Complex Analysis

Chapter VIII. Runge's Theorem

VIII.2. Simple Connectedness-Proofs of Theorems

Table of contents

(1) Theorem VIII.2.2

Theorem VIII.2.2

Theorem VIII.2.2. Let G be an open connected subset of \mathbb{C}. The the following are equivalent:
(a) G is simply connected;
(b) $n(\gamma ; a)=0$ for every closed rectifiable curve γ in G and every $a \in \mathbb{C} \backslash G$;
(c) $\mathbb{C}_{\infty} \backslash G$ is connected;
(d) For any $f \in H(G)$ there is a sequence of polynomials that converges to f in $H(G)$;
(e) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f=0$;
(f) Every function $f \in H(G)$ has a primitive; (continued...)

Theorem VIII.2.2 (continued 1)

Theorem VIII.2.2. Let G be an open connected subset of \mathbb{C}. The the following are equivalent:
(g) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=\exp g(z)$;
(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(i) G is homeomorphic to the unit disk;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.

Proof. We prove the implications as follows: $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow \cdots \Rightarrow$ $(\mathrm{i}) \Rightarrow(\mathrm{a})$, and then $(\mathrm{h}) \Rightarrow(\mathrm{j}) \Rightarrow(\mathrm{g})$.

Theorem VIII.2.2 (continued 1)

Theorem VIII.2.2. Let G be an open connected subset of \mathbb{C}. The the following are equivalent:
(g) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=\exp g(z)$;
(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(i) G is homeomorphic to the unit disk;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.

Proof. We prove the implications as follows: $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow \cdots \Rightarrow$ $(\mathrm{i}) \Rightarrow(\mathrm{a})$, and then $(\mathrm{h}) \Rightarrow(\mathrm{j}) \Rightarrow(\mathrm{g})$.

Theorem VIII.2.2 (continued 2)

(a) G is simply connected;
(b) $n(\gamma ; a)=0$ for every closed rectifiable curve γ in G and every $a \in \mathbb{C} \backslash G$;

Proof (continued). (a) \Rightarrow (b). Let γ be a closed rectifiable curve in G and $a \in \mathbb{C} \backslash G$. Then $(z-a)^{-1}$ is analytic on G and

$$
n(\gamma ; a)=\frac{1}{2 \pi i} \int_{\gamma}(z-a)^{-1} d z=0
$$

by Cauchy's Theorem—Fourth Version (Theorem IV.6.15).
(b) \Rightarrow (c). ASSUME $\mathbb{C}_{\infty} \backslash G$ is not connected. Then $\mathbb{C}_{\infty} \backslash G=A \cup B$ where A and B are disjoint, nonempty closed subsets of \mathbb{C}_{∞} (from the definition of connected metric space, Definition II.2.1; A and B are both open and closed in $\left.\mathbb{C}_{\infty} \backslash G\right)$.

Theorem VIII.2.2 (continued 2)

(a) G is simply connected;
(b) $n(\gamma ; a)=0$ for every closed rectifiable curve γ in G and every $a \in \mathbb{C} \backslash G$;

Proof (continued). (a) \Rightarrow (b). Let γ be a closed rectifiable curve in G and $a \in \mathbb{C} \backslash G$. Then $(z-a)^{-1}$ is analytic on G and

$$
n(\gamma ; a)=\frac{1}{2 \pi i} \int_{\gamma}(z-a)^{-1} d z=0
$$

by Cauchy's Theorem—Fourth Version (Theorem IV.6.15).
(b) \Rightarrow (c). ASSUME $\mathbb{C}_{\infty} \backslash G$ is not connected. Then $\mathbb{C}_{\infty} \backslash G=A \cup B$ where A and B are disjoint, nonempty closed subsets of \mathbb{C}_{∞} (from the definition of connected metric space, Definition II.2.1; A and B are both open and closed in $\left.\mathbb{C}_{\infty} \backslash G\right)$.

