Complex Analysis

Chapter XI. Entire Functions

XI.1. Jensen's Formula—Proofs of Theorems

John B. Conway
Functions of One Complex Variable I

Second Edition

Table of contents

(1) Lemma XI.1.A
(2) Theorem XI.1.2. Jensen's Formula
(3) Theorem XI.1.B. Titchmarsh's Number of Zeros Theorem

Lemma XI.1.A

Lemma XI.1.A. If f is analytic in an open set containing $\bar{B}(0 ; r)$ and f doesn't vanish in $B(0 ; r)$ then (1.1) holds.

Proof. As argued above, the Mean Value Theorem (Theorem X.1.4) gives the result if f doesn't vanish in $\bar{B}(0 ; r)$. So we only need consider zeros of f on $|z|=r$.

Lemma XI.1.A

Lemma XI.1.A. If f is analytic in an open set containing $\bar{B}(0 ; r)$ and f doesn't vanish in $B(0 ; r)$ then (1.1) holds.

Proof. As argued above, the Mean Value Theorem (Theorem X.1.4) gives the result if f doesn't vanish in $\bar{B}(0 ; r)$. So we only need consider zeros of f on $|z|=r$. We show the result for f having one zero $a=r e^{i \alpha}$ on
$|z|=r$. Then by induction, the result holds for f having a finite number of zeros on $|z|=r$ (if f has an infinite number of zeros on $|z|=r$ then by Theorem IV.3.7 $f \equiv 0$, but then f vanishes in $B(0 ; r))$.

Lemma XI.1.A

Lemma XI.1.A. If f is analytic in an open set containing $\bar{B}(0 ; r)$ and f doesn't vanish in $B(0 ; r)$ then (1.1) holds.

Proof. As argued above, the Mean Value Theorem (Theorem X.1.4) gives the result if f doesn't vanish in $\bar{B}(0 ; r)$. So we only need consider zeros of f on $|z|=r$. We show the result for f having one zero $a=r e^{i \alpha}$ on
$|z|=r$. Then by induction, the result holds for f having a finite number of zeros on $|z|=r$ (if f has an infinite number of zeros on $|z|=r$ then by Theorem IV.3.7 $f \equiv 0$, but then f vanishes in $B(0 ; r)$).

Define $g(z)=f(z) /(z-a)$ where $z=r e^{i \alpha}$ is the one zero of f on $|z|=r$. Then g (reduced) has no zeros in $\bar{B}(0 ; r)$ and so (1.1) applies to give

$$
\log |g(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|g\left(r e^{i \theta}\right)\right| d \theta
$$

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|f\left(r e^{i \theta}\right)\right|-\log \left|r e^{i \theta}-r e^{i \alpha}\right|\right) d \theta
$$

Lemma XI.1.A

Lemma XI.1.A. If f is analytic in an open set containing $\bar{B}(0 ; r)$ and f doesn't vanish in $B(0 ; r)$ then (1.1) holds.

Proof. As argued above, the Mean Value Theorem (Theorem X.1.4) gives the result if f doesn't vanish in $\bar{B}(0 ; r)$. So we only need consider zeros of f on $|z|=r$. We show the result for f having one zero $a=r e^{i \alpha}$ on $|z|=r$. Then by induction, the result holds for f having a finite number of zeros on $|z|=r$ (if f has an infinite number of zeros on $|z|=r$ then by Theorem IV.3.7 $f \equiv 0$, but then f vanishes in $B(0 ; r)$).

Define $g(z)=f(z) /(z-a)$ where $z=r e^{i \alpha}$ is the one zero of f on $|z|=r$. Then g (reduced) has no zeros in $\bar{B}(0 ; r)$ and so (1.1) applies to give

$$
\begin{gathered}
\log |g(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|g\left(r e^{i \theta}\right)\right| d \theta \\
=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|f\left(r e^{i \theta}\right)\right|-\log \left|r e^{i \theta}-r e^{i \alpha}\right|\right) d \theta .
\end{gathered}
$$

Lemma XI.1.A (continued 1)

Proof (continued). Now $\log |g(0)|=\log \mid f(0 \mid-\log r$ so

$$
\begin{equation*}
\log |f(0)|=\log r=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|f\left(r e^{i \theta}\right)\right|-\log \left|r e^{i \theta}-r e^{i \alpha}\right|\right) d \theta \tag{*}
\end{equation*}
$$

By Exercise V.2.2(h),

$$
\int_{0}^{2 \pi} \log \left(\sin ^{2}(\theta)\right) d \theta=-4 \pi \log 2
$$

