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Theorem VIII.2.2

Theorem VII1.2.2. Let G be an open connected subset of C. The the
following are equivalent:

(a) G is simply connected;

(b) n(v;a) = 0 for every closed rectifiable curve v in G and
every a € C\ G;

(c) Cx \ G is connected;

(d) For any f € H(G) there is a sequence of polynomials that
converges to f in H(G);

(e) For any f € H(G) and any closed rectifiable curve 7y in G,
J,f=0
(f) Every function f € H(G) has a primitive;

(continued. . .)
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Theorem VII1.2.2

Theorem VIII.2.2 (continued 1)

Theorem VII1.2.2. Let G be an open connected subset of C. The the
following are equivalent:

(g) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = expg(z);

(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;

(i) G is homeomorphic to the unit disk;

(j) If u: G — R is harmonic then there is a harmonic function
v : G — R such that f = u + iv is analytic on G.
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Theorem VII1.2.2

Theorem VIII.2.2 (continued 1)

Theorem VII1.2.2. Let G be an open connected subset of C. The the
following are equivalent:

(g) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = expg(z);

(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;

(i) G is homeomorphic to the unit disk;

(j) If u: G — R is harmonic then there is a harmonic function
v : G — R such that f = u + iv is analytic on G.

Proof. We prove the implications as follows: (a) = (b) = (¢) = -+ =
(i) = (a), and then (h) = (j) = (g).
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Theorem VIII.2.2 (continued 2)

(a) G is simply connected;

(b) n(v;a) = 0 for every closed rectifiable curve v in G and
every a € C\ G;

Proof (continued). (a) = (b). Let 7 be a closed rectifiable curve in G
and a€ C\ G. Then (z — a)~! is analytic on G and

n(~v: a) = 1 z—a) ldz=0
(7:3) L( )

"~ 2mi

by Cauchy’s Theorem—~Fourth Version (Theorem 1V.6.15).
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Theorem VIII.2.2 (continued 2)

(a) G is simply connected;
(b) n(~;a) =0 for every closed rectifiable curve v in G and
every a € C\ G;
Proof (continued). (a) = (b). Let 7 be a closed rectifiable curve in G
and a€ C\ G. Then (z — a)~! is analytic on G and

n(~v: a) = 1 z—a) ldz=0
(7:3) L( )

"~ 2mi

by Cauchy’s Theorem—~Fourth Version (Theorem 1V.6.15).

(b) = (c). ASSUME C \ G is not connected. Then Co, \ G =AUB
where A and B are disjoint, nonempty closed subsets of C, (from the
definition of connected metric space, Definition 11.2.1; A and B are both
open and closed in C \ G).
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Theorem VIII.2.2 (continued 3)

Proof (continued). Since oo is in either A or B, say co € B, then A must
be a compact subset of C (A is closed in Co, and C is compact [see
“Compactness of C,, Theorem” in the supplement to Section I1.4, “The
Extended Complex Plane”] so A is compact in C; every open cover of A
in C yields an open cover of A in C,, by the “Topologies on C,, Theorem”
in the supplement, so A is compact in C also).
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Theorem VIII.2.2 (continued 3)

Proof (continued). Since oo is in either A or B, say co € B, then A must
be a compact subset of C (A is closed in Co, and C is compact [see
“Compactness of C,, Theorem” in the supplement to Section I1.4, “The
Extended Complex Plane”] so A is compact in C; every open cover of A
in C yields an open cover of A in C,, by the “Topologies on C,, Theorem”
in the supplement, so A is compact in C also). Since Coo \ G = AU B
then G = GUA =C4 \ B is an open set in C and contains set A. So by
Proposition VIII.1.1 (since Gy is open, A is compact, and G; \ A= G is a
region) there are a finite number of polygons v1,72,...,7,in GI\A=G
such that for every analytlc function f on G, we have

f(z) =Yy 25 [, 2% dw for all z € A.

