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Lemma XII.2.1

Lemma XI.2.1

Lemma XI1.2.1. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Then
there is an analytic function g on G such that

f(z) = —exp(imcosh(2g(z)) for all z € G.

Complex Analysis December 13, 2017 3/ 10



Lemma XI.2.1

Lemma XI1.2.1. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Then
there is an analytic function g on G such that

f(z) = —exp(imcosh(2g(z)) for all z € G.

Proof. Since by hypothesis f is nonzero on G and G is simply connected,
then there is a branch ¢ of log(f(z)) defined on F by Theorem VIII1.2.2
(the (a) implies (g) part); that is, e/?) = f(z) for all z € G. Let

F(z) = (2mi)~1(2).
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Lemma XI.2.1

Lemma XI1.2.1. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Then
there is an analytic function g on G such that

f(z) = —exp(imcosh(2g(z)) for all z € G.

Proof. Since by hypothesis f is nonzero on G and G is simply connected,
then there is a branch ¢ of log(f(z)) defined on F by Theorem VIII1.2.2
(the (a) implies (g) part); that is, e/?) = f(z) for all z € G. Let

F(z) = (2mi)~1¢(z). ASSUME F(z) = n for some n € Z and for some
ae€ G. Then f(z) = exp(¥(z)) = exp(2miF(z)) = exp(2min) =1, a
CONTRADICTION to the hypothesis that f does not assume the value 1.
So F does not assume any integer values.
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Lemma XI.2.1

Lemma XI1.2.1. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Then
there is an analytic function g on G such that

f(z) = —exp(imcosh(2g(z)) for all z € G.

Proof. Since by hypothesis f is nonzero on G and G is simply connected,
then there is a branch ¢ of log(f(z)) defined on F by Theorem VIII1.2.2
(the (a) implies (g) part); that is, e/?) = f(z) for all z € G. Let

F(z) = (2mi)~1¢(z). ASSUME F(z) = n for some n € Z and for some
ae€ G. Then f(z) = exp(¥(z)) = exp(2miF(z)) = exp(2min) =1, a
CONTRADICTION to the hypothesis that f does not assume the value 1.
So F does not assume any integer values. Since F is nonzero on G an dG
is simply connected, then a branch of \/F(z) exists on G by Theorem
VII1.2.2 (the (a) implies (h) part). Similarly, since F(z) # 1 on G then a

branch of \/F(z) — 1 exists on G. Let H(z) = \/F(z) — \/F(z) — 1.
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Lemma XII.2.1

Lemma XI.2.1 (continued 1)

Proof (continued). Then H is nonzero on G and so there is a branch of

log(H(z)) defined on G by Theorem VII1.2.2 (the (a) implies (g) part),
denoted g(z) = log(H(z)).
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Lemma XI.2.1 (continued 1)

Proof (continued). Then H is nonzero on G and so there is a branch of
log(H(z)) defined on G by Theorem VII1.2.2 (the (a) implies (g) part),

denoted g(z) = log(H(z)). Hence for z € G we have

28(2) + o—28(2)

cosh(2g(z)) +1 = +1

N

(-

1 )2
—/F(z) -1

_ 1<¢F(z)

2 VF \/F
B 1<Fz)—2\/F \/F
T2

Complex Analysis

—1+F( )—1+1>2

December 13, 2017 4 /10



Lemma XI.2.1 (continued 2)

2F(z —2\/F 1\’
(" )

Proof (continued). ...

N =

cosh(2g(z)) +1 =

1 (2F(z —2\/F —1\°
= 3 _1

_ 1 2% JF

= 3 T

= 2F(z) = 27r/()

and so /(z) = mi(cosh(2g(z)) +1). So
f(z) = el(2) = exp(mi + micosh(2g(z))) = — exp(wi cosh(2g(z)), as
claimed. m
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Lemma XI1.2.2. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Let g
be analytic on G where f(z) = — exp(i pi cosh(2g(z))) for all z € G (such
g exists by Lemma XI1.2.2). Then g(G) contains no disk of radius 1.

Complex Analysis December 13, 2017 6 / 10



Lemma XI1.2.2. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Let g
be analytic on G where f(z) = — exp(i pi cosh(2g(z))) for all z € G (such
g exists by Lemma XI1.2.2). Then g(G) contains no disk of radius 1.