Theorem VIII.2.2 (continued 3)

Proof (continued). Since ∞ is in either A or B, say $\infty \in B$, then A must be a compact subset of $\mathbb{C}\left(A\right.$ is closed in \mathbb{C}_{∞} and \mathbb{C}_{∞} is compact [see "Compactness of \mathbb{C}_{∞} Theorem" in the supplement to Section II.4, "The Extended Complex Plane"] so A is compact in \mathbb{C}_{∞}; every open cover of A in \mathbb{C} yields an open cover of A in \mathbb{C}_{∞} by the "Topologies on \mathbb{C}_{∞} Theorem" in the supplement, so A is compact in \mathbb{C} also). Since $\mathbb{C}_{\infty} \backslash G=A \cup B$ then $G_{1}=G \cup A=\mathbb{C}_{\infty} \backslash B$ is an open set in \mathbb{C} and contains set A. So by Proposition VIII.1.1 (since G_{1} is open, A is compact, and $G_{1} \backslash A=G$ is a region) there are a finite number of polygons $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ in $G_{1} \backslash A=G$ such that for every analytic function f on G, we have $f(z)=\sum_{k=1}^{m} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(w)}{w-z} d w$ for all $z \in A$.

Theorem VIII.2.2 (continued 3)

Proof (continued). Since ∞ is in either A or B, say $\infty \in B$, then A must be a compact subset of $\mathbb{C}\left(A\right.$ is closed in \mathbb{C}_{∞} and \mathbb{C}_{∞} is compact [see "Compactness of \mathbb{C}_{∞} Theorem" in the supplement to Section II.4, "The Extended Complex Plane"] so A is compact in \mathbb{C}_{∞}; every open cover of A in \mathbb{C} yields an open cover of A in \mathbb{C}_{∞} by the "Topologies on \mathbb{C}_{∞} Theorem" in the supplement, so A is compact in \mathbb{C} also). Since $\mathbb{C}_{\infty} \backslash G=A \cup B$ then $G_{1}=G \cup A=\mathbb{C}_{\infty} \backslash B$ is an open set in \mathbb{C} and contains set A. So by Proposition VIII.1.1 (since G_{1} is open, A is compact, and $G_{1} \backslash A=G$ is a region) there are a finite number of polygons $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ in $G_{1} \backslash A=G$ such that for every analytic function f on G, we have $f(z)=\sum_{k=1}^{m} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(w)}{w-z} d w$ for all $z \in A$. So with $f(z) \equiv 1$ we have

Theorem VIII.2.2 (continued 3)

Proof (continued). Since ∞ is in either A or B, say $\infty \in B$, then A must be a compact subset of $\mathbb{C}\left(A\right.$ is closed in \mathbb{C}_{∞} and \mathbb{C}_{∞} is compact [see "Compactness of \mathbb{C}_{∞} Theorem" in the supplement to Section II.4, "The Extended Complex Plane"] so A is compact in \mathbb{C}_{∞}; every open cover of A in \mathbb{C} yields an open cover of A in \mathbb{C}_{∞} by the "Topologies on \mathbb{C}_{∞} Theorem" in the supplement, so A is compact in \mathbb{C} also). Since $\mathbb{C}_{\infty} \backslash G=A \cup B$ then $G_{1}=G \cup A=\mathbb{C}_{\infty} \backslash B$ is an open set in \mathbb{C} and contains set A. So by Proposition VIII.1.1 (since G_{1} is open, A is compact, and $G_{1} \backslash A=G$ is a region) there are a finite number of polygons $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ in $G_{1} \backslash A=G$ such that for every analytic function f on G, we have $f(z)=\sum_{k=1}^{m} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(w)}{w-z} d w$ for all $z \in A$. So with $f(z) \equiv 1$ we have

$$
1=\sum_{k=1}^{m} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{1}{w-z} d w=\sum_{k=1}^{m} N\left(\gamma_{k} ; z\right) \text { for all } z \in A .
$$

Theorem VIII.2.2 (continued 4)

(c) $\mathbb{C}_{\infty} \backslash G$ is connected;
(d) For any $f \in H(G)$ there is a sequence of polynomials that converges to f in $H(G)$;
(e) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f=0$;
Proof (continued). But since $n\left(\gamma_{k} ; z\right) \in \mathbb{N} \cup\{0\}$, then for some $1 \leq k \leq m$ we have $n\left(\gamma_{k}\right)=1$, CONTRADICTING (b) that all such winding numbers for $a \in A \subset \mathbb{C} \backslash G$ are 0 . So the assumption that $\mathbb{C}_{\infty} \backslash G$ is not connected is false and $\mathbb{C}_{\infty} \backslash G$ is therefore connected.
$(c) \Rightarrow(d)$. This is Corollary VIII.1.15.

