Complex Analysis

Chapter XII. The Range of an Analytic Function XII.2. The Little Picard Theorem—Proofs of Theorems

John B. Conway

Functions of One Complex Variable I

Second Edition

3 [Theorem XII.2.3. The Little Picard Theorem](#page-19-0)

Lemma XII.2.1. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Then there is an analytic function g on G such that $f(z) = -\exp(i\pi \cosh(2g(z))$ for all $z \in G$.

Proof. Since by hypothesis f is nonzero on G and G is simply connected, then there is a branch ℓ of log($f(z)$) defined on F by Theorem VIII.2.2 (the (a) implies (g) part); that is, $e^{\ell(z)} = f(z)$ for all $z \in G$. Let $F(z) = (2\pi i)^{-1} \ell(z).$

Lemma XII.2.1. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Then there is an analytic function g on G such that $f(z) = -\exp(i\pi \cosh(2g(z))$ for all $z \in G$.

Proof. Since by hypothesis f is nonzero on G and G is simply connected, then there is a branch ℓ of log($f(z)$) defined on F by Theorem VIII.2.2 (the (a) implies (g) part); that is, $e^{\ell(z)} = f(z)$ for all $z \in G$. Let $F(z) = (2\pi i)^{-1} \ell(z)$. ASSUME $F(z) = n$ for some $n \in \mathbb{Z}$ and for some $a \in G$. Then $f(z) = \exp(\ell(z)) = \exp(2\pi i F(z)) = \exp(2\pi i n) = 1$, a CONTRADICTION to the hypothesis that f does not assume the value 1. So F does not assume any integer values.

Lemma XII.2.1. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Then there is an analytic function g on G such that $f(z) = -\exp(i\pi \cosh(2g(z))$ for all $z \in G$.

Proof. Since by hypothesis f is nonzero on G and G is simply connected, then there is a branch ℓ of log($f(z)$) defined on F by Theorem VIII.2.2 (the (a) implies (g) part); that is, $e^{\ell(z)} = f(z)$ for all $z \in G$. Let $F(z) = (2\pi i)^{-1} \ell(z)$. ASSUME $F(z) = n$ for some $n \in \mathbb{Z}$ and for some $a \in G$. Then $f(z) = \exp(\ell(z)) = \exp(2\pi i F(z)) = \exp(2\pi i n) = 1$, a CONTRADICTION to the hypothesis that f does not assume the value 1. So F does not assume any integer values. Since F is nonzero on G an dG is simply connected, then a branch of $\sqrt{F(z)}$ exists on G by Theorem VIII.2.2 (the (a) implies (h) part). Similarly, since $F(z) \neq 1$ on G then a branch of $\sqrt{F(z) - 1}$ exists on G. Let $H(z) = \sqrt{F(z) - \sqrt{F(z) - 1}}$.

Lemma XII.2.1. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Then there is an analytic function g on G such that $f(z) = -\exp(i\pi \cosh(2g(z))$ for all $z \in G$.

Proof. Since by hypothesis f is nonzero on G and G is simply connected, then there is a branch ℓ of log($f(z)$) defined on F by Theorem VIII.2.2 (the (a) implies (g) part); that is, $e^{\ell(z)} = f(z)$ for all $z \in G$. Let $F(z) = (2\pi i)^{-1} \ell(z)$. ASSUME $F(z) = n$ for some $n \in \mathbb{Z}$ and for some $a \in G$. Then $f(z) = \exp(\ell(z)) = \exp(2\pi i \mathcal{F}(z)) = \exp(2\pi i n) = 1$, a CONTRADICTION to the hypothesis that f does not assume the value 1. So F does not assume any integer values. Since F is nonzero on G an d G is simply connected, then a branch of $\sqrt{F(z)}$ exists on G by Theorem VIII.2.2 (the (a) implies (h) part). Similarly, since $F(z) \neq 1$ on G then a branch of $\sqrt{F(z) - 1}$ exists on G. Let $H(z) = \sqrt{F(z) - \sqrt{F(z) - 1}}$.