Kk W—Z

Complex Analysis August 30, 2017 6/ 14



Theorem VIII.2.2 (continued 3)

Proof (continued). Since oo is in either A or B, say co € B, then A must
be a compact subset of C (A is closed in Co, and C is compact [see
“Compactness of C,, Theorem” in the supplement to Section I1.4, “The
Extended Complex Plane”] so A is compact in C; every open cover of A
in C yields an open cover of A in C,, by the “Topologies on C,, Theorem”
in the supplement, so A is compact in C also). Since Coo \ G = AU B
then G = GUA =C4 \ B is an open set in C and contains set A. So by
Proposition VIII.1.1 (since Gy is open, A is compact, and G; \ A= G is a
region) there are a finite number of polygons v1,72,...,7,in GI\A=G
such that for every analytlc function f on G, we have

f(z) =Yy 2 [, 2% dw for all z € A. So with f(z) =1 we have

Kk W—Z

m

1

27
k=1

m
= Z N(7k; z) for all z € A.
k=1
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Theorem VIII.2.2 (continued 4)

(c) Cx \ G is connected;
(d) For any f € H(G) there is a sequence of polynomials that
converges to f in H(G);
(e) For any f € H(G) and any closed rectifiable curve 7y in G,
f7 f=0;
Proof (continued). But since n(7k; z) € NU {0}, then for some
1 < k < m we have n(x) =1, CONTRADICTING (b) that all such
winding numbers for a € A C C\ G are 0. So the assumption that C, \ G
is not connected is false and C, \ G is therefore connected.
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Theorem VIII.2.2 (continued 4)

(c) Cx \ G is connected;
(d) For any f € H(G) there is a sequence of polynomials that
converges to f in H(G);
(e) For any f € H(G) and any closed rectifiable curve 7y in G,
f7 f=0;
Proof (continued). But since n(7k; z) € NU {0}, then for some
1 < k < m we have n(x) =1, CONTRADICTING (b) that all such
winding numbers for a € A C C\ G are 0. So the assumption that C, \ G
is not connected is false and C, \ G is therefore connected.

(c) = (d). This is Corollary VIII.1.15.
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Theorem VIII.2.2 (continued 4)

(c) Cx \ G is connected;
(d) For any f € H(G) there is a sequence of polynomials that
converges to f in H(G);
(e) For any f € H(G) and any closed rectifiable curve 7y in G,
f7 f=0;
Proof (continued). But since n(7k; z) € NU {0}, then for some
1 < k < m we have n(x) =1, CONTRADICTING (b) that all such
winding numbers for a € A C C\ G are 0. So the assumption that C, \ G
is not connected is false and C, \ G is therefore connected.

(c) = (d). This is Corollary VIII.1.15.

(d) = (e). Let v be a closed rectifiable curve in G, let f € H(G) (i.e., f is
analytic on G), and let {p,} be a sequence of polynomials such that

f =limy—oo pn in H(G). So p, — f uniformly on compact subsets of G
by Proposition VII.1.10(b). So p, — f uniformly on compact set {~}.
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Theorem VIII.2.2 (continued 5)

(e) For any f € H(G) and any closed rectifiable curve v in G,
J, f=0;
gl

(f) Every function f € H(G) has a primitive;

Proof (continued). Since each polynomial is analytic on C and v ~ 0 in
C then fv pn = 0 for n € N by Cauchy's Theorem—Fourth Version

(Theorem 1V.6.15). So, by the uniform convergence on {7},
fﬂ/ f =limp—oo fv pn = 0 by Lemma IV.2.7.
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Theorem VIII.2.2 (continued 5)

(e) For any f € H(G) and any closed rectifiable curve v in G,
f7 f=0;
(f) Every function f € H(G) has a primitive;
Proof (continued). Since each polynomial is analytic on C and v ~ 0 in
C then fv pn = 0 for n € N by Cauchy's Theorem—Fourth Version

(Theorem 1V.6.15). So, by the uniform convergence on {7},
fﬂ/ f =limp—oo fv pn = 0 by Lemma IV.2.7.

(e) = (f). Fixae G. Let z € G. For 1 and 72 any rectifiable curves in
G from a to z we have 73 — 2 is a closed rectifiable curve in G. So by

hypothesis (e) we have 0= [ f=[ f— [ fandso [ f=[ f.
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Theorem VIII.2.2 (continued 5)

(e) For any f € H(G) and any closed rectifiable curve v in G,
J, f=0;
gl

(f) Every function f € H(G) has a primitive;

Proof (continued). Since each polynomial is analytic on C and v ~ 0 in
C then fv pn = 0 for n € N by Cauchy’s Theorem—Fourth Version
(Theorem 1V.6.15). So, by the uniform convergence on {7},

fﬂ/ f =limp—oo f7 pn = 0 by Lemma IV.2.7.

