Complex Analysis

Chapter VII. Compactness and Convergence in the Space of Analytic Functions
VII.6. Factorization of the Sine Function—Proofs of Theorems

Table of contents

(1) Theorem VII.6.A

Theorem VII.6.A

Theorem VII.6.A. For all $z \in \mathbb{C}$,

$$
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

and the convergence is uniform over compact subset of \mathbb{C}.
Proof. The zeros of $\sin \pi z$ are precisely the integers, each of which is a simple zero because $[\sin \pi z]^{\prime}=\pi \cos \pi z$ and $\pi \cos \pi \cdot 0=\pi \neq 0$. For all $r>0$

$$
\sum_{n=-\infty}^{\infty}\left(\frac{r}{n}\right)^{2}=2 \sum_{n=1}^{\infty}\left(\frac{r}{n}\right)^{2}=2 r^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

(p series with $p=2$), so with $p_{n}=1$ for $n \in \mathbb{N}$, the hypothesis (5.13) of Theorem 5.12 is satisfied and we can use $\left\{p_{n}\right\}$ in the Weierstrass Factorization Theorem.

Theorem VII.6.A

Theorem VII.6.A. For all $z \in \mathbb{C}$,

$$
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

and the convergence is uniform over compact subset of \mathbb{C}.
Proof. The zeros of $\sin \pi z$ are precisely the integers, each of which is a simple zero because $[\sin \pi z]^{\prime}=\pi \cos \pi z$ and $\pi \cos \pi \cdot 0=\pi \neq 0$. For all $r>0$

$$
\sum_{n=-\infty}^{\infty}\left(\frac{r}{n}\right)^{2}=2 \sum_{n=1}^{\infty}\left(\frac{r}{n}\right)^{2}=2 r^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

(p series with $p=2$), so with $p_{n}=1$ for $n \in \mathbb{N}$, the hypothesis (5.13) of Theorem 5.12 is satisfied and we can use $\left\{p_{n}\right\}$ in the Weierstrass Factorization Theorem.

Theorem VII.6.A (continued 1)

Proof (continued). So with $\left\{a_{n}\right\}=n$ for $n \in \mathbb{Z}$,

$$
\sin \pi z=z e^{g(z)} \prod_{n=-\infty}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)=z e^{g(z)} \prod_{n=-\infty}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}
$$

for all $z \in \mathbb{C}$. Now the infinite product converges absolutely (see the proof of Theorem 5.12) and so the terms can be rearranged to give

$$
\begin{equation*}
\sin \pi z=z e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right) \tag{6.1}
\end{equation*}
$$

since $(1-z / n)(1-z /(-n))=1-z^{2} / n^{2}$ for all $n \in \mathbb{N}$. With $f(z)=\sin \pi z$ we have $f^{\prime}(z)=\pi \cos \pi z$ and so $\pi \cot \pi z=\pi \cos \pi z / \sin \pi z=f^{\prime}(z) / f(z)$.

Theorem VII.6.A (continued 1)

Proof (continued). So with $\left\{a_{n}\right\}=n$ for $n \in \mathbb{Z}$,

$$
\sin \pi z=z e^{g(z)} \prod_{n=-\infty}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)=z e^{g(z)} \prod_{n=-\infty}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}
$$

for all $z \in \mathbb{C}$. Now the infinite product converges absolutely (see the proof of Theorem 5.12) and so the terms can be rearranged to give

$$
\begin{equation*}
\sin \pi z=z e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right) \tag{6.1}
\end{equation*}
$$

since $(1-z / n)(1-z /(-n))=1-z^{2} / n^{2}$ for all $n \in \mathbb{N}$. With $f(z)=\sin \pi z$ we have $f^{\prime}(z)=\pi \cos \pi z$ and so $\pi \cot \pi z=\pi \cos \pi z / \sin \pi z=f^{\prime}(z) / f(z)$.

Theorem VII.6.A (continued 2)

Proof (continued). Now by Theorem VII.2.1,

$$
\begin{aligned}
\pi \cos \pi z=f^{\prime}(z) & =[1] e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)+z\left[e^{g(z)} g^{\prime}(z)\right] \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right) \\
& +z e^{g(z)}\left(\sum_{j=1}^{\infty} \frac{-2 z}{j^{2}} \prod_{n=1, n \neq j}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)\right)
\end{aligned}
$$

and so

$$
\begin{gathered}
\pi \cos \pi z=\frac{f^{\prime}(z)}{f(z)}=\frac{1}{z}+g^{\prime}(z)+\sum_{j=1}^{\infty} \frac{-2 z}{j^{2}} \frac{1}{\left(1-z^{2} / j^{2}\right)} \\
=\frac{1}{z}+g^{\prime}(z)=\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}
\end{gathered}
$$

and by Exercise VII.5.10 the convergence us uniform over compact subset of \mathbb{C} that contains no integers.

Theorem VII.6.A (continued 3)

Proof (continued). By Exercise V.2.8, $\pi \cos \pi z+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}$ for z not an integer. So we have $g^{\prime}(z)=0$ and hence $g(z)=a$ for some constant $a \in \mathbb{C}$ on "appropriate sets." Since $g(z)$ is entire, then $g(z)=z$ for all $z \in \mathbb{C}$. So from (6.1) for $z \neq 0, \frac{\sin \pi z}{\pi z}=\frac{e^{a}}{\pi} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$ and

$$
\lim _{z \rightarrow 0} \frac{\sin \pi z}{\pi z}=1=\lim _{z \rightarrow 0} \frac{e^{a}}{\pi} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)=\frac{e^{a}}{\pi}
$$

so that $e^{a}=e^{g(z)}=\pi$.

Theorem VII.6.A (continued 3)

Proof (continued). By Exercise V.2.8, $\pi \cos \pi z+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}$ for z not an integer. So we have $g^{\prime}(z)=0$ and hence $g(z)=a$ for some constant $a \in \mathbb{C}$ on "appropriate sets." Since $g(z)$ is entire, then $g(z)=z$ for all
$z \in \mathbb{C}$. So from (6.1) for $z \neq 0, \frac{\sin \pi z}{\pi z}=\frac{e^{a}}{\pi} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$ and

$$
\lim _{z \rightarrow 0} \frac{\sin \pi z}{\pi z}=1=\lim _{z \rightarrow 0} \frac{e^{a}}{\pi} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)=\frac{e^{a}}{\pi}
$$

so that $e^{a}=e^{g(z)}=\pi$. Therefore

$$
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

as claimed. The uniform convergence on compact sets claim follows from Theorem VII.5.12.

Theorem VII.6.A (continued 3)

Proof (continued). By Exercise V.2.8, $\pi \cos \pi z+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}$ for z not an integer. So we have $g^{\prime}(z)=0$ and hence $g(z)=a$ for some constant $a \in \mathbb{C}$ on "appropriate sets." Since $g(z)$ is entire, then $g(z)=z$ for all
$z \in \mathbb{C}$. So from (6.1) for $z \neq 0, \frac{\sin \pi z}{\pi z}=\frac{e^{a}}{\pi} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$ and

$$
\lim _{z \rightarrow 0} \frac{\sin \pi z}{\pi z}=1=\lim _{z \rightarrow 0} \frac{e^{a}}{\pi} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)=\frac{e^{a}}{\pi}
$$

so that $e^{a}=e^{g(z)}=\pi$. Therefore

$$
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

as claimed. The uniform convergence on compact sets claim follows from Theorem VII.5.12.