Lemma XI.2.1 (continued 1)

Proof (continued). Then H is nonzero on G and so there is a branch of $log(H(z))$ defined on G by Theorem VIII.2.2 (the (a) implies (g) part), **denoted** $g(z) = \log(H(z))$. Hence for $z \in G$ we have

Lemma XI.2.1 (continued 1)

Proof (continued). Then H is nonzero on G and so there is a branch of $log(H(z))$ defined on G by Theorem VIII.2.2 (the (a) implies (g) part), denoted $g(z) = \log(H(z))$. Hence for $z \in G$ we have

$$
\cosh(2g(z)) + 1 = \frac{e^{2g(z)} + e^{-2g(z)}}{2} + 1
$$

= $\frac{1}{2} \left(\sqrt{F(z)} - \sqrt{F(z) - 1} + \frac{1}{\sqrt{F(z)} - \sqrt{F(z) - 1}} \right)^2$
= $\frac{1}{2} \left(\frac{(\sqrt{F(z)} - \sqrt{F(z) - 1})^2 + 1}{\sqrt{F(z)} - \sqrt{F(z) - 1}} \right)^2$
= $\frac{1}{2} \left(\frac{F(z) - 2\sqrt{F(z)}\sqrt{F(z) - 1} + F(z) - 1 + 1}{\sqrt{F(z)} - \sqrt{F(z) - 1}} \right)^2$

. . .

Lemma XI.2.1 (continued 2)

Proof (continued). ...

$$
\cosh(2g(z)) + 1 = \frac{1}{2} \left(\frac{2F(z) - 2\sqrt{F(z)}\sqrt{F(z) - 1}}{\sqrt{F(z)} - \sqrt{F(z) - 1}} \right)^2
$$

=
$$
\frac{1}{2} \left(\frac{2F(z) - 2\sqrt{F(z)}\sqrt{F(z) - 1}}{\sqrt{F(z)} - \sqrt{F(z) - 1}} \right)^2
$$

=
$$
\frac{1}{2} \left(\frac{2\sqrt{F(a)}(\sqrt{F(z)} = \sqrt{F(z) - 1})}{\sqrt{F(z)} - \sqrt{F(z) - 1}} \right)^2
$$

=
$$
2F(z) = \frac{2}{2\pi i} \ell(z),
$$

and so $\ell(z) = \pi i(\cosh(2g(z)) + 1)$. So $f(z)=e^{\ell(z)}=\exp(\pi i+\pi i\cosh(2g(z)))=-\exp(\pi i\cosh(2g(z)),$ as claimed.

Lemma XII.2.2. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Let g be analytic on G where $f(z) = -\exp(i \pi \omega \cosh(2g(z)))$ for all $z \in G$ (such g exists by Lemma XII.2.2). Then $g(G)$ contains no disk of radius 1.

Proof. Let $n, m \in \mathbb{Z}$ with $n > 0$. ASSUME there is $z \in G$ with $g(z) = \pm \log(\sqrt{n} +$ $\sqrt{n-1}$) + $\frac{1}{2}$ *im* π (we use the principal branch of the log).

Lemma XII.2.2. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Let g be analytic on G where $f(z) = -\exp(i \pi \omega \cosh(2g(z)))$ for all $z \in G$ (such g exists by Lemma XII.2.2). Then $g(G)$ contains no disk of radius 1.

Proof. Let $n, m \in \mathbb{Z}$ with $n > 0$. ASSUME there is $z \in G$ with **i** Tool: Let $m, m \in \mathbb{Z}$
 $g(z) = \pm \log(\sqrt{n} + \sqrt{n})$ $\sqrt{n-1}$) + $\frac{1}{2}$ *im* π (we use the principal branch of the log). Then

 $2\cosh(2g(a)) = e^{2g(a)} + e^{-2g(a)}$ $=$ exp($\pm 2 \log(\sqrt{n} +$ √ $(n-1) + im\pi$) $+ \exp(\mp 2 \log(\sqrt{n} +$ $(n-1) + im\pi$) $=$ $e^{im\pi}$ $($ $n +$ $\sqrt{n-1}$)^{±2} + (\sqrt{n} + $\left(\sqrt{n-1}\right)^{\mp 2}$. (*)

Lemma XII.2.2. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Let g be analytic on G where $f(z) = -\exp(i \pi \omega \cosh(2g(z)))$ for all $z \in G$ (such g exists by Lemma XII.2.2). Then $g(G)$ contains no disk of radius 1.

