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Lemma XII.2.1

Lemma XI.2.1

Lemma XII.2.1. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Then
there is an analytic function g on G such that
f (z) = − exp(iπ cosh(2g(z)) for all z ∈ G .

Proof. Since by hypothesis f is nonzero on G and G is simply connected,
then there is a branch ` of log(f (z)) defined on F by Theorem VIII.2.2
(the (a) implies (g) part); that is, e`(z) = f (z) for all z ∈ G . Let
F (z) = (2πi)−1`(z).

ASSUME F (z) = n for some n ∈ Z and for some
a ∈ G . Then f (z) = exp(`(z)) = exp(2πiF (z)) = exp(2πin) = 1, a
CONTRADICTION to the hypothesis that f does not assume the value 1.
So F does not assume any integer values. Since F is nonzero on G an dG
is simply connected, then a branch of

√
F (z) exists on G by Theorem

VIII.2.2 (the (a) implies (h) part). Similarly, since F (z) 6= 1 on G then a
branch of

√
F (z)− 1 exists on G . Let H(z) =

√
F (z)−

√
F (z)− 1.
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Lemma XII.2.1

Lemma XI.2.1 (continued 1)

Proof (continued). Then H is nonzero on G and so there is a branch of
log(H(z)) defined on G by Theorem VIII.2.2 (the (a) implies (g) part),
denoted g(z) = log(H(z)). Hence for z ∈ G we have

cosh(2g(z)) + 1 =
e2g(z) + e−2g(z)

2
+ 1

=
1

2

(√
F (z)−

√
F (z)− 1 +

1√
F (z)−

√
F (z)− 1

)2

=
1

2

(
(
√

F (z)−
√

F (z)− 1)2 + 1√
F (z) =

√
F (z)− 1

)2

=
1

2

(
F (z)− 2

√
F (z)

√
F (z)− 1 + F (z)− 1 + 1√

F (z)−
√

F (z)− 1

)2

. . .

() Complex Analysis December 13, 2017 4 / 10



Lemma XII.2.1

Lemma XI.2.1 (continued 1)

Proof (continued). Then H is nonzero on G and so there is a branch of
log(H(z)) defined on G by Theorem VIII.2.2 (the (a) implies (g) part),
denoted g(z) = log(H(z)). Hence for z ∈ G we have

cosh(2g(z)) + 1 =
e2g(z) + e−2g(z)

2
+ 1

=
1

2

(√
F (z)−

√
F (z)− 1 +

1√
F (z)−

√
F (z)− 1

)2

=
1

2

(
(
√

F (z)−
√

F (z)− 1)2 + 1√
F (z) =

√
F (z)− 1

)2

=
1

2

(
F (z)− 2

√
F (z)

√
F (z)− 1 + F (z)− 1 + 1√

F (z)−
√

F (z)− 1

)2

. . .

() Complex Analysis December 13, 2017 4 / 10



Lemma XII.2.1

Lemma XI.2.1 (continued 2)

Proof (continued). . . .

cosh(2g(z)) + 1 =
1

2

(
2F (z)− 2

√
F (z)

√
F (z)− 1√

F (z)−
√

F (z)− 1

)2

=
1

2

(
2F (z)− 2

√
F (z)

√
F (z)− 1√

F (z)−
√

F (z)− 1

)2

=
1

2

(
2
√

F (a)(
√

F (z) =
√

F (z)− 1)√
F (z)−

√
F (z)− 1

)2

= 2F (z) =
2

2πi
`(z),

and so `(z) = πi(cosh(2g(z)) + 1). So
f (z) = e`(z) = exp(πi + πi cosh(2g(z))) = − exp(πi cosh(2g(z)), as
claimed.
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Lemma XII.2.2

Lemma XII.2.2. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Let g
be analytic on G where f (z) = − exp(i pi cosh(2g(z))) for all z ∈ G (such
g exists by Lemma XII.2.2). Then g(G ) contains no disk of radius 1.

Proof. Let n,m ∈ Z with n > 0. ASSUME there is z ∈ G with
g(z) = ± log(

√
n +

√
n − 1) + 1

2 imπ (we use the principal branch of the
log).

Then

2 cosh(2g(a)) = e2g(a) + e−2g(a)

= exp(±2 log(
√

n +
√

n − 1) + imπ)

+ exp(∓2 log(
√

n +
√

n − 1) + imπ)

= e imπ
(
(
√

n +
√

n − 1)±2 + (
√

n +
√

n − 1)∓2
)

. (∗)

Now

(
√

n+
√

n − 1)±2+(
√

n+
√

n − 1)∓2 = (
√

n+
√

n − 1)2+(
√

n+
√

n − 1)−2

= (
√

n +
√

n − 1)2 +
1

(
√

n +
√

n − 1)2
(
√

n −
√

n − 1)2

(
√

n −
√

n − 1)2
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Lemma XII.2.2

Proof (continued).

