Complex Analysis

Chapter XI. Entire Functions

XI.2. The Genus and Order of an Entire Function-Proofs of Theorems

Table of contents

(1) Theorem XI.2.6
(2) Theorem XI.2.4

Theorem XI.2.6

Theorem XI.2.6. Let f be an entire function of genus μ. For each positive number α there is a number r_{0} such that for $|z|>r_{0}$ we have $|f(z)|<\exp \left(\alpha|z|^{\mu+1}\right)$.

Proof. Since f is an entire function of genus μ then $f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{\mu}\left(z / a_{n}\right)$ where g is a polynomial of degree at most μ.

Theorem XI.2.6

Theorem XI.2.6. Let f be an entire function of genus μ. For each positive number α there is a number r_{0} such that for $|z|>r_{0}$ we have $|f(z)|<\exp \left(\alpha|z|^{\mu+1}\right)$.

Proof. Since f is an entire function of genus μ then $f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{\mu}\left(z / a_{n}\right)$ where g is a polynomial of degree at most μ. Notice that if $|z|<1 / 2$ then

$$
\begin{aligned}
\log \left|E_{\mu}(z)\right|= & \log \left|(1-z) \exp \left(z+z^{2} / 2+\cdots+z^{\mu} / \mu\right)\right| \\
= & \operatorname{Re}\left(\log (1-z) \exp \left(z+z^{2} / 2+\cdots+z^{\mu} / \mu\right)\right) \text { since } \\
& \operatorname{Re}(\log z)=\operatorname{Re}\left(\log \left(|z| e^{\operatorname{iarg}(z)}\right)\right) \\
& =\operatorname{Re}(\log |z|+i \arg (z))=\log |z| \\
= & \operatorname{Re}\left(\log (1-z)+z+z^{2} / 2+\cdots z^{\mu} / \mu\right) \\
= & \operatorname{Re}\left(-\frac{1}{\mu+1} z^{\mu+1}-\frac{1}{\mu+2} z^{\mu+1}-\cdots\right)
\end{aligned}
$$

Theorem XI.2.6

Theorem XI.2.6. Let f be an entire function of genus μ. For each positive number α there is a number r_{0} such that for $|z|>r_{0}$ we have $|f(z)|<\exp \left(\alpha|z|^{\mu+1}\right)$.

Proof. Since f is an entire function of genus μ then $f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{\mu}\left(z / a_{n}\right)$ where g is a polynomial of degree at most μ. Notice that if $|z|<1 / 2$ then

$$
\begin{aligned}
\log \left|E_{\mu}(z)\right|= & \log \left|(1-z) \exp \left(z+z^{2} / 2+\cdots+z^{\mu} / \mu\right)\right| \\
= & \operatorname{Re}\left(\log (1-z) \exp \left(z+z^{2} / 2+\cdots+z^{\mu} / \mu\right)\right) \text { since } \\
& \operatorname{Re}(\log z)=\operatorname{Re}\left(\log \left(|z| e^{\operatorname{iarg}(z)}\right)\right) \\
& =\operatorname{Re}(\log |z|+\operatorname{iarg}(z))=\log |z| \\
= & \operatorname{Re}\left(\log (1-z)+z+z^{2} / 2+\cdots z^{\mu} / \mu\right) \\
= & \operatorname{Re}\left(-\frac{1}{\mu+1} z^{\mu+1}-\frac{1}{\mu+2} z^{\mu+1}-\cdots\right)
\end{aligned}
$$

Proof (continued).

$$
\begin{align*}
& \text { since } \log (1-z)=\sum_{n=1}^{\infty} x^{n} \text { for }|z|<1 \\
\leq & |z|^{\mu+1}\left(\frac{1}{\mu+1}+\frac{|z|}{\mu+2}+\frac{|z|^{2}}{\mu+3}+\cdots\right) \\
\leq & |z|^{\mu+1}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots\right) \text { since }|z|<1 / 2 \text { and } \mu \geq 0 \\
= & |z|^{\mu+1} \frac{1}{1-1 / 2}=2|z|^{\mu+1} . \tag{2.7}
\end{align*}
$$

Also

$$
\begin{aligned}
& \left|E_{\mu}(z)\right|=\left|(1-z) \exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{\mu}}{\mu}\right)\right| \\
& \quad \leq(1+|z|) \exp \left(|z|+\frac{|z|^{2}}{2}+\cdots \frac{|z|^{\mu}}{\mu}\right)
\end{aligned}
$$