(e) = (f). Fixae G. Let z € G. For 1 and 72 any rectifiable curves in
G from a to z we have 73 — 2 is a closed rectifiable curve in G. So by
hypothesis (e) we have 0= [ f=[ f— [ fandso [ f=[ f.
So define F(z) = f,y f where v is any rectifiable curve in G from a to z (F
is well-defined, that is independent of ~y, as just shown). As shown in the
proof of Corollary IV.6.16, F/ = f on G and so f has a primitive F on G.
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Theorem VIII.2.2 (continued 6)

(f) Every function f € H(G) has a primitive;
(g) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = expg(z);
(h) For any f € H(G) such that f(z) # 0 for all z € G thereis a
function g € H(G) such that f(z) = (g(2))?;
Proof (continued). (f) = (g). If f(z) # 0 for all z € G then f'/f is
analytic on G. By hypothesis (f) there is a function F with F' = f'/f. It is

shown in the proof of Corollary IV.6.17 that f(z) = exp(F(z) + ¢) for some
constant ¢ € C (in the interior of the proof of Corollary 1V.6.17, g1 = F).
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Theorem VIII.2.2 (continued 6)

(f) Every function f € H(G) has a primitive;

(g) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = expg(z);

(h) For any f € H(G) such that f(z) # 0 for all z € G thereis a
function g € H(G) such that f(z) = (g(2))?;

Proof (continued). (f) = (g). If f(z) # 0 for all z € G then f'/f is
analytic on G. By hypothesis (f) there is a function F with F' = f'/f. It is
shown in the proof of Corollary IV.6.17 that f(z) = exp(F(z) + ¢) for some
constant ¢ € C (in the interior of the proof of Corollary 1V.6.17, g1 = F).

(g) = (h). By hypothesis (g), f(z) = exp(g(z)). So consider
exp(g(z)/2). We have (exp(g(z)/2))? = exp(g(z)) = f(z) and so
exp(g(z)/2) (in the notation of (g)) is the desired function (also denoted
as “g" in the notation of (h)).
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Theorem VIII.2.2 (continued 7)

(a) G is simply connected;
(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;
(i) G is homeomorphic to the unit disk;
Proof (continued). (h) = (i). If G = C then f(z) =z/(1+ |z|) is a
homeomorphism from G = C to the unit disk (regardless of hypothesis

(h)). If G # C and (h) holds then every nonvanishing analytic function on
G has an analytic square root. So the hypotheses of Lemma VI1.4.3 are

satisfied.
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Theorem VIII.2.2 (continued 7)

(a) G is simply connected;

(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;

(i) G is homeomorphic to the unit disk;

Proof (continued). (h) = (i). If G = C then f(z) =z/(1+ |z|) is a
homeomorphism from G = C to the unit disk (regardless of hypothesis
(h)). If G # C and (h) holds then every nonvanishing analytic function on
G has an analytic square root. So the hypotheses of Lemma VI1.4.3 are
satisfied. So by Lemma VI1.4.3 there exists an analytic one to one function
h from G onto the unit disk. By Corollary IV.7.6 (a corollary to the Open
Mapping Theorem) h™! is analytic (and so continuous). Therefore f is a
homeomorphism and (i) follows.
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Theorem VIII.2.2 (continued 7)

(a) G is simply connected;

(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;

(i) G is homeomorphic to the unit disk;

Proof (continued). (h) = (i). If G = C then f(z) =z/(1+ |z|) is a
homeomorphism from G = C to the unit disk (regardless of hypothesis
(h)). If G # C and (h) holds then every nonvanishing analytic function on
G has an analytic square root. So the hypotheses of Lemma VI1.4.3 are
satisfied. So by Lemma VI1.4.3 there exists an analytic one to one function
h from G onto the unit disk. By Corollary IV.7.6 (a corollary to the Open
Mapping Theorem) h™! is analytic (and so continuous). Therefore f is a
homeomorphism and (i) follows.