Proof. Let $n, m \in \mathbb{Z}$ with $n > 0$. ASSUME there is $z \in G$ with **i** Tool: Let $m, m \in \mathbb{Z}$
 $g(z) = \pm \log(\sqrt{n} + \sqrt{n})$ $\sqrt{n-1}$) + $\frac{1}{2}$ *im* π (we use the principal branch of the log). Then

$$
2\cosh(2g(a)) = e^{2g(a)} + e^{-2g(a)}
$$

= $\exp(\pm 2\log(\sqrt{n} + \sqrt{n-1}) + im\pi)$
+ $\exp(\mp 2\log(\sqrt{n} + \sqrt{n-1}) + im\pi)$
= $e^{im\pi} ((\sqrt{n} + \sqrt{n-1})^{\pm 2} + (\sqrt{n} + \sqrt{n-1})^{\mp 2}).$ (*)

Now

$$
(\sqrt{n} + \sqrt{n-1})^{\pm 2} + (\sqrt{n} + \sqrt{n-1})^{\mp 2} = (\sqrt{n} + \sqrt{n-1})^2 + (\sqrt{n} + \sqrt{n-1})^{-2}
$$

$$
= (\sqrt{n} + \sqrt{n-1})^2 + \frac{1}{(\sqrt{n} + \sqrt{n-1})^2} \frac{(\sqrt{n} - \sqrt{n-1})^2}{(\sqrt{n} - \sqrt{n-1})^2}
$$

Lemma XII.2.2. Let G be a simply connected region and suppose that f is an analytic function on G that does not assume the values 0 or 1. Let g be analytic on G where $f(z) = -\exp(i \pi \omega \cosh(2g(z)))$ for all $z \in G$ (such g exists by Lemma XII.2.2). Then $g(G)$ contains no disk of radius 1.

Proof. Let $n, m \in \mathbb{Z}$ with $n > 0$. ASSUME there is $z \in G$ with **i** Tool: Let $m, m \in \mathbb{Z}$
 $g(z) = \pm \log(\sqrt{n} + \sqrt{n})$ $\sqrt{n-1}$) + $\frac{1}{2}$ *im* π (we use the principal branch of the log). Then

$$
2\cosh(2g(a)) = e^{2g(a)} + e^{-2g(a)}
$$

= $\exp(\pm 2\log(\sqrt{n} + \sqrt{n-1}) + i m \pi)$
+ $\exp(\mp 2\log(\sqrt{n} + \sqrt{n-1}) + i m \pi)$
= $e^{im\pi} ((\sqrt{n} + \sqrt{n-1})^{\pm 2} + (\sqrt{n} + \sqrt{n-1})^{\mp 2}).$ (*)

Now

$$
(\sqrt{n} + \sqrt{n-1})^{\pm 2} + (\sqrt{n} + \sqrt{n-1})^{\mp 2} = (\sqrt{n} + \sqrt{n-1})^2 + (\sqrt{n} + \sqrt{n-1})^{-2}
$$

$$
= (\sqrt{n} + \sqrt{n-1})^2 + \frac{1}{(\sqrt{n} + \sqrt{n-1})^2} \frac{(\sqrt{n} - \sqrt{n-1})^2}{(\sqrt{n} - \sqrt{n-1})^2}
$$

Proof (continued).

$$
= (\sqrt{n} + \sqrt{n-1})^2 + \frac{(\sqrt{n} - \sqrt{n-1})^2}{(n - (n-1))^2}
$$

= $(\sqrt{n} + \sqrt{n-1})^2 + (\sqrt{n} - \sqrt{n-1})^2 = 2(2n - 1),$

so (*) becomes $2 \cosh(2g(a)) = (-1)^m 2(2n - 1)$, or $\cosh(2g(a)) = (-1)^m(2n-1)$. Therefore

$$
f(a) = -\exp(i\pi \cosh(2g(a)) = -\exp(i\pi(-1)^m(2n-1)) = 1
$$

since $i\pi(-1)^m(2n-1)$ is an odd multiple of πi and so $\exp(i\pi(-1)^m(2n-1)=-1$. But this is a CONTRADICTION to the hypothesis that f does not assume the value 1.