Proof (continued).

$$
\begin{align*}
& \text { since } \log (1-z)=\sum_{n=1}^{\infty} x^{n} \text { for }|z|<1 \\
\leq & |z|^{\mu+1}\left(\frac{1}{\mu+1}+\frac{|z|}{\mu+2}+\frac{|z|^{2}}{\mu+3}+\cdots\right) \\
\leq & |z|^{\mu+1}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots\right) \text { since }|z|<1 / 2 \text { and } \mu \geq 0 \\
= & |z|^{\mu+1} \frac{1}{1-1 / 2}=2|z|^{\mu+1} . \tag{2.7}
\end{align*}
$$

Also

$$
\begin{gathered}
\left|E_{\mu}(z)\right|=\left|(1-z) \exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{\mu}}{\mu}\right)\right| \\
\quad \leq(1+|z|) \exp \left(|z|+\frac{|z|^{2}}{2}+\cdots \frac{|z|^{\mu}}{\mu}\right)
\end{gathered}
$$

Theorem XI.2.6 (continued 2)

Proof (continued). ... so that

$$
\log \left|E_{\mu}(z)\right| \leq \log (1+|z|)+|z|+\frac{|z|^{2}}{z}+\cdots+\frac{|z|^{\mu}}{\mu}
$$

Hence,

$$
\lim _{z \rightarrow \infty} \frac{\log \left|E_{\mu}(z)\right|}{|z|^{\mu+1}} \leq \lim _{z \rightarrow \infty} \frac{\log (1+|z|)+|z|+|z|^{2} / 2+\cdots+|z|^{\mu} / \mu}{|z|^{\mu+1}}=0
$$

So for any $A>0$, there is $R>0$ such that for $|z|>R$ we have $\frac{\log \left|E_{\mu}(z)\right|}{|z|^{\mu+1}} \leq A$ or

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq A|z|^{\mu+1} \tag{2.8}
\end{equation*}
$$

Theorem XI.2.6 (continued 2)

Proof (continued). ... so that

$$
\log \left|E_{\mu}(z)\right| \leq \log (1+|z|)+|z|+\frac{|z|^{2}}{z}+\cdots+\frac{|z|^{\mu}}{\mu}
$$

Hence,

$$
\lim _{z \rightarrow \infty} \frac{\log \left|E_{\mu}(z)\right|}{|z|^{\mu+1}} \leq \lim _{z \rightarrow \infty} \frac{\log (1+|z|)+|z|+|z|^{2} / 2+\cdots+|z|^{\mu} / \mu}{|z|^{\mu+1}}=0
$$

So for any $A>0$, there is $R>0$ such that for $|z|>R$ we have $\frac{\log \left|E_{\mu}(z)\right|}{|z|^{\mu+1}} \leq A$ or

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq A|z|^{\mu+1} \tag{2.8}
\end{equation*}
$$

But on the compact set $\{z|1 / 2 \leq|z| \leq R\}$ the function $|z|^{\mu+1} \log \left|E_{\mu}(z)\right|$ is continuous except at $z=+1$ where it tens to $-\infty$. So $|z|^{\mu+1} \log \left|E_{\mu}(z)\right|$ is bounded above on $\{z|1 / 2 \leq|z| \leq R\}$, say by $B>0$.

Theorem XI.2.6 (continued 2)

Proof (continued). ... so that

$$
\log \left|E_{\mu}(z)\right| \leq \log (1+|z|)+|z|+\frac{|z|^{2}}{z}+\cdots+\frac{|z|^{\mu}}{\mu}
$$

Hence,

$$
\lim _{z \rightarrow \infty} \frac{\log \left|E_{\mu}(z)\right|}{|z|^{\mu+1}} \leq \lim _{z \rightarrow \infty} \frac{\log (1+|z|)+|z|+|z|^{2} / 2+\cdots+|z|^{\mu} / \mu}{|z|^{\mu+1}}=0
$$

So for any $A>0$, there is $R>0$ such that for $|z|>R$ we have $\frac{\log \left|E_{\mu}(z)\right|}{|z|^{\mu+1}} \leq A$ or

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq A|z|^{\mu+1} \tag{2.8}
\end{equation*}
$$

But on the compact set $\{z|1 / 2 \leq|z| \leq R\}$ the function $|z|^{\mu+1} \log \left|E_{\mu}(z)\right|$ is continuous except at $z=+1$ where it tens to $-\infty$. So $|z|^{\mu+1} \log \left|E_{\mu}(z)\right|$ is bounded above on $\{z|1 / 2 \leq|z| \leq R\}$, say by $B>0$.