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \log \left|r e^{i \theta}-r e^{i \alpha}\right| d \theta & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log r+\log \left|e^{i \theta}-e^{i \alpha}\right|\right) d \theta \\
& =\log r+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|e^{i(\theta-\alpha}-1\right| d \theta
\end{aligned}
$$

Lemma XI.1.A (continued 1)

Proof (continued). Now $\log |g(0)|=\log \mid f(0 \mid-\log r$ so

$$
\begin{equation*}
\log |f(0)|=\log r=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \left|f\left(r e^{i \theta}\right)\right|-\log \left|r e^{i \theta}-r e^{i \alpha}\right|\right) d \theta \tag{*}
\end{equation*}
$$

By Exercise V.2.2(h),

$$
\int_{0}^{2 \pi} \log \left(\sin ^{2}(\theta)\right) d \theta=-4 \pi \log 2
$$

So

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \log \left|r e^{i \theta}-r e^{i \alpha}\right| d \theta & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log r+\log \left|e^{i \theta}-e^{i \alpha}\right|\right) d \theta \\
& =\log r+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|e^{i(\theta-\alpha}-1\right| d \theta
\end{aligned}
$$

Lemma XI.1.A (continued 2)

Proof (continued).

$$
\begin{aligned}
&= \log r_{\frac{1}{2 \pi}} \int_{0}^{2 \pi} \log \left|1-e^{i \theta}\right| d \theta \\
&= \log r+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \sqrt{(1-\cos \theta)^{2}+\sin ^{2} \theta} d \theta \\
&=\log r+\frac{1}{4 \pi} \int_{0}^{2 \pi} \log (2-2 \cos \theta) d \theta \\
&= \log r+\frac{1}{4 \pi} \int_{0}^{2 \pi}(\log 2+\log (1-\cos \theta)) d \theta \\
&= \log r+\frac{1}{2} \log 2+\frac{1}{4 \pi} \int_{0}^{2 \pi} \log \left(2 \sin ^{2} \frac{\theta}{2}\right) d \theta \\
& \quad \text { since } \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}
\end{aligned}
$$

Lemma XI.1.A (continued 3)

Proof (continued).

$$
\begin{aligned}
& =\log r+\log 2 \frac{1}{2 \pi} \int_{0}^{\pi / 2} 4 \log \left(2 \sin ^{2} \theta\right) d \theta \\
& =\log r+\log 2+\frac{1}{4 \pi} \int_{0}^{2 \pi} \log \left(2 \sin ^{2} \theta\right) d \theta \\
& =\log r+\log 2+\frac{1}{4 \pi}(-4 \pi \log 2) \text { by }(* *) \\
& =\log r
\end{aligned}
$$

So by (*),

$$
\log |f(0)|-\log r=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta-\log r,
$$

and (1.1) therefore holds for f with exactly one zero on $|z|=r$. As described above, the claim now holds for f having a finite number of zeros on $|z|=r$.

Lemma XI.1.A (continued 3)

Proof (continued).

$$
\begin{aligned}
& =\log r+\log 2 \frac{1}{2 \pi} \int_{0}^{\pi / 2} 4 \log \left(2 \sin ^{2} \theta\right) d \theta \\
& =\log r+\log 2+\frac{1}{4 \pi} \int_{0}^{2 \pi} \log \left(2 \sin ^{2} \theta\right) d \theta \\
& =\log r+\log 2+\frac{1}{4 \pi}(-4 \pi \log 2) \text { by }(* *) \\
& =\log r
\end{aligned}
$$

So by $(*)$,

$$
\log |f(0)|-\log r=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta-\log r
$$

and (1.1) therefore holds for f with exactly one zero on $|z|=r$. As described above, the claim now holds for f having a finite number of zeros on $|z|=r$.

Theorem XI.1.2

Theorem XI.1.2. Jensen's Formula.

Let f be an analytic function on a region containing $\bar{B}(0 ; r)$ and suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are the zeros of f in $B(0 ; r)$ repeated according to multiplicity. If $f(0) \neq 0$ then

$$
\log |f(0)|=-\sum_{k=1}^{n} \log \left(\frac{r}{\left|a_{k}\right|}\right)+\frac{1}{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Proof. If $|b|<1$ then the Möbius transformation $(z-b) /(1-\bar{b} z)$ maps the disk $B(0 ; 1)$ onto itself and maps the boundary to itself (this follows from the solution to Exercise III.3.10).

Theorem XI.1.2

Theorem XI.1.2. Jensen's Formula.