Proof (continued).

$$
= (\sqrt{n} + \sqrt{n-1})^2 + \frac{(\sqrt{n} - \sqrt{n-1})^2}{(n - (n-1))^2}
$$

= $(\sqrt{n} + \sqrt{n-1})^2 + (\sqrt{n} - \sqrt{n-1})^2 = 2(2n - 1),$

so $(*)$ becomes 2 cosh $(2g(a)) = (-1)^{m}2(2n-1)$, or $\cosh(2g(a)) = (-1)^m(2n-1)$. Therefore

$$
f(a) = -\exp(i\pi \cosh(2g(a)) = -\exp(i\pi(-1)^m(2n-1)) = 1
$$

since $i\pi(-1)^m(2n-1)$ is an odd multiple of πi and so $\exp(i\pi(-1)^m(2n-1)=-1$. But this is a CONTRADICTION to the hypothesis that f does not assume the value 1. So the assumption that there is $a \in G$ such that $g(a) = \pm \log(\sqrt{n} + \sqrt{n-1}) + \frac{1}{im\pi}$ is false and hence g cannot assume any values in the set

$$
\{\pm \log(\sqrt{n} + \sqrt{n-1}) + \frac{1}{2}im\pi \mid \mathbb{Z}, n > 0\}.
$$

The points in this set form a grid in $\mathbb C$ of rectangles of constant height and varying width.

Proof (continued).

$$
= (\sqrt{n} + \sqrt{n-1})^2 + \frac{(\sqrt{n} - \sqrt{n-1})^2}{(n - (n-1))^2}
$$

= $(\sqrt{n} + \sqrt{n-1})^2 + (\sqrt{n} - \sqrt{n-1})^2 = 2(2n - 1),$

so $(*)$ becomes 2 cosh $(2g(a)) = (-1)^{m}2(2n-1)$, or $\cosh(2g(a)) = (-1)^m(2n-1)$. Therefore

$$
f(a) = -\exp(i\pi \cosh(2g(a)) = -\exp(i\pi(-1)^m(2n-1)) = 1
$$

since $i\pi(-1)^m(2n-1)$ is an odd multiple of πi and so $exp(i\pi(-1)^m(2n-1)=-1$. But this is a CONTRADICTION to the hypothesis that f does not assume the value 1. So the assumption that $\sqrt{2}$ there is $a \in G$ such that $g(a) = \pm \log(\sqrt{n} + \sqrt{n-1}) + \frac{1}{im\pi}$ is false and hence g cannot assume any values in the set

$$
\{\pm \log(\sqrt{n}+\sqrt{n-1})+\frac{1}{2}im\pi\mid \mathbb{Z},n>0\}.
$$

The points in this set form a grid in $\mathbb C$ of rectangles of constant height and varying width.

Proof (continued). The height for a rectangle with base on ${\sf Im}(z)=\frac{1}{2}m\pi$ is $|\frac{1}{2}i(m+1)\pi-\frac{1}{2}im\pi|=\pi/2$ (and notice that $\pi/2<\pi$ The width of a rectangle with left side on $Re(z) = log(\sqrt{n} +$ √ 3). √ eft side on Re(z) = log($\sqrt{n} + \sqrt{n-1}$) is log($\sqrt{n+1} + \sqrt{n}$) – log($\sqrt{n} + \sqrt{n-1}$) > 0. Now $\frac{\log(\sqrt{n+1} + \sqrt{n}) - \log(\sqrt{n+1} + \sqrt{n-1}) > 0.$ Now
 $\varphi(x) = \log(\sqrt{x+1} + \sqrt{x}) - \log(\sqrt{x} - \sqrt{x-1})$ is a decreasing function for $x > 1$ (check the first derivative) so that the width of such a rectangle For $x \ge 1$ (check the first derivative) so that the width of such a rectangle is at most $\varphi(1) = \log(\sqrt{1} + 1)$ (and notice that $\log(\sqrt{2} + 1) < \log e = 1$). Similarly, the width of a rectangle with left side Similarly, the width of a rectangle with left :
Re(z) = $-\log(\sqrt{n} + \sqrt{n-1})$ is less than 1.