= (
√

n +
√

n − 1)2 +
(
√

n −
√

n − 1)2

(n − (n − 1))2

= (
√

n +
√

n − 1)2 + (
√

n −
√

n − 1)2 = 2(2n − 1),

so (∗) becomes 2 cosh(2g(a)) = (−1)m2(2n − 1), or
cosh(2g(a)) = (−1)m(2n − 1). Therefore

f (a) = − exp(iπ cosh(2g(a)) = − exp(iπ(−1)m(2n − 1)) = 1

since iπ(−1)m(2n − 1) is an odd multiple of πi and so
exp(iπ(−1)m(2n − 1) = −1. But this is a CONTRADICTION to the
hypothesis that f does not assume the value 1.

So the assumption that
there is a ∈ G such that g(a) = ± log(

√
n +

√
n − 1) + 1

imπ is false and
hence g cannot assume any values in the set

{± log(
√

n +
√

n − 1) +
1

2
imπ | Z, n > 0}.

The points in this set form a grid in C of rectangles of constant height and
varying width.
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Lemma XII.2.2

Proof (continued). The height for a rectangle with base on
Im(z) = 1

2mπ is |12 i(m + 1)π − 1
2 imπ| = π/2 (and notice that π/2 <

√
3).

The width of a rectangle with left side on Re(z) = log(
√

n +
√

n − 1) is
log(

√
n + 1 +

√
n)− log(

√
n +

√
n − 1) > 0. Now

ϕ(x) = log(
√

x + 1 +
√

x)− log(
√

x −
√

x − 1) is a decreasing function
for x ≥ 1 (check the first derivative) so that the width of such a rectangle
is at most ϕ(1) = log(

√
1 + 1) (and notice that log(

√
2 + 1) < log e = 1).

Similarly, the width of a rectangle with left side
Re(z) = − log(

√
n +

√
n − 1) is less than 1.

So the diagonal of any such rectangle is less

than
√

(
√

3)2 + (1)2 = 2. So g(G ) excludes
the grid of points in C determining a set of
rectangle of diameters less than 2. Hence
g(G ) cannot contain a disk of radius 1. �
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Theorem XII.2.3. The Little Picard Theorem

Theorem XII.2.3

Theorem XII.2.3. The Little Picard Theorem.
If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof. Suppose that f omits a and b where a 6= b. With f (z) 6= a and
f (z) 6= b, the entire function (f (z)− a)/(b − z) omits the values 0 and 1,
so we can assume without loss of generality that f omits 0 and 1. By
Lemma XII.2.2 there is an entire function g (entire since G = C here)
such that g(C) contains no disk of radius 1 and
f (z) = − exp(iπ cosh(2g(z))).

ASSUME f is not a constant function.
Then g is not a constant function and so there is z0 ∈ C with g ′(z0) 6= 0
by Proposition III.2.10. By considering g(z + z0), we can without loss of
generality suppose that g ′(0) 6= 0.

() Complex Analysis December 13, 2017 9 / 10



Theorem XII.2.3. The Little Picard Theorem

Theorem XII.2.3

Theorem XII.2.3. The Little Picard Theorem.
If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof. Suppose that f omits a and b where a 6= b. With f (z) 6= a and
f (z) 6= b, the entire function (f (z)− a)/(b − z) omits the values 0 and 1,
so we can assume without loss of generality that f omits 0 and 1. By
Lemma XII.2.2 there is an entire function g (entire since G = C here)
such that g(C) contains no disk of radius 1 and
f (z) = − exp(iπ cosh(2g(z))). ASSUME f is not a constant function.
Then g is not a constant function and so there is z0 ∈ C with g ′(z0) 6= 0
by Proposition III.2.10. By considering g(z + z0), we can without loss of
generality suppose that g ′(0) 6= 0.

() Complex Analysis December 13, 2017 9 / 10



Theorem XII.2.3. The Little Picard Theorem

Theorem XII.2.3

Theorem XII.2.3. The Little Picard Theorem.
If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof. Suppose that f omits a and b where a 6= b. With f (z) 6= a and
f (z) 6= b, the entire function (f (z)− a)/(b − z) omits the values 0 and 1,
so we can assume without loss of generality that f omits 0 and 1. By
Lemma XII.2.2 there is an entire function g (entire since G = C here)
such that g(C) contains no disk of radius 1 and
f (z) = − exp(iπ cosh(2g(z))). ASSUME f is not a constant function.
Then g is not a constant function and so there is z0 ∈ C with g ′(z0) 6= 0
by Proposition III.2.10. By considering g(z + z0), we can without loss of
generality suppose that g ′(0) 6= 0.

() Complex Analysis December 13, 2017 9 / 10



Theorem XII.2.3. The Little Picard Theorem

Theorem XII.2.3 (continued)

Theorem XII.2.3. The Little Picard Theorem.
If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof (continued). But then by Corollary XII.1.11, for all R > 0 (since g
is entire), g(B(0;R)) contains a disk of radius R|g ′(0)|L where L is
Landau’s constant (see Definition XII.1.9) and is approximately 1.2. But
then, for R > 1/(|g ′(0)|L) we have that g(C) contains a disk of radius
greater than 1, CONTRADICTING Lemma XII.2.2.

This contradiction
shows that the assumption that f is not constant is false. So if f omits
two values then f must be constant, as claimed.
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