Theorem VIII.2.2 (continued 4)

(c) $\mathbb{C}_{\infty} \backslash G$ is connected;
(d) For any $f \in H(G)$ there is a sequence of polynomials that converges to f in $H(G)$;
(e) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f=0$;
Proof (continued). But since $n\left(\gamma_{k} ; z\right) \in \mathbb{N} \cup\{0\}$, then for some $1 \leq k \leq m$ we have $n\left(\gamma_{k}\right)=1$, CONTRADICTING (b) that all such winding numbers for $a \in A \subset \mathbb{C} \backslash G$ are 0 . So the assumption that $\mathbb{C}_{\infty} \backslash G$ is not connected is false and $\mathbb{C}_{\infty} \backslash G$ is therefore connected.
$(c) \Rightarrow(d)$. This is Corollary VIII.1.15.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$. Let γ be a closed rectifiable curve in G, let $f \in H(G)$ (i.e., f is analytic on G), and let $\left\{p_{n}\right\}$ be a sequence of polynomials such that $f=\lim _{n \rightarrow \infty} p_{n}$ in $H(G)$. So $p_{n} \rightarrow f$ uniformly on compact subsets of G by Proposition VII.1.10(b). So $p_{n} \rightarrow f$ uniformly on compact set

Theorem VIII.2.2 (continued 4)

(c) $\mathbb{C}_{\infty} \backslash G$ is connected;
(d) For any $f \in H(G)$ there is a sequence of polynomials that converges to f in $H(G)$;
(e) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f=0$;
Proof (continued). But since $n\left(\gamma_{k} ; z\right) \in \mathbb{N} \cup\{0\}$, then for some $1 \leq k \leq m$ we have $n\left(\gamma_{k}\right)=1$, CONTRADICTING (b) that all such winding numbers for $a \in A \subset \mathbb{C} \backslash G$ are 0 . So the assumption that $\mathbb{C}_{\infty} \backslash G$ is not connected is false and $\mathbb{C}_{\infty} \backslash G$ is therefore connected.
(c) \Rightarrow (d). This is Corollary VIII.1.15.
(d) \Rightarrow (e). Let γ be a closed rectifiable curve in G, let $f \in H(G)$ (i.e., f is analytic on G), and let $\left\{p_{n}\right\}$ be a sequence of polynomials such that $f=\lim _{n \rightarrow \infty} p_{n}$ in $H(G)$. So $p_{n} \rightarrow f$ uniformly on compact subsets of G by Proposition VII.1.10(b). So $p_{n} \rightarrow f$ uniformly on compact set $\{\gamma\}$.

Theorem VIII.2.2 (continued 5)

(e) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f=0$;
(f) Every function $f \in H(G)$ has a primitive;

Proof (continued). Since each polynomial is analytic on \mathbb{C} and $\gamma \sim 0$ in \mathbb{C} then $\int_{\gamma} p_{n}=0$ for $n \in \mathbb{N}$ by Cauchy's Theorem-Fourth Version (Theorem IV.6.15). So, by the uniform convergence on $\{\gamma\}$, $\int_{\gamma} f=\lim _{n \rightarrow \infty} \int_{\gamma} p_{n}=0$ by Lemma IV.2.7.
$(\mathrm{e}) \Rightarrow(\mathrm{f})$. Fix $a \in G$. Let $z \in G$. For γ_{1} and γ_{2} any rectifiable curves in G from a to z we have $\gamma_{1}-\gamma_{2}$ is a closed rectifiable curve in G. So by hypothesis (e) we have $0=\int_{\gamma_{1}-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f$ and so $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$.

