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Theorem VIII.2.2

Theorem VIII.2.2

Theorem VIII.2.2. Let G be an open connected subset of C. The the
following are equivalent:

(a) G is simply connected;

(b) n(γ; a) = 0 for every closed rectifiable curve γ in G and
every a ∈ C \ G ;

(c) C∞ \ G is connected;

(d) For any f ∈ H(G ) there is a sequence of polynomials that
converges to f in H(G );

(e) For any f ∈ H(G ) and any closed rectifiable curve γ in G ,∫
γ f = 0;

(f) Every function f ∈ H(G ) has a primitive;

(continued. . . )
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 1)

Theorem VIII.2.2. Let G be an open connected subset of C. The the
following are equivalent:

(g) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = exp g(z);

(h) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = (g(z))2;

(i) G is homeomorphic to the unit disk;

(j) If u : G → R is harmonic then there is a harmonic function
v : G → R such that f = u + iv is analytic on G .

Proof. We prove the implications as follows: (a) ⇒ (b) ⇒ (c) ⇒ · · · ⇒
(i) ⇒ (a), and then (h) ⇒ (j) ⇒ (g).

() Complex Analysis August 30, 2017 4 / 14



Theorem VIII.2.2

Theorem VIII.2.2 (continued 1)

Theorem VIII.2.2. Let G be an open connected subset of C. The the
following are equivalent:

(g) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = exp g(z);

(h) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = (g(z))2;

(i) G is homeomorphic to the unit disk;

(j) If u : G → R is harmonic then there is a harmonic function
v : G → R such that f = u + iv is analytic on G .

Proof. We prove the implications as follows: (a) ⇒ (b) ⇒ (c) ⇒ · · · ⇒
(i) ⇒ (a), and then (h) ⇒ (j) ⇒ (g).

() Complex Analysis August 30, 2017 4 / 14



Theorem VIII.2.2

Theorem VIII.2.2 (continued 2)

(a) G is simply connected;

(b) n(γ; a) = 0 for every closed rectifiable curve γ in G and
every a ∈ C \ G ;

Proof (continued). (a) ⇒ (b). Let γ be a closed rectifiable curve in G
and a ∈ C \ G . Then (z − a)−1 is analytic on G and

n(γ; a) =
1

2πi

∫
γ
(z − a)−1 dz = 0

by Cauchy’s Theorem—Fourth Version (Theorem IV.6.15).

(b) ⇒ (c). ASSUME C∞ \ G is not connected. Then C∞ \ G = A ∪ B
where A and B are disjoint, nonempty closed subsets of C∞ (from the
definition of connected metric space, Definition II.2.1; A and B are both
open and closed in C∞ \ G ).
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 3)

Proof (continued). Since ∞ is in either A or B, say ∞ ∈ B, then A must
be a compact subset of C (A is closed in C∞ and C∞ is compact [see
“Compactness of C∞ Theorem” in the supplement to Section II.4, “The
Extended Complex Plane”] so A is compact in C∞; every open cover of A
in C yields an open cover of A in C∞ by the “Topologies on C∞ Theorem”
in the supplement, so A is compact in C also). Since C∞ \ G = A ∪ B
then G1 = G ∪ A = C∞ \ B is an open set in C and contains set A. So by
Proposition VIII.1.1 (since G1 is open, A is compact, and G1 \ A = G is a
region) there are a finite number of polygons γ1, γ2, . . . , γn in G1 \ A = G
such that for every analytic function f on G , we have
f (z) =

∑m
k=1

1
2πi

∫
γk

f (w)
w−z dw for all z ∈ A.

So with f (z) ≡ 1 we have

1 =
m∑

k=1

1

2πi

∫
γk

1

w − z
dw =

m∑
k=1

N(γk ; z) for all z ∈ A.
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 4)

(c) C∞ \ G is connected;

(d) For any f ∈ H(G ) there is a sequence of polynomials that
converges to f in H(G );

(e) For any f ∈ H(G ) and any closed rectifiable curve γ in G ,∫
γ f = 0;

Proof (continued). But since n(γk ; z) ∈ N ∪ {0}, then for some
1 ≤ k ≤ m we have n(γk) = 1, CONTRADICTING (b) that all such
winding numbers for a ∈ A ⊂ C \G are 0. So the assumption that C∞ \G
is not connected is false and C∞ \ G is therefore connected.