(i) = (a). Let h: G — D ={z||z| < 1} be a homeomorphism and let
be a closed curve in G (not assumed to be rectifiable).
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Theorem VIII.2.2 (continued 8)

Proof (continued). Then o(s) = h(v(a)) is a closed curve in D. Since D
is simply connected then o ~ 0 and there is a homotopy A mapping ¢ to a
constant (we map o to 0 € D).
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Theorem VIII.2.2 (continued 8)

Proof (continued). Then o(s) = h(v(a)) is a closed curve in D. Since D
is simply connected then o ~ 0 and there is a homotopy A mapping ¢ to a
constant (we map ¢ to 0 € D). Thus, there is a continuous function

A : 12 — D such that A(s,0) = o(s) for s € I, A(s,1) = 0 for s € /, and
A0, t) = A(1,t) for t € I. Thatis, A(s, t) “starts” (when t = 0) at o(s),
“ends” (when t = 1) at the point 0 (since D is simply connected and so
o ~ 0), and is a closed curve for t € | (so the endpoints are the same for
all t € 1, A(0, t) = A(1, t)).
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Theorem VIII.2.2 (continued 8)

Proof (continued). Then o(s) = h(v(a)) is a closed curve in D. Since D
is simply connected then o ~ 0 and there is a homotopy A mapping ¢ to a
constant (we map ¢ to 0 € D). Thus, there is a continuous function

A : 12 — D such that A(s,0) = o(s) for s € I, A(s,1) = 0 for s € /, and
A0, t) = A(1,t) for t € I. Thatis, A(s, t) “starts” (when t = 0) at o(s),
“ends” (when t = 1) at the point 0 (since D is simply connected and so
o ~ 0), and is a closed curve for t € | (so the endpoints are the same for
all t € 1, A(0,t) = A(1,t)). Define T = h=toA. Then I is continuous and
[:12— G. Also, ['(s,0) = h™1 o A(s,0) — f_loa( ) ="(s) for s €[ (so
[ “starts” at at 7(s)), F(s )=h"'lo /\(s 1)=h"10) forse/l (sol
“ends” at the constant h=1(0) € G), a

F0,t) =h"toA0,t)=h"IN(1,t) = F(l, t) for t € I (so the endpoints
are the same for all t € /).

Complex Analysis August 30, 2017 11 /14



Theorem VIII.2.2 (continued 8)

Proof (continued). Then o(s) = h(v(a)) is a closed curve in D. Since D
is simply connected then o ~ 0 and there is a homotopy A mapping ¢ to a
constant (we map ¢ to 0 € D). Thus, there is a continuous function

A : 12 — D such that A(s,0) = o(s) for s € I, A(s,1) = 0 for s € /, and
A0, t) = A(1,t) for t € I. Thatis, A(s, t) “starts” (when t = 0) at o(s),
“ends” (when t = 1) at the point 0 (since D is simply connected and so

o ~ 0), and is a closed curve for t € | (so the endpoints are the same for
all t € 1, A(0,t) = A(1,t)). Define T = h=toA. Then I is continuous and
[:12— G. Also, ['(5,0) = h™1 o A(s5,0) — f Lo o(s) = 7(s) for s € | (so
[ “starts” at at 7(s)), F(s 1)=h"toA(s,1)=h"1(0)forsel (soT
“ends” at the constant h=1(0) € G), and

F0,t) =h"toA0,t) = h"IA(1,t) = T(1,t) for t € I (so the endpoints
are the same for all t € /). That is, I' is a homotopy between ~ and the
constant h=1(0); so v ~ 0. Since 7 is an arbitrary closed curve in G, then
G is simply connected and (a) holds.
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Theorem VIII.2.2 (continued 9)

(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;

(j) If u: G — R is harmonic then there is a harmonic function
v: G — R such that f = u+ iv is analytic on G.

Proof (continued). (h) = (j). Suppose G # C. Since (h) holds then G
is simply connected (since (h) = (i) = (a)). So by the Riemann Mapping
Theorem (Theorem VI1.4.2) there is analytic function h on G such that h
is one to one and h(G) = D. If u: G — R is a harmonic function,
consider u; = uo h™1. By Corollary IV.7.6, h=! is analytic.
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Theorem VIII.2.2 (continued 9)

(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;

(j) If u: G — R is harmonic then there is a harmonic function
v: G — R such that f = u+ iv is analytic on G.

