod_{n=1}^{\infty} E_n\left(\frac{z_n - w_n}{z - w_n}\right)$ which has a simple zero at $z = z_n$ for all $n \in \mathbb{N}$, and so has a zero at $z = a_j$ of multiplicity m_j for each $j \in \mathbb{N}$, on a set Gsatisfying (5.16) and such that $\lim_{z\to\infty} f(z) = 1$. By Part I, f can be modified to give the desired function g on any region G (in the proof of Part I the zeros of f are denoted as α_i instead of a_i).

Corollary VII.5.20

Corollary VII.5.20. If f is a meromorphic function on an open set G then there are analytic functions g and h on G such that f = g/h.

Proof. Let $\{a_j\}$ be the poles of f and let m_j be the order of the pole at a_j . By Theorem VII.5.15, there is an analytic function h on G with a zero of multiplicity m_i at a_j for each $j \in \mathbb{N}$ and with not other zeros.

Corollary VII.5.20. If f is a meromorphic function on an open set G then there are analytic functions g and h on G such that f = g/h.

Proof. Let $\{a_j\}$ be the poles of f and let m_j be the order of the pole at a_j . By Theorem VII.5.15, there is an analytic function h on G with a zero of multiplicity m_j at a_j for each $j \in \mathbb{N}$ and with not other zeros. So h(z)f(z) has removable singularities at each point a_j , $j \in \mathbb{N}$. Setting g = hf (reduced and removing the removable singularities), g is then analytic on G and f = g/h, as claimed.

Corollary VII.5.20. If f is a meromorphic function on an open set G then there are analytic functions g and h on G such that f = g/h.

Proof. Let $\{a_j\}$ be the poles of f and let m_j be the order of the pole at a_j . By Theorem VII.5.15, there is an analytic function h on G with a zero of multiplicity m_j at a_j for each $j \in \mathbb{N}$ and with not other zeros. So h(z)f(z) has removable singularities at each point a_j , $j \in \mathbb{N}$. Setting g = hf (reduced and removing the removable singularities), g is then analytic on G and f = g/h, as claimed.

()