(c) ⇒ (d). This is Corollary VIII.1.15.

(d) ⇒ (e). Let γ be a closed rectifiable curve in G , let f ∈ H(G ) (i.e., f is
analytic on G ), and let {pn} be a sequence of polynomials such that
f = limn→∞ pn in H(G ). So pn → f uniformly on compact subsets of G
by Proposition VII.1.10(b). So pn → f uniformly on compact set {γ}.
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 5)

(e) For any f ∈ H(G ) and any closed rectifiable curve γ in G ,∫
γ f = 0;

(f) Every function f ∈ H(G ) has a primitive;

Proof (continued). Since each polynomial is analytic on C and γ ∼ 0 in
C then

∫
γ pn = 0 for n ∈ N by Cauchy’s Theorem–Fourth Version

(Theorem IV.6.15). So, by the uniform convergence on {γ},∫
γ f = limn→∞

∫
γ pn = 0 by Lemma IV.2.7.

(e) ⇒ (f). Fix a ∈ G . Let z ∈ G . For γ1 and γ2 any rectifiable curves in
G from a to z we have γ1 − γ2 is a closed rectifiable curve in G . So by
hypothesis (e) we have 0 =

∫
γ1−γ2

f =
∫
γ1

f −
∫
γ2

f and so
∫
γ1

f =
∫
γ2

f .

So define F (z) =
∫
γ f where γ is any rectifiable curve in G from a to z (F

is well-defined, that is independent of γ, as just shown). As shown in the
proof of Corollary IV.6.16, F ′ = f on G and so f has a primitive F on G .
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 6)

(f) Every function f ∈ H(G ) has a primitive;

(g) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = exp g(z);

(h) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = (g(z))2;

Proof (continued). (f) ⇒ (g). If f (z) 6= 0 for all z ∈ G then f ′/f is
analytic on G . By hypothesis (f) there is a function F with F ′ = f ′/f . It is
shown in the proof of Corollary IV.6.17 that f (z) = exp(F (z)+ c) for some
constant c ∈ C (in the interior of the proof of Corollary IV.6.17, g1 = F ).

(g) ⇒ (h). By hypothesis (g), f (z) = exp(g(z)). So consider
exp(g(z)/2). We have (exp(g(z)/2))2 = exp(g(z)) = f (z) and so
exp(g(z)/2) (in the notation of (g)) is the desired function (also denoted
as “g” in the notation of (h)).
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 7)

(a) G is simply connected;

(h) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = (g(z))2;

(i) G is homeomorphic to the unit disk;

Proof (continued). (h) ⇒ (i). If G = C then f (z) = z/(1 + |z |) is a
homeomorphism from G = C to the unit disk (regardless of hypothesis
(h)). If G 6= C and (h) holds then every nonvanishing analytic function on
G has an analytic square root. So the hypotheses of Lemma VII.4.3 are
satisfied. So by Lemma VII.4.3 there exists an analytic one to one function
h from G onto the unit disk. By Corollary IV.7.6 (a corollary to the Open
Mapping Theorem) h−1 is analytic (and so continuous). Therefore f is a
homeomorphism and (i) follows.

(i) ⇒ (a). Let h : G → D = {z | |z | < 1} be a homeomorphism and let γ
be a closed curve in G (not assumed to be rectifiable).
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 8)

Proof (continued). Then σ(s) = h(γ(a)) is a closed curve in D. Since D
is simply connected then σ ∼ 0 and there is a homotopy Λ mapping σ to a
constant (we map σ to 0 ∈ D). Thus, there is a continuous function
Λ : I 2 → D such that Λ(s, 0) = σ(s) for s ∈ I , Λ(s, 1) = 0 for s ∈ I , and
Λ(0, t) = Λ(1, t) for t ∈ I . That is, Λ(s, t) “starts” (when t = 0) at σ(s),
“ends” (when t = 1) at the point 0 (since D is simply connected and so
σ ∼ 0), and is a closed curve for t ∈ I (so the endpoints are the same for
all t ∈ I , Λ(0, t) = Λ(1, t)).