Let f be an analytic function on a region containing $\bar{B}(0 ; r)$ and suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are the zeros of f in $B(0 ; r)$ repeated according to multiplicity. If $f(0) \neq 0$ then

$$
\log |f(0)|=-\sum_{k=1}^{n} \log \left(\frac{r}{\left|a_{k}\right|}\right)+\frac{1}{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Proof. If $|b|<1$ then the Möbius transformation $(z-b) /(1-\bar{b} z)$ maps the disk $B(0 ; 1)$ onto itself and maps the boundary to itself (this follows from the solution to Exercise III.3.10). Replacing b with $a_{k} / r \in B(0 ; 1)$
and z with z / r we have that

$$
\frac{z / r-a_{k} / r}{1-\left(\bar{a}_{k} / r\right)(z / r)}=\frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}
$$

Theorem XI.1.2

Theorem XI.1.2. Jensen's Formula.

Let f be an analytic function on a region containing $\bar{B}(0 ; r)$ and suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are the zeros of f in $B(0 ; r)$ repeated according to multiplicity. If $f(0) \neq 0$ then

$$
\log |f(0)|=-\sum_{k=1}^{n} \log \left(\frac{r}{\left|a_{k}\right|}\right)+\frac{1}{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Proof. If $|b|<1$ then the Möbius transformation $(z-b) /(1-\bar{b} z)$ maps the disk $B(0 ; 1)$ onto itself and maps the boundary to itself (this follows from the solution to Exercise III.3.10). Replacing b with $a_{k} / r \in B(0 ; 1)$ and z with z / r we have that

$$
\frac{z / r-a_{k} / r}{1-\left(\bar{a}_{k} / r\right)(z / r)}=\frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}
$$

maps $B(0 ; r)$ to $B(0 ; r)$ and maps the boundary $|z|=r$ to $|z|=1$.

Theorem XI.1.2 (continued 1)

Proof (continued). So

$$
F(z)=f(z) / \prod_{k=1}^{n} \frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}=f(z) \prod_{k=1}^{n} \frac{r^{2}-\bar{a}_{k} z}{r\left(z-a_{k}\right)}
$$

(when reduced) is analytic on $\bar{B}(0 ; r)$, has no zeros in $B(0 ; r)$, and for $|z|=r$ we have

$$
|F(z)|=\left|f(z) / \prod_{k=1}^{n} \frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}\right|=|f(z)| .
$$

By by Lemma XI.1.A,

$$
\log |F(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|F\left(r e^{i \theta}\right)\right| d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta .
$$

Theorem XI.1.2 (continued 1)

Proof (continued). So

$$
F(z)=f(z) / \prod_{k=1}^{n} \frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}=f(z) \prod_{k=1}^{n} \frac{r^{2}-\bar{a}_{k} z}{r\left(z-a_{k}\right)}
$$

(when reduced) is analytic on $\bar{B}(0 ; r)$, has no zeros in $B(0 ; r)$, and for $|z|=r$ we have

$$
|F(z)|=\left|f(z) / \prod_{k=1}^{n} \frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}\right|=|f(z)| .
$$

By by Lemma XI.1.A,

$$
\log |F(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|F\left(r e^{i \theta}\right)\right| d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Now $F(0)=f(0) \prod_{k=1}^{n}\left(-r / a_{k}\right)$, so

Theorem XI.1.2 (continued 1)

Proof (continued). So

$$
F(z)=f(z) / \prod_{k=1}^{n} \frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}=f(z) \prod_{k=1}^{n} \frac{r^{2}-\bar{a}_{k} z}{r\left(z-a_{k}\right)}
$$

(when reduced) is analytic on $\bar{B}(0 ; r)$, has no zeros in $B(0 ; r)$, and for $|z|=r$ we have

$$
|F(z)|=\left|f(z) / \prod_{k=1}^{n} \frac{r\left(z-a_{k}\right)}{r^{2}-\bar{a}_{k} z}\right|=|f(z)| .
$$

By by Lemma XI.1.A,

$$
\log |F(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|F\left(r e^{i \theta}\right)\right| d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Now $F(0)=f(0) \prod_{k=1}^{n}\left(-r / a_{k}\right)$, so

$$
\log |F(0)|=\log |f(0)|+\sum^{n} \log \left(r /\left|a_{k}\right|\right) \ldots
$$

Theorem XI.1.2 (continued 2)

Theorem XI.1.2. Jensen's Formula.
Let f be an analytic function on a region containing $\bar{B}(0 ; r)$ and suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are the zeros of f in $B(0 ; r)$ repeated according to multiplicity. If $f(0) \neq 0$ then

$$
\log |f(0)|=-\sum_{k=1}^{n} \log \left(\frac{r}{\left|a_{k}\right|}\right)+\frac{1}{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Proof (continued). ... and hence

$$
\begin{gathered}
\log |F(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta= \\
\log |f(0)|+\sum_{k=1}^{n} \log \left(\frac{r}{\left|a_{k}\right|}\right)
\end{gathered}
$$

Jensen's Formula now follows.