Theorem VIII.2.2 (continued 5)

(e) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f=0$;
(f) Every function $f \in H(G)$ has a primitive;

Proof (continued). Since each polynomial is analytic on \mathbb{C} and $\gamma \sim 0$ in \mathbb{C} then $\int_{\gamma} p_{n}=0$ for $n \in \mathbb{N}$ by Cauchy's Theorem-Fourth Version (Theorem IV.6.15). So, by the uniform convergence on $\{\gamma\}$, $\int_{\gamma} f=\lim _{n \rightarrow \infty} \int_{\gamma} p_{n}=0$ by Lemma IV.2.7.
$(\mathrm{e}) \Rightarrow(\mathrm{f})$. Fix $a \in G$. Let $z \in G$. For γ_{1} and γ_{2} any rectifiable curves in G from a to z we have $\gamma_{1}-\gamma_{2}$ is a closed rectifiable curve in G. So by hypothesis (e) we have $0=\int_{\gamma_{1}-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f$ and so $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$. So define $F(z)=\int_{\gamma} f$ where γ is any rectifiable curve in G from a to $z(F$ is well-defined, that is independent of γ, as just shown). As shown in the proof of Corollary IV.6.16, $F^{\prime}=f$ on G and so f has a primitive F on G

Theorem VIII.2.2 (continued 5)

(e) For any $f \in H(G)$ and any closed rectifiable curve γ in G, $\int_{\gamma} f=0$;
(f) Every function $f \in H(G)$ has a primitive;

Proof (continued). Since each polynomial is analytic on \mathbb{C} and $\gamma \sim 0$ in \mathbb{C} then $\int_{\gamma} p_{n}=0$ for $n \in \mathbb{N}$ by Cauchy's Theorem-Fourth Version (Theorem IV.6.15). So, by the uniform convergence on $\{\gamma\}$, $\int_{\gamma} f=\lim _{n \rightarrow \infty} \int_{\gamma} p_{n}=0$ by Lemma IV.2.7.
$(\mathrm{e}) \Rightarrow(\mathrm{f})$. Fix $a \in G$. Let $z \in G$. For γ_{1} and γ_{2} any rectifiable curves in G from a to z we have $\gamma_{1}-\gamma_{2}$ is a closed rectifiable curve in G. So by hypothesis (e) we have $0=\int_{\gamma_{1}-\gamma_{2}} f=\int_{\gamma_{1}} f-\int_{\gamma_{2}} f$ and so $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$. So define $F(z)=\int_{\gamma} f$ where γ is any rectifiable curve in G from a to $z(F$ is well-defined, that is independent of γ, as just shown). As shown in the proof of Corollary IV.6.16, $F^{\prime}=f$ on G and so f has a primitive F on G.

Theorem VIII.2.2 (continued 6)

(f) Every function $f \in H(G)$ has a primitive;
(g) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=\exp g(z)$;
(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;

Proof (continued). (f) $\Rightarrow(\mathrm{g})$. If $f(z) \neq 0$ for all $z \in G$ then f^{\prime} / f is analytic on G. By hypothesis (f) there is a function F with $F^{\prime}=f^{\prime} / f$. It is shown in the proof of Corollary IV.6.17 that $f(z)=\exp (F(z)+c)$ for some constant $c \in \mathbb{C}$ (in the interior of the proof of Corollary IV.6.17, $g_{1}=F$).
$(\mathrm{g}) \Rightarrow(\mathrm{h})$. By hypothesis $(\mathrm{g}), f(z)=\exp (g(z))$. So consider
$\exp (g(z) / 2)$. We have $(\exp (g(z) / 2))^{2}=\exp (g(z))=f(z)$ and so
$\exp (g(z) / 2$) (in the notation of (g)) is the desired function (also denoted as " g " in the notation of (h)).

Theorem VIII.2.2 (continued 6)

(f) Every function $f \in H(G)$ has a primitive;
(g) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=\exp g(z)$;
(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;

Proof (continued). (f) $\Rightarrow(\mathrm{g})$. If $f(z) \neq 0$ for all $z \in G$ then f^{\prime} / f is analytic on G. By hypothesis (f) there is a function F with $F^{\prime}=f^{\prime} / f$. It is shown in the proof of Corollary IV.6.17 that $f(z)=\exp (F(z)+c)$ for some constant $c \in \mathbb{C}$ (in the interior of the proof of Corollary IV.6.17, $g_{1}=F$).
$(\mathrm{g}) \Rightarrow(\mathrm{h})$. By hypothesis $(\mathrm{g}), f(z)=\exp (g(z))$. So consider $\exp (g(z) / 2)$. We have $(\exp (g(z) / 2))^{2}=\exp (g(z))=f(z)$ and so $\exp (g(z) / 2$) (in the notation of (g)) is the desired function (also denoted as " g " in the notation of (h)).