Proof. Let n,m € Z with n > 0. ASSUME there is z € G with
g(z) = £log(y/n+ v/n—1) + Limm (we use the principal branch of the
log).
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Lemma XI1.2.2. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Let g
be analytic on G where f(z) = — exp(i pi cosh(2g(z))) for all z € G (such
g exists by Lemma XI1.2.2). Then g(G) contains no disk of radius 1.

Proof. Let n,m € Z with n > 0 ASSUME there is z € G with

g(z) = ilog(f—i— v/n—1) + 2imm (we use the principal branch of the
log). Then

2cosh(2g(a)) = €?8(3) 4 ¢=28(3)
= exp(£2log(v/n + vn—1) + imm)
+exp($2log(f+ Vn—1)+ imr)
= (WA VIR (VD7) ()
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Lemma XI1.2.2. Let G be a simply connected region and suppose that f
is an analytic function on G that does not assume the values 0 or 1. Let g
be analytic on G where f(z) = — exp(i pi cosh(2g(z))) for all z € G (such
g exists by Lemma XI1.2.2). Then g(G) contains no disk of radius 1.

Proof. Let n,m € Z with n > 0 ASSUME there is z € G with

g(z) = ilog(f—i— v/n—1) + 2imm (we use the principal branch of the
log). Then

2cosh(2g(a)) = €?8(3) 4 ¢=28(3)
= exp(£2log(v/n + vn—1) + imm)
+exp($2log(f+ Vn—1)+ imr)
= (WA VIR (VD7) ()
Now

(Vn+vVn = 1) +(Vn+vVn - 1)7 = (Vn+Vn = 1)*+(V/n+vVn —1)72

— (/n n—1) + 1 (vVin—+vn—-1)
= V1R (VA V1)
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Proof (continued).

N Y o I Vn—1)°

(n—(n-1))?
= (Vn+vVn=172+(/n—vVn—-12=202n-1),
so (*) becomes 2 cosh(2g(a)) = (—1)m2(2n — 1), or
cosh(2g(a)) = (—1)™(2n —1).
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Lemma XI1.2.2

Proof (continued).
_ (ﬁﬂ/m)%(zf‘(:ﬁ);f
= (Vn+Vn=172+(Vn—Vn—1)?=2(2n - 1),

so (*) becomes 2 cosh(2g(a)) = (—1)m2(2n — 1), or
cosh(2g(a)) = (—1)™(2n — 1). Therefore

f(a) = —exp(imcosh(2g(a)) = —exp(in(—-1)"(2n—1)) =1

since im(—1)™(2n — 1) is an odd multiple of 7/ and so
exp(im(—1)™(2n — 1) = —1. But this is a CONTRADICTION to the
hypothesis that f does not assume the value 1.
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Lemma XI1.2.2

Proof (continued).
_ (ﬁﬂ/m)%(zf‘(:ﬁ);f
= (Vn+Vn=172+(Vn—Vn—1)?=2(2n - 1),

so (*) becomes 2 cosh(2g(a)) = (—1)m2(2n — 1), or
cosh(2g(a)) = (—1)™(2n — 1). Therefore

f(a) = —exp(imcosh(2g(a)) = —exp(in(—-1)"(2n—1)) =1

since im(—1)™(2n — 1) is an odd multiple of 7/ and so
exp(im(—1)™(2n — 1) = —1. But this is a CONTRADICTION to the
hypothesis that f does not assume the value 1. So the assumption that

there is a € G such that g(a) = *log(y/n+ v/n— 1) + -1 is false and
hence g cannot assume any values in the set

{&log(v/n++vVn—1)+ *Im7T|Z n> 0}.