Theorem XI.1.B

Theorem XI.1.B. Titchmarsh's Number of Zeros Theorem.

Let f be analytic in $|z|<R$. Let $|f(z)| \leq M$ in the disk $|z| \leq R$ and suppose $f(0) \neq 0$. Then for $0<\delta<1$ the number of zeros of $f(z)$ in the disk $|z| \leq \delta R$ is less than

$$
\frac{1}{\log 1 / \delta} \log \frac{M}{|f(0)|}
$$

Proof. Let f have n zeros in the disk $|z| \leq \delta R$, say $a_{1}, a_{2}, \ldots, a_{n}$. Then for $1 \leq k \leq n$ we have $\left|a_{k}\right| \leq \delta R$, or $\frac{R}{\left|a_{k}\right|} \geq \frac{1}{\delta}$.

Theorem XI.1.B

Theorem XI.1.B. Titchmarsh's Number of Zeros Theorem.

Let f be analytic in $|z|<R$. Let $|f(z)| \leq M$ in the disk $|z| \leq R$ and suppose $f(0) \neq 0$. Then for $0<\delta<1$ the number of zeros of $f(z)$ in the disk $|z| \leq \delta R$ is less than

$$
\frac{1}{\log 1 / \delta} \log \frac{M}{|f(0)|}
$$

Proof. Let f have n zeros in the disk $|z| \leq \delta R$, say $a_{1}, a_{2}, \ldots, a_{n}$. Then for $1 \leq k \leq n$ we have $\left|a_{k}\right| \leq \delta R$, or $\frac{R}{\left|a_{k}\right|} \geq \frac{1}{\delta}$.

Theorem XI.1.B

Theorem XI.1.B. Titchmarsh's Number of Zeros Theorem.

Let f be analytic in $|z|<R$. Let $|f(z)| \leq M$ in the disk $|z| \leq R$ and suppose $f(0) \neq 0$. Then for $0<\delta<1$ the number of zeros of $f(z)$ in the disk $|z| \leq \delta R$ is less than

$$
\frac{1}{\log 1 / \delta} \log \frac{M}{|f(0)|}
$$

Proof. Let f have n zeros in the disk $|z| \leq \delta R$, say $a_{1}, a_{2}, \ldots, a_{n}$. Then for $1 \leq k \leq n$ we have $\left|a_{k}\right| \leq \delta R$, or $\frac{R}{\left|a_{k}\right|} \geq \frac{1}{\delta}$. So

$$
\begin{equation*}
\sum_{k=1}^{n} \log \frac{R}{\left|a_{k}\right|}=\log \frac{R}{\left|a_{1}\right|}+\log \frac{R}{\left|a_{2}\right|}+\cdots+\log \frac{R}{\left|a_{n}\right|} \geq n \log \frac{1}{\delta} \tag{*}
\end{equation*}
$$

Theorem XI.1.B (continued)

Proof (continued). By Jensen's Formula, we have

$$
\begin{aligned}
\sum_{k=1}^{n} \log \frac{R}{\left|a_{k}\right|} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)\right| d \theta-\log |f(0)| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log M d \theta-\log |f(0)| \\
& =\log M-\log |f(0)| \\
& =\log \frac{M}{|f(0)|} . \quad(* *)
\end{aligned}
$$

Combining $(*)$ and $(* *)$ gives $n \log \frac{1}{\delta} \leq \sum_{k=1}^{n} \log \frac{R}{\left|a_{k}\right|} \leq \log \frac{M}{|f(0)|}$, or $n \leq \frac{1}{\mid \log 1 / \delta} \log \frac{M}{|f(0)|}$. Since n is the number of zeros of f in $|z| \leq \delta R$, the result follows.

Theorem XI.1.B (continued)

Proof (continued). By Jensen's Formula, we have

$$
\begin{aligned}
\sum_{k=1}^{n} \log \frac{R}{\left|a_{k}\right|} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)\right| d \theta-\log |f(0)| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log M d \theta-\log |f(0)| \\
& =\log M-\log |f(0)| \\
& =\log \frac{M}{|f(0)|} . \quad(* *)
\end{aligned}
$$

Combining (*) and (**) gives $n \log \frac{1}{\delta} \leq \sum_{k=1}^{n} \log \frac{R}{\left|a_{k}\right|} \leq \log \frac{M}{|f(0)|}$, or
$n \leq \frac{1}{\log 1 / \delta} \log \frac{M}{|f(0)|}$. Since n is the number of zeros of f in $|z| \leq \delta R$, the result follows.