Theorem VIII.2.2 (continued 7)

(a) G is simply connected;
(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(i) G is homeomorphic to the unit disk;

Proof (continued). (h) \Rightarrow (i). If $G=\mathbb{C}$ then $f(z)=z /(1+|z|)$ is a homeomorphism from $G=\mathbb{C}$ to the unit disk (regardless of hypothesis (h)). If $G \neq \mathbb{C}$ and (h) holds then every nonvanishing analytic function on G has an analytic square root. So the hypotheses of Lemma VII.4.3 are satisfied. So by Lemma VII.4.3 there exists an analytic one to one function h from G onto the unit disk. By Corollary IV.7.6 (a corollary to the Open Mapping Theorem) h^{-1} is analytic (and so continuous). Therefore f is a homeomorphism and (i) follows.

Theorem VIII.2.2 (continued 7)

(a) G is simply connected;
(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(i) G is homeomorphic to the unit disk;

Proof (continued). (h) \Rightarrow (i). If $G=\mathbb{C}$ then $f(z)=z /(1+|z|)$ is a homeomorphism from $G=\mathbb{C}$ to the unit disk (regardless of hypothesis (h)). If $G \neq \mathbb{C}$ and (h) holds then every nonvanishing analytic function on G has an analytic square root. So the hypotheses of Lemma VII.4.3 are satisfied. So by Lemma VII.4.3 there exists an analytic one to one function h from G onto the unit disk. By Corollary IV.7.6 (a corollary to the Open Mapping Theorem) h^{-1} is analytic (and so continuous). Therefore f is a homeomorphism and (i) follows.
(i) \Rightarrow (a). Let $h: G \rightarrow D=\{z| | z \mid<1\}$ be a homeomorphism and let γ be a closed curve in G (not assumed to be rectifiable).

Theorem VIII.2.2 (continued 7)

(a) G is simply connected;
(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(i) G is homeomorphic to the unit disk;

Proof (continued). (h) \Rightarrow (i). If $G=\mathbb{C}$ then $f(z)=z /(1+|z|)$ is a homeomorphism from $G=\mathbb{C}$ to the unit disk (regardless of hypothesis (h)). If $G \neq \mathbb{C}$ and (h) holds then every nonvanishing analytic function on G has an analytic square root. So the hypotheses of Lemma VII.4.3 are satisfied. So by Lemma VII.4.3 there exists an analytic one to one function h from G onto the unit disk. By Corollary IV.7.6 (a corollary to the Open Mapping Theorem) h^{-1} is analytic (and so continuous). Therefore f is a homeomorphism and (i) follows.
(i) \Rightarrow (a). Let $h: G \rightarrow D=\{z| | z \mid<1\}$ be a homeomorphism and let γ be a closed curve in G (not assumed to be rectifiable).

Theorem VIII.2.2 (continued 8)

Proof (continued). Then $\sigma(s)=h(\gamma(a))$ is a closed curve in D. Since D is simply connected then $\sigma \sim 0$ and there is a homotopy Λ mapping σ to a constant (we map σ to $0 \in D$). Thus, there is a continuous function $\Lambda: I^{2} \rightarrow D$ such that $\Lambda(s, 0)=\sigma(s)$ for $s \in I, \Lambda(s, 1)=0$ for $s \in I$, and $\Lambda(0, t)=\Lambda(1, t)$ for $t \in I$. That is, $\Lambda(s, t)$ "starts" (when $t=0)$ at $\sigma(s)$, "ends" (when $t=1$) at the point 0 (since D is simply connected and so $\sigma \sim 0$), and is a closed curve for $t \in I$ (so the endpoints are the same for all $t \in I, \Lambda(0, t)=\Lambda(1, t))$.