Proof (continued). Then

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq B|z|^{\mu+1} \text { for } 1 / 2 \leq|z| \leq R . \tag{2.9}
\end{equation*}
$$

So we have a bound on $\log \left|E_{\mu}(z)\right|$ on these sets by (2.7), (2.8), and (2.9) and can conclude

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq M|z|^{\mu+1} \text { for all } z \in \mathbb{C} \tag{2.10}
\end{equation*}
$$

where $M=\max \{2, A, B\}$.
Since f has finite rank then $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-(\mu+1)}<\infty$ so for a given $\alpha>0$, there is $N \in \mathbb{N}$ such that

(since the tail of a convergent series can be made arbitrarily small).

Proof (continued). Then

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq B|z|^{\mu+1} \text { for } 1 / 2 \leq|z| \leq R . \tag{2.9}
\end{equation*}
$$

So we have a bound on $\log \left|E_{\mu}(z)\right|$ on these sets by (2.7), (2.8), and (2.9) and can conclude

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq M|z|^{\mu+1} \text { for all } z \in \mathbb{C} \tag{2.10}
\end{equation*}
$$

where $M=\max \{2, A, B\}$.
Since f has finite rank then $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-(\mu+1)}<\infty$ so for a given $\alpha>0$, there is $N \in \mathbb{N}$ such that

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\right|^{-(\mu+1)}<\frac{\alpha}{4 M}
$$

(since the tail of a convergent series can be made arbitrarily small). Then from (2.10)

Proof (continued). Then

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq B|z|^{\mu+1} \text { for } 1 / 2 \leq|z| \leq R . \tag{2.9}
\end{equation*}
$$

So we have a bound on $\log \left|E_{\mu}(z)\right|$ on these sets by (2.7), (2.8), and (2.9) and can conclude

$$
\begin{equation*}
\log \left|E_{\mu}(z)\right| \leq M|z|^{\mu+1} \text { for all } z \in \mathbb{C} \tag{2.10}
\end{equation*}
$$

where $M=\max \{2, A, B\}$.
Since f has finite rank then $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-(\mu+1)}<\infty$ so for a given $\alpha>0$, there is $N \in \mathbb{N}$ such that

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\right|^{-(\mu+1)}<\frac{\alpha}{4 M}
$$

(since the tail of a convergent series can be made arbitrarily small). Then from (2.10)

$$
\begin{equation*}
\sum_{n=N+1}^{\infty} \log \left|E_{\mu}\left(a / a_{n}\right)\right| \leq M \sum_{n=N+1}^{\infty}\left|\frac{z}{a_{n}}\right|^{\mu+1} \leq \frac{\alpha}{4}|z|^{\mu+1} \text { for all } z \in \mathbb{C} \tag{2.11}
\end{equation*}
$$

Proof (continued). Since parameter A in (2.8) can be chosen as small as desired (though this effects the value of R), choose $r_{1}>0$ such that

$$
\log \left|E_{\mu}(z)\right| \leq \frac{\alpha}{4 N}|z|^{\mu+1} \text { for }|z|>r_{1}
$$

(that is, replace α with α / N in (2.11)).
$r_{2}=\max \left\{\left|a_{1}\right| r_{n},\left|a_{2}\right| r_{1}, \ldots,\left|a_{N}\right| r_{1}\right\}$ we have

$$
\sum_{n=1}^{\infty} \log \left|E_{\mu}\left(z / a_{n}\right)\right| \leq \frac{\alpha}{4}|z|^{\mu+1} \text { for }|z|>r_{2}
$$

(replacing x in the equation above, where we had $|z|>r_{1}$, with z / z_{n} here where we have $\left|z / a_{n}\right|>r_{1}$ or $|z|>\left|z_{n}\right| r_{1} \geq r_{2}$). Combining this with (2.11) gives

$$
\begin{align*}
\log P(z) & =\log \left(\prod_{n=1}^{\infty} E_{\mu}\left(\frac{z}{z_{n}}\right)\right)=\sum_{n=1}^{\infty} \log \left(E_{\mu}\left(\frac{z}{a_{n}}\right)\right) \\
& \leq \frac{\alpha}{4}|z|^{\mu+1}+\frac{\alpha}{4}|z|^{\mu+1}=\frac{\alpha}{2}|z|^{\mu+1} \text { for }|z|>r_{2} . \tag{2.12}
\end{align*}
$$