Define Γ = h−1 ◦ Λ. Then Γ is continuous and
Γ : I 2 → G . Also, Γ(s, 0) = h−1 ◦ Λ(s, 0)− f −1 ◦ σ(s) = γ(s) for s ∈ I (so
Γ “starts” at at γ(s)), Γ(s, 1) = h−1 ◦ Λ(s, 1) = h−1(0) for s ∈ I (so Γ
“ends” at the constant h−1(0) ∈ G ), and
Γ(0, t) = h−1 ◦ Λ(0, t) = h−1Λ(1, t) = Γ(1, t) for t ∈ I (so the endpoints
are the same for all t ∈ I ). That is, Γ is a homotopy between γ and the
constant h−1(0); so γ ∼ 0. Since γ is an arbitrary closed curve in G , then
G is simply connected and (a) holds.
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σ ∼ 0), and is a closed curve for t ∈ I (so the endpoints are the same for
all t ∈ I , Λ(0, t) = Λ(1, t)). Define Γ = h−1 ◦ Λ. Then Γ is continuous and
Γ : I 2 → G . Also, Γ(s, 0) = h−1 ◦ Λ(s, 0)− f −1 ◦ σ(s) = γ(s) for s ∈ I (so
Γ “starts” at at γ(s)), Γ(s, 1) = h−1 ◦ Λ(s, 1) = h−1(0) for s ∈ I (so Γ
“ends” at the constant h−1(0) ∈ G ), and
Γ(0, t) = h−1 ◦ Λ(0, t) = h−1Λ(1, t) = Γ(1, t) for t ∈ I (so the endpoints
are the same for all t ∈ I ). That is, Γ is a homotopy between γ and the
constant h−1(0); so γ ∼ 0. Since γ is an arbitrary closed curve in G , then
G is simply connected and (a) holds.
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Theorem VIII.2.2 (continued 9)

(h) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = (g(z))2;

(j) If u : G → R is harmonic then there is a harmonic function
v : G → R such that f = u + iv is analytic on G .

Proof (continued). (h) ⇒ (j). Suppose G 6= C. Since (h) holds then G
is simply connected (since (h) ⇒ (i) ⇒ (a)). So by the Riemann Mapping
Theorem (Theorem VII.4.2) there is analytic function h on G such that h
is one to one and h(G ) = D. If u : G → R is a harmonic function,
consider u1 = u ◦ h−1. By Corollary IV.7.6, h−1 is analytic. In Exercise
VIII.2.A, one shows that u1 is harmonic in D (using the Chain Rule and
the Cauchy-Riemann equations). By Theorem III.2.30 there is a harmonic
conjugate of u1, v1 : D → R, such that f1 = u1 + iv1 is analytic on D.

Let
f = f1 ◦ h. Then f is analytic on G and the real part of
f = f1 ◦ h = (u1 + iv1) ◦ h = (u ◦ h−1 + iv1) ◦ h = u + iv1 ◦ h is u. So
v = Im(f ) = v1 ◦ h is a harmonic conjugate of u. So (j) holds on G .
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Theorem VIII.2.2

Theorem VIII.2.2 (continued 10)

(g) For any f ∈ H(G ) such that f (z) 6= 0 for all z ∈ G there is a
function g ∈ H(G ) such that f (z) = exp g(z);

(j) If u : G → R is harmonic then there is a harmonic function
v : G → R such that f = u + iv is analytic on G .

Proof (continued). If G = C then we take h : C → D as
h(z) = z/(1 + |z |) and repeat the process above applying Theorem II.2.30.

(j) ⇒ (g). Suppose f : G → C is analytic and never vanishes on G , and
let u = Re(f ) and v = Im(f ). If U : G → R is defined by
U(x , y) = log |f (x + iy)| = log(u(x , y)2 + v(x , y)2)1/2 then “a
computation” shows that U is harmonic.

By hypothesis (j) there is a
harmonic function V on G such that g = U + iV is analytic on G . Let
h(z) = exp(g(z)). Then h is analytic on F , h never vanishes on G , and
|f (z)/h(z)| = 1 for all z ∈ G since

|h| = | exp g | = | exp(U + iV )| = expU = exp(log |f |) = |f |.
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Theorem VIII.2.2 (continued 11)

Proof (continued). So f /h is analytic on G . By Exercise VI.1.6 there is a
constant c of modulus 1 such that

f (z) = ch(z) = z exp(h(z)) = exp(g(z) + c1) where c = exp(c1).

So g(z) + c1 is a branch of log f (z) and (g) holds.
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