Proof (continued). The height for a rectangle with base on $\text{Im}(z) = \frac{1}{2}m\pi$ is $\left|\frac{1}{2}\right|$ $\frac{1}{2}i(m+1)\pi-\frac{1}{2}$ $\frac{1}{2}$ *im* π = $\pi/2$ (and notice that $\pi/2$ < √ t $\pi/2 < \sqrt{3}$). The width of a rectangle with left side on Re(z) = log($\sqrt{n} + \sqrt{n-1}$) is log($\sqrt{n+1} + \sqrt{n}$) – log($\sqrt{n} + \sqrt{n-1}$) > 0. Now $\frac{\log(\sqrt{n+1} + \sqrt{n}) - \log(\sqrt{n+1} + \sqrt{n-1}) > 0.$ Now
 $\varphi(x) = \log(\sqrt{x+1} + \sqrt{x}) - \log(\sqrt{x} - \sqrt{x-1})$ is a decreasing function for $x > 1$ (check the first derivative) so that the width of such a rectangle For $x \ge 1$ (check the first derivative) so that the width of such a rectangle is at most $\varphi(1) = \log(\sqrt{1} + 1)$ (and notice that $\log(\sqrt{2} + 1) < \log e = 1$). Similarly, the width of a rectangle with left side Similarly, the width of a rectangle with left s So the diagonal of any such rectangle is less than $\sqrt{}$ √ $(3)^2 + (1)^2 = 2$. So $g(G)$ excludes the grid of points in C determining a set of rectangle of diameters less than 2. Hence $g(G)$ cannot contain a disk of radius 1. \Box

Proof (continued). The height for a rectangle with base on $\text{Im}(z) = \frac{1}{2}m\pi$ is $\left|\frac{1}{2}\right|$ $\frac{1}{2}i(m+1)\pi-\frac{1}{2}$ $\frac{1}{2}$ *im* π = $\pi/2$ (and notice that $\pi/2$ < √ t $\pi/2 < \sqrt{3}$). The width of a rectangle with left side on Re(z) = log($\sqrt{n} + \sqrt{n-1}$) is log($\sqrt{n+1} + \sqrt{n}$) – log($\sqrt{n} + \sqrt{n-1}$) > 0. Now $\varphi(x) = \log(\sqrt{x+1} + \sqrt{x}) - \log(\sqrt{x-1})$ √ $\left(x-1\right)$ is a decreasing function for $x > 1$ (check the first derivative) so that the width of such a rectangle For $x \ge 1$ (check the first derivative) so that the width of such a rectangle is at most $\varphi(1) = \log(\sqrt{1} + 1)$ (and notice that $\log(\sqrt{2} + 1) < \log e = 1$). Similarly, the width of a rectangle with left side Similarly, the width of a rectangle with left s So the diagonal of any such rectangle is less than $\sqrt($ √ $(\overline{3})^2 + (1)^2 = 2$. So $g(\mathit{G})$ excludes the grid of points in C determining a set of rectangle of diameters less than 2. Hence $g(G)$ cannot contain a disk of radius 1. \Box

Theorem XII.2.3

Theorem XII.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is, if f is a nonconstant entire function then it assumes every complex number with one possible exception.