Proof (continued). Since parameter A in (2.8) can be chosen as small as desired (though this effects the value of R), choose $r_{1}>0$ such that

$$
\log \left|E_{\mu}(z)\right| \leq \frac{\alpha}{4 N}|z|^{\mu+1} \text { for }|z|>r_{1}
$$

(that is, replace α with α / N in (2.11)). With $r_{2}=\max \left\{\left|a_{1}\right| r_{n},\left|a_{2}\right| r_{1}, \ldots,\left|a_{N}\right| r_{1}\right\}$ we have

$$
\sum_{n=1}^{\infty} \log \left|E_{\mu}\left(z / a_{n}\right)\right| \leq \frac{\alpha}{4}|z|^{\mu+1} \text { for }|z|>r_{2}
$$

(replacing x in the equation above, where we had $|z|>r_{1}$, with z / z_{n} here where we have $\left|z / a_{n}\right|>r_{1}$ or $|z|>\left|z_{n}\right| r_{1} \geq r_{2}$). Combining this with (2.11) gives

$$
\begin{align*}
\log P(z) & =\log \left(\prod_{n=1}^{\infty} E_{\mu}\left(\frac{z}{z_{n}}\right)\right)=\sum_{n=1}^{\infty} \log \left(E_{\mu}\left(\frac{z}{a_{n}}\right)\right) \\
& \leq \frac{\alpha}{4}|z|^{\mu+1}+\frac{\alpha}{4}|z|^{\mu+1}=\frac{\alpha}{2}|z|^{\mu+1} \text { for }|z|>r_{2} \tag{2.12}
\end{align*}
$$

Proof (continued). Since g is a polynomial of degree at most μ (since f is of genus μ) then $\lim _{z \rightarrow \infty} \frac{|g(z)|}{|z|{ }^{\mu+1}}=0$ and since $\lim _{z \rightarrow \infty} \frac{\log |z|}{|z|^{\mu+1}}=0$ then $\lim _{z \rightarrow \infty} \frac{m \log |z|+|g(z)|}{|z|^{\mu+1}}=0$. So there is $r_{3}>0$ such that $\frac{m \log |z|+|g(z)|}{|z|^{\mu+1}}<\frac{\alpha}{2}$ for $|z|>r_{3}$. We then have

$$
\begin{aligned}
\log |f(z)| & =\log \left|z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{\mu}\left(z / a_{n}\right)\right| \\
& =m \log |z|+|g(z)|+\sum_{n=1}^{\infty} \log \left|E_{\mu}\left(z / a_{n}\right)\right| \\
& <\frac{\alpha}{2}|z|^{\mu+1}+\frac{\alpha}{2}|z|^{\mu+1} \text { for }|z|>r_{0}=\max \left\{r_{2}, r_{3}\right\} \text { by }(2.12) \\
& =\alpha|z|^{\mu+1} .
\end{aligned}
$$

So $e^{\log |f(z)|}<e^{\alpha|z|^{\mu+1}}$ or $|f(z)|<e^{\alpha|z|^{\mu+1}}$ for $|z|>r_{0}$, as claimed.

Proof (continued). Since g is a polynomial of degree at most μ (since f is of genus μ) then $\lim _{z \rightarrow \infty} \frac{|g(z)|}{\mid z \mu^{\mu+1}}=0$ and since $\lim _{z \rightarrow \infty} \frac{\log |z|}{|z|^{\mu+1}}=0$ then $\lim _{z \rightarrow \infty} \frac{m \log |z|+|g(z)|}{|z|^{\mu+1}}=0$. So there is $r_{3}>0$ such that $\frac{m \log |z|+|g(z)|}{|z|^{\mu+1}}<\frac{\alpha}{2}$ for $|z|>r_{3}$. We then have

$$
\begin{aligned}
\log |f(z)| & =\log \left|z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{\mu}\left(z / a_{n}\right)\right| \\
& =m \log |z|+|g(z)|+\sum_{n=1}^{\infty} \log \left|E_{\mu}\left(z / a_{n}\right)\right| \\
& <\frac{\alpha}{2}|z|^{\mu+1}+\frac{\alpha}{2}|z|^{\mu+1} \text { for }|z|>r_{0}=\max \left\{r_{2}, r_{3}\right\} \text { by }(2.12) \\
& =\alpha|z|^{\mu+1}
\end{aligned}
$$

So $e^{\log |f(z)|}<e^{\alpha|z|^{\mu+1}}$ or $|f(z)|<e^{\alpha|z|^{\mu+1}}$ for $|z|>r_{0}$, as claimed.