Theorem VIII.2.2 (continued 8)

Proof (continued). Then $\sigma(s)=h(\gamma(a))$ is a closed curve in D. Since D is simply connected then $\sigma \sim 0$ and there is a homotopy Λ mapping σ to a constant (we map σ to $0 \in D$). Thus, there is a continuous function $\Lambda: I^{2} \rightarrow D$ such that $\Lambda(s, 0)=\sigma(s)$ for $s \in I, \Lambda(s, 1)=0$ for $s \in I$, and $\Lambda(0, t)=\Lambda(1, t)$ for $t \in I$. That is, $\Lambda(s, t)$ "starts" (when $t=0)$ at $\sigma(s)$, "ends" (when $t=1$) at the point 0 (since D is simply connected and so $\sigma \sim 0$), and is a closed curve for $t \in I$ (so the endpoints are the same for all $t \in I, \Lambda(0, t)=\Lambda(1, t))$. Define $\Gamma=h^{-1} \circ \Lambda$. Then Γ is continuous and $\Gamma: I^{2} \rightarrow G$. Also, $\Gamma(s, 0)=h^{-1} \circ \Lambda(s, 0)-f^{-1} \circ \sigma(s)=\gamma(s)$ for $s \in I$ (so Γ "starts" at at $\gamma(s)), \Gamma(s, 1)=h^{-1} \circ \Lambda(s, 1)=h^{-1}(0)$ for $s \in I$ (so 「 "ends" at the constant $\left.h^{-1}(0) \in G\right)$, and $\Gamma(0, t)=h^{-1} \circ \Lambda(0, t)=h^{-1} \Lambda(1, t)=\Gamma(1, t)$ for $t \in I$ (so the endpoints are the same for all $t \in I)$.

Theorem VIII.2.2 (continued 8)

Proof (continued). Then $\sigma(s)=h(\gamma(a))$ is a closed curve in D. Since D is simply connected then $\sigma \sim 0$ and there is a homotopy Λ mapping σ to a constant (we map σ to $0 \in D$). Thus, there is a continuous function $\Lambda: I^{2} \rightarrow D$ such that $\Lambda(s, 0)=\sigma(s)$ for $s \in I, \Lambda(s, 1)=0$ for $s \in I$, and $\Lambda(0, t)=\Lambda(1, t)$ for $t \in I$. That is, $\Lambda(s, t)$ "starts" (when $t=0$) at $\sigma(s)$, "ends" (when $t=1$) at the point 0 (since D is simply connected and so $\sigma \sim 0$), and is a closed curve for $t \in I$ (so the endpoints are the same for all $t \in I, \Lambda(0, t)=\Lambda(1, t))$. Define $\Gamma=h^{-1} \circ \Lambda$. Then Γ is continuous and $\Gamma: I^{2} \rightarrow G$. Also, $\Gamma(s, 0)=h^{-1} \circ \Lambda(s, 0)-f^{-1} \circ \sigma(s)=\gamma(s)$ for $s \in I$ (so Γ "starts" at at $\gamma(s)), \Gamma(s, 1)=h^{-1} \circ \Lambda(s, 1)=h^{-1}(0)$ for $s \in I$ (so Γ "ends" at the constant $\left.h^{-1}(0) \in G\right)$, and
$\Gamma(0, t)=h^{-1} \circ \Lambda(0, t)=h^{-1} \Lambda(1, t)=\Gamma(1, t)$ for $t \in I$ (so the endpoints are the same for all $t \in I)$. That is, Γ is a homotopy between γ and the constant $h^{-1}(0)$; so $\gamma \sim 0$. Since γ is an arbitrary closed curve in G, then G is simply connected and (a) holds.

Theorem VIII.2.2 (continued 8)

