Complex Analysis

Chapter XII. The Range of an Analytic Function

 XII.3. Schottky's Theorem—Proofs of Theorems

Table of contents

(1) Theorem XII.3.1. Schottky's Theorem

Theorem XII.3.1

Theorem XII.3.1. Schottky's Theorem.
For each α and β with $0<\alpha<\infty$ and $0 \leq \beta<1$, there is a constant $C(\alpha, \beta)$ such that f is an analytic function on some simply connected region containing $\bar{B}(0 ; 1)$ that omits the values 0 and 1 , and such that $|f(0)| \leq \alpha$, where $|f(z)| \leq C(\alpha, \beta)$ for $|z| \leq \beta$.

Proof. We give a proof for $2 \leq \alpha<\infty$. Since the hypothesis $|f(0)| \leq \alpha$ where $0<\alpha \leq 2$ satisfies $|f(0)| \leq \alpha \leq 2$, this approach covers all values of α.

Theorem XII.3.1

Theorem XII.3.1. Schottky's Theorem.

For each α and β with $0<\alpha<\infty$ and $0 \leq \beta<1$, there is a constant $C(\alpha, \beta)$ such that f is an analytic function on some simply connected region containing $\bar{B}(0 ; 1)$ that omits the values 0 and 1 , and such that $|f(0)| \leq \alpha$, where $|f(z)| \leq C(\alpha, \beta)$ for $|z| \leq \beta$.

Proof. We give a proof for $2 \leq \alpha<\infty$. Since the hypothesis $|f(0)| \leq \alpha$ where $0<\alpha \leq 2$ satisfies $|f(0)| \leq \alpha \leq 2$, this approach covers all values of α.
Case 1. Suppose $1 / 2 \leq|f(0)| \leq \alpha$. Then, with F, H, g, and ℓ as discussed above,

$$
\begin{aligned}
& \left.|F(0)|=\left|\frac{1}{2 \pi i} \ell(0)\right|=\left|\frac{1}{2 \pi i} \log (f(0))\right|=\frac{1}{2 \pi}|\log | f(0)\right)+i \operatorname{lm}(\ell(0)) \mid \\
& \leq \frac{1}{2 \pi}\left(|\log | f(0)| |+\operatorname{Im}(f(0)) \leq \frac{1}{2 \pi}(\log (\alpha)+2 \pi)=\frac{1}{2 \pi} \log (\alpha)+1\right.
\end{aligned}
$$

Let $C_{0}(\alpha)=\frac{1}{2 \pi} \log (\alpha)+1$.

Theorem XII.3.1

Theorem XII.3.1. Schottky's Theorem.

For each α and β with $0<\alpha<\infty$ and $0 \leq \beta<1$, there is a constant $C(\alpha, \beta)$ such that f is an analytic function on some simply connected region containing $\bar{B}(0 ; 1)$ that omits the values 0 and 1 , and such that $|f(0)| \leq \alpha$, where $|f(z)| \leq C(\alpha, \beta)$ for $|z| \leq \beta$.

Proof. We give a proof for $2 \leq \alpha<\infty$. Since the hypothesis $|f(0)| \leq \alpha$ where $0<\alpha \leq 2$ satisfies $|f(0)| \leq \alpha \leq 2$, this approach covers all values of α.
Case 1. Suppose $1 / 2 \leq|f(0)| \leq \alpha$. Then, with F, H, g, and ℓ as discussed above,

$$
\begin{aligned}
& \left.|F(0)|=\left|\frac{1}{2 \pi i} \ell(0)\right|=\left|\frac{1}{2 \pi i} \log (f(0))\right|=\frac{1}{2 \pi}|\log | f(0)\right)+i \operatorname{lm}(\ell(0)) \mid \\
& \leq \frac{1}{2 \pi}\left(|\log | f(0)| |+\operatorname{Im}(f(0)) \leq \frac{1}{2 \pi}(\log (\alpha)+2 \pi)=\frac{1}{2 \pi} \log (\alpha)+1\right.
\end{aligned}
$$

Let $C_{0}(\alpha)=\frac{1}{2 \pi} \log (\alpha)+1$.

