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Lemma XI.1.A

Lemma XI.1.A

Lemma XI.1.A. If f is analytic in an open set containing B(0; r) and f
doesn’t vanish in B(0; r) then (1.1) holds.

Proof. As argued above, the Mean Value Theorem (Theorem X.1.4) gives
the result if f doesn’t vanish in B(0; r). So we only need consider zeros of
f on |z | = r .

We show the result for f having one zero a = re iα on
|z | = r . Then by induction, the result holds for f having a finite number of
zeros on |z | = r (if f has an infinite number of zeros on |z | = r then by
Theorem IV.3.7 f ≡ 0, but then f vanishes in B(0; r)).

Define g(z) = f (z)/(z − a) where z = re iα is the one zero of f on |z | = r .
Then g (reduced) has no zeros in B(0; r) and so (1.1) applies to give

log |g(0)| = 1

2π

∫ 2π

0
log |g(re iθ)| dθ

=
1

2π

∫ 2π

0

(
log |f (re iθ)| − log |re iθ − re iα|

)
dθ.
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Lemma XI.1.A

Lemma XI.1.A (continued 1)

Proof (continued). Now log |g(0)| = log |f (0| − log r so

log |f (0)| = log r =
1

2π

∫ 2π

0
(log |f (re iθ)| − log |re iθ − re iα|) dθ. (∗)

By Exercise V.2.2(h),∫ 2π

0
log(sin2(θ)) dθ = −4π log 2. (∗∗)

So

1

2π

∫ 2π

0

∫ 2π

0
log |re iθ − re iα| dθ =

1

2π

∫ 2π

0
(log r + log |e iθ − e iα|) dθ

= log r +
1

2π

∫ 2π

0
log |e i(θ−α − 1| dθ
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Lemma XI.1.A

Lemma XI.1.A (continued 2)

Proof (continued).

= log r 1
2π

∫ 2π

0
log |1− e iθ| dθ

= log r +
1

2π

∫ 2π

0
log

√
(1− cos θ)2 + sin2 θ dθ

= log r +
1

4π

∫ 2π

0
log(2− 2 cos θ) dθ

= log r +
1

4π

∫ 2π

0
(log 2 + log(1− cos θ)) dθ

= log r +
1

2
log 2 +

1

4π

∫ 2π

0
log

(
2 sin2 θ

2

)
dθ

since sin
θ

2
= ±

√
1− cos θ

2
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Lemma XI.1.A

Lemma XI.1.A (continued 3)

Proof (continued).

= log r + log 2 1
2π

∫ π/2

0
4 log(2 sin2 θ) dθ

= log r + log 2 +
1

4π

∫ 2π

0
log(2 sin2 θ) dθ

= log r + log 2 +
1

4π
(−4π log 2) by (∗∗)

= log r .

So by (∗),

log |f (0)| − log r =
1

2π

∫ 2π

0
log |f (re iθ)| dθ − log r ,

and (1.1) therefore holds for f with exactly one zero on |z | = r . As
described above, the claim now holds for f having a finite number of zeros
on |z | = r .
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Theorem XI.1.2. Jensen’s Formula

Theorem XI.1.2

Theorem XI.1.2. Jensen’s Formula.
Let f be an analytic function on a region containing B(0; r) and suppose
that a1, a2, . . . , an are the zeros of f in B(0; r) repeated according to
multiplicity. If f (0) 6= 0 then

log |f (0)| = −
n∑

k=1

log

(
r

|ak |

)
+

1

2π
log |f (re iθ)| dθ.

Proof. If |b| < 1 then the Möbius transformation (z − b)/(1− bz) maps
the disk B(0; 1) onto itself and maps the boundary to itself (this follows
from the solution to Exercise III.3.10).

Replacing b with ak/r ∈ B(0; 1)
and z with z/r we have that

z/r − ak/r

1− (ak/r)(z/r)
=

r(z − ak)

r2 − akz

maps B(0; r) to B(0; r) and maps the boundary |z | = r to |z | = 1.
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Theorem XI.1.2. Jensen’s Formula

Theorem XI.1.2 (continued 1)

Proof (continued). So

F (z) = f (z)

/
n∏

k=1

r(z − ak)

r2 − akz
= f (z)

n∏
k=1

r2 − akz

r(z − ak)

(when reduced) is analytic on B(0; r), has no zeros in B(0; r), and for
|z | = r we have

|F (z)| =

∣∣∣∣∣f (z)

/
n∏

k=1

r(z − ak)

r2 − akz

∣∣∣∣∣ = |f (z)|.

By by Lemma XI.1.A,

log |F (0)| = 1

2π

∫ 2π

0
log |F (re iθ)| dθ =

1

2π

∫ 2π

0
log |f (re iθ)| dθ.

Now F (0) = f (0)
∏n

k=1(−r/ak), so

log |F (0)| = log |f (0)|+
n∑

k=1

log(r/|ak |) . . .

() Complex Analysis October 28, 2017 8 / 11



Theorem XI.1.2. Jensen’s Formula
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Theorem XI.1.2. Jensen’s Formula

Theorem XI.1.2 (continued 2)

Theorem XI.1.2. Jensen’s Formula.
Let f be an analytic function on a region containing B(0; r) and suppose
that a1, a2, . . . , an are the zeros of f in B(0; r) repeated according to
multiplicity. If f (0) 6= 0 then

log |f (0)| = −
n∑

k=1

log

(
r

|ak |

)
+

1

2π
log |f (re iθ)| dθ.

Proof (continued). . . . and hence

log |F (0)| = 1

2π

∫ 2π

0
log |f (re iθ)| dθ =

log |f (0)|+
n∑

k=1

log

(
r

|ak |

)
.

Jensen’s Formula now follows.
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Theorem XI.1.B. Titchmarsh’s Number of Zeros Theorem

Theorem XI.1.B

Theorem XI.1.B. Titchmarsh’s Number of Zeros Theorem.
Let f be analytic in |z | < R. Let |f (z)| ≤ M in the disk |z | ≤ R and
suppose f (0) 6= 0. Then for 0 < δ < 1 the number of zeros of f (z) in the
disk |z | ≤ δR is less than

1

log 1/δ
log

M

|f (0)|
.

Proof. Let f have n zeros in the disk |z | ≤ δR, say a1, a2, . . . , an. Then

for 1 ≤ k ≤ n we have |ak | ≤ δR, or
R

|ak |
≥ 1

δ
.

So

n∑
k=1

log
R

|ak |
= log

R

|a1|
+ log

R

|a2|
+ · · ·+ log

R

|an|
≥ n log

1

δ
. (∗)
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Theorem XI.1.B. Titchmarsh’s Number of Zeros Theorem

Theorem XI.1.B (continued)

Proof (continued). By Jensen’s Formula, we have

n∑
k=1

log
R

|ak |
=

1

2π

∫ 2π

0
log |f (Re iθ)| dθ − log |f (0)|

≤ 1

2π

∫ 2π

0
log M dθ − log |f (0)|

= log M − log |f (0)|

= log
M

|f (0)|
. (∗∗)

Combining (∗) and (∗∗) gives n log
1

δ
≤

n∑
k=1

log
R

|ak |
≤ log

M

|f (0)|
, or

n ≤ 1

log 1/δ
log

M

|f (0)|
. Since n is the number of zeros of f in |z | ≤ δR, the

result follows.
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