Proof (continued). Then $\sigma(s)=h(\gamma(a))$ is a closed curve in D. Since D is simply connected then $\sigma \sim 0$ and there is a homotopy Λ mapping σ to a constant (we map σ to $0 \in D$). Thus, there is a continuous function $\Lambda: I^{2} \rightarrow D$ such that $\Lambda(s, 0)=\sigma(s)$ for $s \in I, \Lambda(s, 1)=0$ for $s \in I$, and $\Lambda(0, t)=\Lambda(1, t)$ for $t \in I$. That is, $\Lambda(s, t)$ "starts" (when $t=0$) at $\sigma(s)$, "ends" (when $t=1$) at the point 0 (since D is simply connected and so $\sigma \sim 0$), and is a closed curve for $t \in I$ (so the endpoints are the same for all $t \in I, \Lambda(0, t)=\Lambda(1, t))$. Define $\Gamma=h^{-1} \circ \Lambda$. Then Γ is continuous and $\Gamma: I^{2} \rightarrow G$. Also, $\Gamma(s, 0)=h^{-1} \circ \Lambda(s, 0)-f^{-1} \circ \sigma(s)=\gamma(s)$ for $s \in I$ (so Γ "starts" at at $\gamma(s)), \Gamma(s, 1)=h^{-1} \circ \Lambda(s, 1)=h^{-1}(0)$ for $s \in I$ (so Γ "ends" at the constant $\left.h^{-1}(0) \in G\right)$, and
$\Gamma(0, t)=h^{-1} \circ \Lambda(0, t)=h^{-1} \Lambda(1, t)=\Gamma(1, t)$ for $t \in I$ (so the endpoints are the same for all $t \in I$). That is, Γ is a homotopy between γ and the constant $h^{-1}(0)$; so $\gamma \sim 0$. Since γ is an arbitrary closed curve in G, then G is simply connected and (a) holds.

Theorem VIII.2.2 (continued 9)

(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.

Proof (continued). (h) $\Rightarrow(\mathrm{j})$. Suppose $G \neq \mathbb{C}$. Since (h) holds then G is simply connected (since (h) $\Rightarrow(\mathrm{i}) \Rightarrow(\mathrm{a})$). So by the Riemann Mapping Theorem (Theorem VII.4.2) there is analytic function h on G such that h is one to one and $h(G)=D$. If $u: G \rightarrow R$ is a harmonic function, consider $u_{1}=u \circ h^{-1}$. By Corollary IV.7.6, h^{-1} is analytic. In Exercise VIII.2.A, one shows that u_{1} is harmonic in D (using the Chain Rule and the Cauchy-Riemann equations). By Theorem III. 2.30 there is a harmonic conjugate of $u_{1}, v_{1}: D \rightarrow R$, such that $f_{1}=u_{1}+i v_{1}$ is analytic on D.

Theorem VIII.2.2 (continued 9)

(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.

Proof (continued). $(\mathrm{h}) \Rightarrow(\mathrm{j})$. Suppose $G \neq \mathbb{C}$. Since (h) holds then G is simply connected (since (h) $\Rightarrow(\mathrm{i}) \Rightarrow(\mathrm{a})$). So by the Riemann Mapping Theorem (Theorem VII.4.2) there is analytic function h on G such that h is one to one and $h(G)=D$. If $u: G \rightarrow R$ is a harmonic function, consider $u_{1}=u \circ h^{-1}$. By Corollary IV.7.6, h^{-1} is analytic. In Exercise VIII.2.A, one shows that u_{1} is harmonic in D (using the Chain Rule and the Cauchy-Riemann equations). By Theorem III. 2.30 there is a harmonic conjugate of $u_{1}, v_{1}: D \rightarrow R$, such that $f_{1}=u_{1}+i v_{1}$ is analytic on D. Let
\square
$f=f_{1} \circ h=\left(u_{1}+i v_{1}\right) \circ h=\left(u \circ h^{-1}+i v_{1}\right) \circ h=u+i v_{1} \circ h$ is u. So $v=\operatorname{Im}(f)=v_{1} \circ h$ is a harmonic conjugate of u. So (j) holds on G.

Theorem VIII.2.2 (continued 9)

(h) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=(g(z))^{2}$;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.

Proof (continued). $(\mathrm{h}) \Rightarrow(\mathrm{j})$. Suppose $G \neq \mathbb{C}$. Since (h) holds then G is simply connected (since (h) $\Rightarrow(\mathrm{i}) \Rightarrow(\mathrm{a})$). So by the Riemann Mapping Theorem (Theorem VII.4.2) there is analytic function h on G such that h is one to one and $h(G)=D$. If $u: G \rightarrow R$ is a harmonic function, consider $u_{1}=u \circ h^{-1}$. By Corollary IV.7.6, h^{-1} is analytic. In Exercise VIII.2.A, one shows that u_{1} is harmonic in D (using the Chain Rule and the Cauchy-Riemann equations). By Theorem III.2.30 there is a harmonic conjugate of $u_{1}, v_{1}: D \rightarrow R$, such that $f_{1}=u_{1}+i v_{1}$ is analytic on D. Let $f=f_{1} \circ h$. Then f is analytic on G and the real part of $f=f_{1} \circ h=\left(u_{1}+i v_{1}\right) \circ h=\left(u \circ h^{-1}+i v_{1}\right) \circ h=u+i v_{1} \circ h$ is u. So $v=\operatorname{Im}(f)=v_{1} \circ h$ is a harmonic conjugate of u. So (j) holds on G.