Theorem XII.3.1 (continued 1)

Proof (continued). So $|F(0)| \leq C_{0}(\alpha)$ and
$|F(0)-1| \leq|F(0)|+1 \leq C_{0}(\alpha)+1$. Also

$$
\begin{gathered}
|\sqrt{F(0)} \pm \sqrt{F(0)-1}| \leq|\sqrt{F(z)}|+|\sqrt{F(0)-1}| \\
=\exp \left(\frac{1}{2} \log |F(0)|\right)+\exp \left(\frac{1}{2} \log |F(0)-1|\right) \\
=|F(0)|^{1 / 2}+|F(0)-1|^{1 / 2} \leq C_{0}(\alpha)^{1 / 2}+\left(C_{0}(\alpha)+1\right)^{1 / 2} .
\end{gathered}
$$

Let $C_{1}(\alpha)=C_{0}(\alpha)^{1 / 2}+\left(C_{0}(\alpha)+1\right)^{1 / 2}$. Now if
$H(0)|=|\sqrt{F(0)}-\sqrt{F(0)-1}| \geq 1$ then $\log | H(0) \mid \geq 0$ and so

$$
\begin{aligned}
|g(0)| & =|\log | H(0)|=|\log | H(0)|+i \operatorname{lm}(g(0)) \mid \\
& \leq \log |H(0)|+\operatorname{lm}(g(0)) \leq \log |H(0)|+2 \pi \\
& \leq \log |\sqrt{F(0)}|-\sqrt{F(0)-1} \mid+2 \pi \leq \log \left(C_{1}(\alpha)\right)+2 \pi .
\end{aligned}
$$

Theorem XII.3.1 (continued 1)

Proof (continued). So $|F(0)| \leq C_{0}(\alpha)$ and

$$
|F(0)-1| \leq|F(0)|+1 \leq C_{0}(\alpha)+1 \text {. Also }
$$

$$
\begin{gathered}
|\sqrt{F(0)} \pm \sqrt{F(0)-1}| \leq|\sqrt{F(z)}|+|\sqrt{F(0)-1}| \\
=\exp \left(\frac{1}{2} \log |F(0)|\right)+\exp \left(\frac{1}{2} \log |F(0)-1|\right) \\
=|F(0)|^{1 / 2}+|F(0)-1|^{1 / 2} \leq C_{0}(\alpha)^{1 / 2}+\left(C_{0}(\alpha)+1\right)^{1 / 2} .
\end{gathered}
$$

Let $C_{1}(\alpha)=C_{0}(\alpha)^{1 / 2}+\left(C_{0}(\alpha)+1\right)^{1 / 2}$. Now if $|H(0)|=|\sqrt{F(0)}-\sqrt{F(0)-1}| \geq 1$ then $\log |H(0)| \geq 0$ and so

$$
\begin{aligned}
|g(0)| & =|\log | H(0)|=|\log | H(0)|+i \operatorname{lm}(g(0)) \mid \\
& \leq \log |H(0)|+\operatorname{lm}(g(0)) \leq \log |H(0)|+2 \pi \\
& \leq \log |\sqrt{F(0) \mid}-\sqrt{F(0)-1}|+2 \pi \leq \log \left(C_{1}(\alpha)\right)+2 \pi .
\end{aligned}
$$

Theorem XII.3.1 (continued 2)