The points in this set form a grid in C of rectangles of constant height and
varying width.
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Lemma XI1.2.2

Proof (continued). The height for a rectangle with base on
Im(z) = imm is |3i(m + 1)7 — 3imn| = /2 (and notice that /2 < v/3).
The width of a rectangle with left side on Re(z) = log(y/n++v/n—1) is

log(v/n+1++/n) —log(y/n++vn—1) > 0.
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Lemma XI1.2.2

Proof (continued). The height for a rectangle with base on

Im(z) = imm is |3i(m + 1)7 — 3imn| = /2 (and notice that /2 < v/3).
The width of a rectangle with left side on Re(z) = log(y/n++v/n—1) is
log(v/n+1++/n) —log(v/n++vn—1) > 0. Now

o(x) = log(vx + 1+ /x) — log(y/x — v/x — 1) is a decreasing function
for x > 1 (check the first derivative) so that the width of such a rectangle
is at most (1) = log(v/1 + 1) (and notice that log(v/2 + 1) < loge = 1).
Similarly, the width of a rectangle with left side

Re(z) = —log(yv/n+ v/n— 1) is less than 1.
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Lemma XI1.2.2

Proof (continued). The height for a rectangle with base on

Im(z) = imm is |3i(m + 1)7 — 3imn| = /2 (and notice that /2 < v/3).
The width of a rectangle with left side on Re(z) = log(y/n++v/n—1) is
log(v/n+1++/n) —log(v/n++vn—1) > 0. Now

o(x) = log(vx + 1+ /x) — log(y/x — v/x — 1) is a decreasing function
for x > 1 (check the first derivative) so that the width of such a rectangle
is at most (1) = log(v/1 + 1) (and notice that log(v/2 + 1) < loge = 1).
Similarly, the width of a rectangle with left side
Re(z) = —log(yv/n+ v/n— 1) is less than 1.

So the diagonal of any such rectangle is less
than 1/(v/3)2 + (1)2 = 2. So g(G) excludes
the grid of points in C determining a set of
rectangle of diameters less than 2. Hence
g(G) cannot contain a disk of radius 1. O
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Theorem XII.2.3. The Little Picard Theorem

Theorem XI1.2.3

Theorem XI1.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is,

if f is a nonconstant entire function then it assumes every complex
number with one possible exception.
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Theorem XI1.2.3

Theorem XI1.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof. Suppose that f omits a and b where a # b. With f(z) # a and
f(z) # b, the entire function (f(z) — a)/(b — z) omits the values 0 and 1,
so we can assume without loss of generality that f omits 0 and 1. By
Lemma XII.2.2 there is an entire function g (entire since G = C here)
such that g(C) contains no disk of radius 1 and

f(z) = —exp(imcosh(2g(z))).
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Theorem XI1.2.3

Theorem XI1.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof. Suppose that f omits a and b where a # b. With f(z) # a and
f(z) # b, the entire function (f(z) — a)/(b — z) omits the values 0 and 1,
so we can assume without loss of generality that f omits 0 and 1. By
Lemma XII.2.2 there is an entire function g (entire since G = C here)
such that g(C) contains no disk of radius 1 and

f(z) = —exp(imcosh(2g(z))). ASSUME f is not a constant function.
Then g is not a constant function and so there is zy € C with g'(z) # 0
by Proposition 111.2.10. By considering g(z + zp), we can without loss of
generality suppose that g’(0) # 0.

Complex Analysis December 13, 2017 9 / 10



Theorem XII.2.3. The Little Picard Theorem

Theorem XII.2.3 (continued)

Theorem Xl1.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.
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Theorem XII.2.3 (continued)

Theorem XI1.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof (continued). But then by Corollary XII.1.11, for all R > 0 (since g
is entire), g(B(0; R)) contains a disk of radius R|g’(0)|L where L is
Landau’s constant (see Definition XI1.1.9) and is approximately 1.2. But
then, for R > 1/(|g’(0)|L) we have that g(C) contains a disk of radius
greater than 1, CONTRADICTING Lemma XII.2.2.
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Theorem XII.2.3 (continued)

Theorem XI1.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is,
if f is a nonconstant entire function then it assumes every complex
number with one possible exception.

Proof (continued). But then by Corollary XII.1.11, for all R > 0 (since g
is entire), g(B(0; R)) contains a disk of radius R|g’(0)|L where L is
Landau’s constant (see Definition XI1.1.9) and is approximately 1.2. But
then, for R > 1/(|g’(0)|L) we have that g(C) contains a disk of radius
greater than 1, CONTRADICTING Lemma XII.2.2. This contradiction
shows that the assumption that f is not constant is false. So if f omits
two values then f must be constant, as claimed. O
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