Theorem XI.2.4

Proposition XI.2.14. Let f be an entire function of finite order λ. If $\varepsilon>0$ then $|f(z)|<\exp \left(|z|^{\lambda+\varepsilon}\right)$ for all z with $|z|$ sufficiently large, and z can be found with $|z|$ as large as desired such that $|f(z)| \geq \exp \left(|z|^{\lambda+\varepsilon}\right)$.

Proof. Since e^{x} is an increasing function, then for any nonzero $z \in \mathbb{C}$, if $a<b$ then $\exp \left(|z|^{a}\right)<\exp \left(|z|^{b}\right)$. For $\varepsilon>0, \lambda+\varepsilon>\lambda$ so, since $\lambda=\inf \left\{a| | f(z) \mid<\exp \left(|z|^{a}\right)\right.$ for $|z|$ sufficiently large $\}$, we have for $|z|$ sufficiently large that $|f(z)|<\exp \left(|z|^{\lambda+\varepsilon}\right)$.

Theorem XI.2.4

Proposition XI.2.14. Let f be an entire function of finite order λ. If $\varepsilon>0$ then $|f(z)|<\exp \left(|z|^{\lambda+\varepsilon}\right)$ for all z with $|z|$ sufficiently large, and z can be found with $|z|$ as large as desired such that $|f(z)| \geq \exp \left(|z|^{\lambda+\varepsilon}\right)$.

Proof. Since e^{x} is an increasing function, then for any nonzero $z \in \mathbb{C}$, if $a<b$ then $\exp \left(|z|^{a}\right)<\exp \left(|z|^{b}\right)$. For $\varepsilon>0, \lambda+\varepsilon>\lambda$ so, since $\lambda=\inf \left\{a| | f(z) \mid<\exp \left(|z|^{a}\right)\right.$ for $|z|$ sufficiently large $\}$, we have for $|z|$ sufficiently large that $|f(z)|<\exp \left(|z|^{\lambda+\varepsilon}\right)$. Since $\lambda-\varepsilon<\lambda$ then $\lambda-\varepsilon \notin\left\{a| | f(z) \mid<\exp \left(|z|^{a}\right)\right.$ for $|z|$ sufficiently large $\}$. So for all $r>0$ there is $z_{r, \varepsilon} \in \mathbb{C}$ with $\left|z_{r, \varepsilon}\right|>r$ and $\left|f\left(z_{r, \varepsilon}\right)\right| \geq \exp \left(\left|z_{r, \varepsilon}\right|^{\lambda-\varepsilon}\right)$, as claimed.

Theorem XI.2.4

Proposition XI.2.14. Let f be an entire function of finite order λ. If $\varepsilon>0$ then $|f(z)|<\exp \left(|z|^{\lambda+\varepsilon}\right)$ for all z with $|z|$ sufficiently large, and z can be found with $|z|$ as large as desired such that $|f(z)| \geq \exp \left(|z|^{\lambda+\varepsilon}\right)$.

Proof. Since e^{x} is an increasing function, then for any nonzero $z \in \mathbb{C}$, if $a<b$ then $\exp \left(|z|^{a}\right)<\exp \left(|z|^{b}\right)$. For $\varepsilon>0, \lambda+\varepsilon>\lambda$ so, since $\lambda=\inf \left\{a| | f(z) \mid<\exp \left(|z|^{a}\right)\right.$ for $|z|$ sufficiently large $\}$, we have for $|z|$ sufficiently large that $|f(z)|<\exp \left(|z|^{\lambda+\varepsilon}\right)$. Since $\lambda-\varepsilon<\lambda$ then $\lambda-\varepsilon \notin\left\{a| | f(z) \mid<\exp \left(|z|^{a}\right)\right.$ for $|z|$ sufficiently large $\}$. So for all $r>0$ there is $z_{r, \varepsilon} \in \mathbb{C}$ with $\left|z_{r, \varepsilon}\right|>r$ and $\left|f\left(z_{r, \varepsilon}\right)\right| \geq \exp \left(\left|z_{r, \varepsilon}\right|^{\lambda-\varepsilon}\right)$, as claimed.