Proof (continued). (h) = (j). Suppose G # C. Since (h) holds then G
is simply connected (since (h) = (i) = (a)). So by the Riemann Mapping
Theorem (Theorem VI1.4.2) there is analytic function h on G such that h
is one to one and h(G) = D. If u: G — R is a harmonic function,
consider u; = uo h™1. By Corollary IV.7.6, h! is analytic. In Exercise
VII1.2.A, one shows that vy is harmonic in D (using the Chain Rule and
the Cauchy-Riemann equations). By Theorem 111.2.30 there is a harmonic
conjugate of uy,v1 : D — R, such that fi = uy + ivy is analytic on D.
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Theorem VIII.2.2 (continued 9)

(h) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = (g(2))?;

(j) If u: G — R is harmonic then there is a harmonic function
v: G — R such that f = u+ iv is analytic on G.

Proof (continued). (h) = (j). Suppose G # C. Since (h) holds then G
is simply connected (since (h) = (i) = (a)). So by the Riemann Mapping
Theorem (Theorem VI1.4.2) there is analytic function h on G such that h
is one to one and h(G) = D. If u: G — R is a harmonic function,
consider u; = uo h™1. By Corollary IV.7.6, h! is analytic. In Exercise
VII1.2.A, one shows that vy is harmonic in D (using the Chain Rule and
the Cauchy-Riemann equations). By Theorem 111.2.30 there is a harmonic
conjugate of ui,vi : D — R, such that f; = uy + ivy is analytic on D. Let
f =foh. Then f is analytic on G and the real part of
f=fhoh=(u+ivy)oh=(uoht4+ivy)oh=u+ivyohisu. So

v = Im(f) = v1 o h is a harmonic conjugate of u. So (j) holds on G.
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Theorem VIII.2.2 (continued 10)

(g) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = expg(z);
(j) f u: G — R is harmonic then there is a harmonic function
v: G — R such that f = u+ iv is analytic on G.
Proof (continued). If G = C then we take h: C — D as
h(z) = z/(1 + |z|) and repeat the process above applying Theorem 11.2.30.
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Theorem VIII.2.2 (continued 10)

(g) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = expg(z);

(j) f u: G — R is harmonic then there is a harmonic function
v: G — R such that f = u+ iv is analytic on G.

Proof (continued). If G = C then we take h: C — D as
h(z) = z/(1 + |z|) and repeat the process above applying Theorem 11.2.30.

(j) = (g). Suppose f : G — C is analytic and never vanishes on G, and
let u=Re(f) and v =Im(f). If U: G — R is defined by

U(x,y) = log |f(x + iy)| = log(u(x, y)? + v(x, y)?)'/? then “a
computation” shows that U is harmonic.

Complex Analysis August 30, 2017 13 / 14



Theorem VIII.2.2 (continued 10)

(g) For any f € H(G) such that f(z) # 0 for all z € G there is a
function g € H(G) such that f(z) = expg(z);
(j) f u: G — R is harmonic then there is a harmonic function
v: G — R such that f = u+ iv is analytic on G.
Proof (continued). If G = C then we take h: C — D as
h(z) = z/(1 + |z|) and repeat the process above applying Theorem 11.2.30.

(j) = (g). Suppose f : G — C is analytic and never vanishes on G, and
let u=Re(f) and v =Im(f). If U: G — R is defined by

U(x,y) = log |f(x + iy)| = log(u(x, y)? + v(x, y)?)'/? then “a
computation” shows that U is harmonic. By hypothesis (j) there is a
harmonic function V on G such that g = U + iV is analytic on G. Let
h(z) = exp(g(z)). Then h is analytic on F, h never vanishes on G, and
|f(z)/h(z)| =1 for all z € G since

|h| = |expg| = |exp(U + iV)| = exp U = exp(log |f]) = |f].
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Theorem VIII.2.2 (continued 11)

Proof (continued). So f/h is analytic on G. By Exercise VI.1.6 there is a
constant ¢ of modulus 1 such that

f(z) = ch(z) = zexp(h(z)) = exp(g(z) + c1) where ¢ = exp(c1).

So g(z) + c1 is a branch of log f(z) and (g) holds. O
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