Proof. Suppose that f omits a and b where $a \neq b$. With $f(z) \neq a$ and $f(z) \neq b$, the entire function $(f(z) - a)/(b - z)$ omits the values 0 and 1, so we can assume without loss of generality that f omits 0 and 1. By Lemma XII.2.2 there is an entire function g (entire since $G = \mathbb{C}$ here) such that $g(\mathbb{C})$ contains no disk of radius 1 and $f(z) = -\exp(i\pi \cosh(2g(z))).$

Theorem XII.2.3

Theorem XII.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is, if f is a nonconstant entire function then it assumes every complex number with one possible exception.

Proof. Suppose that f omits a and b where $a \neq b$. With $f(z) \neq a$ and $f(z) \neq b$, the entire function $(f(z) - a)/(b - z)$ omits the values 0 and 1, so we can assume without loss of generality that f omits 0 and 1. By Lemma XII.2.2 there is an entire function g (entire since $G = \mathbb{C}$ here) such that $g(\mathbb{C})$ contains no disk of radius 1 and $f(z) = -\exp(i\pi \cosh(2g(z)))$. ASSUME f is not a constant function. Then g is not a constant function and so there is $z_0\in \mathbb{C}$ with $g'(z_0)\neq 0$ by Proposition III.2.10. By considering $g(z + z_0)$, we can without loss of generality suppose that $g'(0)\neq 0$.

Theorem XII.2.3

Theorem XII.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is, if f is a nonconstant entire function then it assumes every complex number with one possible exception.

Proof. Suppose that f omits a and b where $a \neq b$. With $f(z) \neq a$ and $f(z) \neq b$, the entire function $(f(z) - a)/(b - z)$ omits the values 0 and 1, so we can assume without loss of generality that f omits 0 and 1. By Lemma XII.2.2 there is an entire function g (entire since $G = \mathbb{C}$ here) such that $g(\mathbb{C})$ contains no disk of radius 1 and $f(z) = -\exp(i\pi \cosh(2g(z)))$. ASSUME f is not a constant function. Then g is not a constant function and so there is $z_0\in\mathbb{C}$ with $g'(z_0)\neq 0$ by Proposition III.2.10. By considering $g(z + z_0)$, we can without loss of generality suppose that $g'(0)\neq 0.$

Theorem XII.2.3 (continued)

Theorem XII.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is, if f is a nonconstant entire function then it assumes every complex number with one possible exception.

Proof (continued). But then by Corollary XII.1.11, for all $R > 0$ (since g is entire), $g(B(0;R))$ contains a disk of radius $R|g'(0)|L$ where L is Landau's constant (see Definition XII.1.9) and is approximately 1.2. But then, for $R > 1/(|g'(0)|L)$ we have that $g(\mathbb{C})$ contains a disk of radius greater than 1, CONTRADICTING Lemma XII.2.2.

Theorem XII.2.3 (continued)

Theorem XII.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is, if f is a nonconstant entire function then it assumes every complex number with one possible exception.

Proof (continued). But then by Corollary XII.1.11, for all $R > 0$ (since g is entire), $g(B(0;R))$ contains a disk of radius $R|g'(0)|L$ where L is Landau's constant (see Definition XII.1.9) and is approximately 1.2. But then, for $R > 1/(|g'(0)|L)$ we have that $g(\mathbb{C})$ contains a disk of radius greater than 1, CONTRADICTING Lemma XII.2.2. This contradiction shows that the assumption that f is not constant is false. So if f omits two values then f must be constant, as claimed.

Theorem XII.2.3 (continued)

Theorem XII.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is, if f is a nonconstant entire function then it assumes every complex number with one possible exception.

Proof (continued). But then by Corollary XII.1.11, for all $R > 0$ (since g is entire), $g(B(0;R))$ contains a disk of radius $R|g'(0)|L$ where L is Landau's constant (see Definition XII.1.9) and is approximately 1.2. But then, for $R > 1/(|g'(0)|L)$ we have that $g(\mathbb{C})$ contains a disk of radius greater than 1, CONTRADICTING Lemma XII.2.2. This contradiction shows that the assumption that f is not constant is false. So if f omits two values then f must be constant, as claimed.