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Theorem XI.2.6

Theorem XI.2.6

Theorem XI.2.6. Let f be an entire function of genus µ. For each
positive number α there is a number r0 such that for |z | > r0 we have
|f (z)| < exp(α|z |µ+1).

Proof. Since f is an entire function of genus µ then
f (z) = zmeg(z)

∏∞
n=1 Eµ(z/an) where g is a polynomial of degree at most

µ.

Notice that if |z | < 1/2 then

log |Eµ(z)| = log |(1− z) exp(z + z2/2 + · · ·+ zµ/µ)|
= Re(log(1− z) exp(z + z2/2 + · · ·+ zµ/µ)) since

Re(log z) = Re(log(|z |e iarg(z)))

= Re(log |z |+ iarg(z)) = log |z |
= Re(log(1− z) + z + z2/2 + · · · zµ/µ)

= Re

(
− 1

µ + 1
zµ+1 − 1

µ + 2
zµ+1 − · · ·

)
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Theorem XI.2.6

Proof (continued).

since log(1− z) =
∞∑

n=1

xn for |z | < 1

≤ |z |µ+1

(
1

µ + 1
+

|z |
µ + 2

+
|z |2

µ + 3
+ · · ·

)
≤ |z |µ+1

(
1 +

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·

)
since |z | < 1/2 and µ ≥ 0

= |z |µ+1 1

1− 1/2
= 2|z |µ+1. (2.7)

Also

|Eµ(z)| =
∣∣∣∣(1− z) exp

(
z +

z2

2
+ · · ·+ zµ

µ

)∣∣∣∣
≤ (1 + |z |) exp

(
|z |+ |z |2

2
+ · · · |z |

µ

µ

)
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Theorem XI.2.6

Theorem XI.2.6 (continued 2)

Proof (continued). . . . so that

log |Eµ(z)| ≤ log(1 + |z |) + |z |+ |z |2

z
+ · · ·+ |z |µ

µ
.

Hence,

lim
z→∞

log |Eµ(z)|
|z |µ+1

≤ lim
z→∞

log(1 + |z |) + |z |+ |z |2/2 + · · ·+ |z |µ/µ

|z |µ+1
= 0.

So for any A > 0, there is R > 0 such that for |z | > R we have
log |Eµ(z)|
|z|µ+1 ≤ A or

log |Eµ(z)| ≤ A|z |µ+1. (2.8)

But on the compact set {z | 1/2 ≤ |z | ≤ R} the function
|z |µ+1 log |Eµ(z)| is continuous except at z = +1 where it tens to −∞. So
|z |µ+1 log |Eµ(z)| is bounded above on {z | 1/2 ≤ |z | ≤ R}, say by B > 0.
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Theorem XI.2.6

Proof (continued). Then

log |Eµ(z)| ≤ B|z |µ+1 for 1/2 ≤ |z | ≤ R. (2.9)

So we have a bound on log |Eµ(z)| on these sets by (2.7), (2.8), and (2.9)
and can conclude

log |Eµ(z)| ≤ M|z |µ+1 for all z ∈ C (2.10)

where M = max{2,A,B}.

Since f has finite rank then
∑∞

n=1 |an|−(µ+1) < ∞ so for a given α > 0,
there is N ∈ N such that

∞∑
n=N+1

|an|−(µ+1) <
α

4M

(since the tail of a convergent series can be made arbitrarily small).

Then
from (2.10)
∞∑

n=N+1

log |Eµ(a/an)| ≤ M
∞∑

n=N+1

∣∣∣∣ z

an

∣∣∣∣µ+1

≤ α

4
|z |µ+1 for all z ∈ C. (2.11)
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Theorem XI.2.6

Proof (continued). Since parameter A in (2.8) can be chosen as small as
desired (though this effects the value of R), choose r1 > 0 such that

log |Eµ(z)| ≤ α

4N
|z |µ+1 for |z | > r1

(that is, replace α with α/N in (2.11)). With
r2 = max{|a1|rn, |a2|r1, . . . , |aN |r1} we have

∞∑
n=1

log |Eµ(z/an)| ≤
α

4
|z |µ+1 for |z | > r2

(replacing x in the equation above, where we had |z | > r1, with z/zn here
where we have |z/an| > r1 or |z | > |zn|r1 ≥ r2). Combining this with
(2.11) gives

log P(z) = log

( ∞∏
n=1

Eµ

(
z

zn

))
=

∞∑
n=1

log

(
Eµ

(
z

an

))
≤ α

4
|z |µ+1 +

α

4
|z |µ+1 =

α

2
|z |µ+1 for |z | > r2. (2.12)
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Theorem XI.2.6

Proof (continued). Since g is a polynomial of degree at most µ (since f

is of genus µ) then limz→∞
|g(z)|
|z|µ+1 = 0 and since limz→∞

log |z|
|z|µ+1 = 0 then

limz→∞
m log |z|+|g(z)|

|z|µ+1 = 0. So there is r3 > 0 such that m log |z|+|g(z)|
|z|µ+1 < α

2

for |z | > r3. We then have

log |f (z)| = log

∣∣∣∣∣zmeg(z)
∞∏

n=1

Eµ(z/an)

∣∣∣∣∣
= m log |z |+ |g(z)|+

∞∑
n=1

log |Eµ(z/an)|

<
α

2
|z |µ+1 +

α

2
|z |µ+1 for |z | > r0 = max{r2, r3} by (2.12)

= α|z |µ+1.

So e log |f (z)| < eα|z|µ+1
or |f (z)| < eα|z|µ+1

for |z | > r0, as claimed.
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Theorem XI.2.4

Theorem XI.2.4

Proposition XI.2.14. Let f be an entire function of finite order λ. If
ε > 0 then |f (z)| < exp(|z |λ+ε) for all z with |z | sufficiently large, and z
can be found with |z | as large as desired such that |f (z)| ≥ exp(|z |λ+ε).

Proof. Since ex is an increasing function, then for any nonzero z ∈ C, if
a < b then exp(|z |a) < exp(|z |b). For ε > 0, λ + ε > λ so, since
λ = inf{a | |f (z)| < exp(|z |a) for |z | sufficiently large}, we have for |z |
sufficiently large that |f (z)| < exp(|z |λ+ε).

Since λ− ε < λ then
λ− ε 6∈ {a | |f (z)| < exp(|z |a) for |z | sufficiently large}. So for all r > 0
there is zr ,ε ∈ C with |zr ,ε| > r and |f (zr ,,ε)| ≥ exp(|zr ,ε|λ−ε), as
claimed.
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