Theorem VIII.2.2 (continued 10)

(g) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=\exp g(z)$;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.
Proof (continued). If $G=\mathbb{C}$ then we take $h: \mathbb{C} \rightarrow D$ as $h(z)=z /(1+|z|)$ and repeat the process above applying Theorem II.2.30.
$(\mathrm{j}) \Rightarrow(\mathrm{g})$. Suppose $f: G \rightarrow \mathbb{C}$ is analytic and never vanishes on G, and let $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$. If $U: G \rightarrow R$ is defined by $U(x, y)=\log |f(x+i y)|=\log \left(u(x, y)^{2}+v(x, y)^{2}\right)^{1 / 2}$ then "a computation" shows that U is harmonic.

Theorem VIII.2.2 (continued 10)

(g) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=\exp g(z)$;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.
Proof (continued). If $G=\mathbb{C}$ then we take $h: \mathbb{C} \rightarrow D$ as $h(z)=z /(1+|z|)$ and repeat the process above applying Theorem II.2.30.
$(\mathrm{j}) \Rightarrow(\mathrm{g})$. Suppose $f: G \rightarrow \mathbb{C}$ is analytic and never vanishes on G, and let $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$. If $U: G \rightarrow R$ is defined by $U(x, y)=\log |f(x+i y)|=\log \left(u(x, y)^{2}+v(x, y)^{2}\right)^{1 / 2}$ then "a computation" shows that U is harmonic. By hypothesis (j$)$ there is a harmonic function V on G such that $g=U+i V$ is analytic on G. Let $h(z)=\exp (g(z))$. Then h is analytic on F, h never vanishes on G, and $|f(z) / h(z)|=1$ for all $z \in G$ since

$$
|h|=|\exp g|=|\exp (U+i V)|=\exp U=\exp (\log |f|)=|f| .
$$

Theorem VIII.2.2 (continued 10)

(g) For any $f \in H(G)$ such that $f(z) \neq 0$ for all $z \in G$ there is a function $g \in H(G)$ such that $f(z)=\exp g(z)$;
(j) If $u: G \rightarrow R$ is harmonic then there is a harmonic function $v: G \rightarrow R$ such that $f=u+i v$ is analytic on G.
Proof (continued). If $G=\mathbb{C}$ then we take $h: \mathbb{C} \rightarrow D$ as $h(z)=z /(1+|z|)$ and repeat the process above applying Theorem II.2.30.
$(\mathrm{j}) \Rightarrow(\mathrm{g})$. Suppose $f: G \rightarrow \mathbb{C}$ is analytic and never vanishes on G, and let $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$. If $U: G \rightarrow R$ is defined by $U(x, y)=\log |f(x+i y)|=\log \left(u(x, y)^{2}+v(x, y)^{2}\right)^{1 / 2}$ then "a computation" shows that U is harmonic. By hypothesis (j) there is a harmonic function V on G such that $g=U+i V$ is analytic on G. Let $h(z)=\exp (g(z))$. Then h is analytic on F, h never vanishes on G, and $|f(z) / h(z)|=1$ for all $z \in G$ since

$$
|h|=|\exp g|=|\exp (U+i V)|=\exp U=\exp (\log |f|)=|f| .
$$

Theorem VIII.2.2 (continued 11)

Proof (continued). So f / h is analytic on G. By Exercise VI.1.6 there is a constant c of modulus 1 such that

$$
f(z)=c h(z)=z \exp (h(z))=\exp \left(g(z)+c_{1}\right) \text { where } c=\exp \left(c_{1}\right) .
$$

So $g(z)+c_{1}$ is a branch of $\log f(z)$ and (g) holds.