Proof (continued). If $|H(0)|=|\sqrt{F(0)}-\sqrt{F(0)-1}|<1$ then $\log |H(0)|<0$ and so

$$
\begin{aligned}
|g(0)| & =|\log (H(0))|=|\log | H(0)|+i \operatorname{lm}(g(0))| \\
& \leq \log |H(0)|+\operatorname{lm}(g(0))=-\log \mid H(0 \mid+\operatorname{lm}(g(0)) \\
& \leq-\log |H(0)|+2 \pi=\log \frac{1}{|H(0)|}+2 \pi \\
& =\log \frac{1}{\sqrt{F(0)}-\sqrt{F(0)-1}}+2 \pi \\
& =\log \frac{1}{\sqrt{F(0)}-\sqrt{F(0)-1}} \frac{\sqrt{F(z)}+\sqrt{F(z)-1}}{\sqrt{F(z)}+\sqrt{F(z)-1}}+2 \pi \\
& =\log \mid \sqrt{F(0}+\sqrt{F(0)-1}+2 \pi \leq \log \left(C_{1}(\alpha)\right)+2 \pi .
\end{aligned}
$$

Let $C_{2}(\alpha)=\log \left(C_{1}(\alpha)\right)+2 \pi$.

Theorem XII.3.1 (continued 3)

Proof (continued). Let $a \in \mathbb{C}$ with $|a|<1$. Then Corollary XII.1.11 implies that $g\left(B(a ; 1-|a|)\right.$ contains a disk of radius $L\left|g^{\prime}(a)\right|(1-|a|)$ where L is Landau's constant (it is approximately $1 / 2$; see Definition XII.1.9). By Lemma XII.2.2, $g(B(0 ; 1))$ contains no disk of radius 1 , so it must be that $L\left|g^{\prime}(a)\right|(1-|a|)<1$; that is

$$
\begin{equation*}
\left|g^{\prime}(a)\right|<\frac{1}{L(1-|a|)} \text { for }|a|<1 \tag{3.6}
\end{equation*}
$$

If $a \in \mathbb{C}$ with $|a|<1$, then let γ be the line segment $[0, a]$. Then

$$
\begin{aligned}
|g(a)| & \leq|g(a)+g(0)-g(0)| \leq|g(0)|+|g(a)-g(0)| \\
& \leq C_{2}(\alpha)+\left|\int_{\gamma} g^{\prime}(z) d z\right| \leq C_{2}(\alpha)+|a| \max _{z \in[0, a]}\left|g^{\prime}(z)\right| .
\end{aligned}
$$

Theorem XII.3.1 (continued 3)

Proof (continued). Let $a \in \mathbb{C}$ with $|a|<1$. Then Corollary XII.1.11 implies that $g\left(B(a ; 1-|a|)\right.$ contains a disk of radius $L\left|g^{\prime}(a)\right|(1-|a|)$ where L is Landau's constant (it is approximately $1 / 2$; see Definition XII.1.9). By Lemma XII.2.2, $g(B(0 ; 1))$ contains no disk of radius 1 , so it must be that $L\left|g^{\prime}(a)\right|(1-|a|)<1$; that is

$$
\begin{equation*}
\left|g^{\prime}(a)\right|<\frac{1}{L(1-|a|)} \text { for }|a|<1 \tag{3.6}
\end{equation*}
$$

If $a \in \mathbb{C}$ with $|a|<1$, then let γ be the line segment $[0, a]$. Then

$$
\begin{aligned}
|g(a)| & \leq|g(a)+g(0)-g(0)| \leq|g(0)|+|g(a)-g(0)| \\
& \leq C_{2}(\alpha)+\left|\int_{\gamma} g^{\prime}(z) d z\right| \leq C_{2}(\alpha)+|a| \max _{z \in[0, a]}\left|g^{\prime}(z)\right| .
\end{aligned}
$$

Theorem XII.3.1 (continued 4)

Proof (continued). Now (3.6) holds for all $a \in \mathbb{C}$ with $|a|<1$, so for each $z \in[0, a]$ we have

$$
\begin{aligned}
\left|g^{\prime}(z)\right| & <\frac{1}{L(1-|z|)} \text { replacing }|a|<1 \text { with }|z| \leq|a|<1 \\
& \leq \frac{1}{L(1-|a|)} \text { since }|z| \leq|z| \text { here }
\end{aligned}
$$

So $|g(a)| \leq C_{2}(\alpha)+\frac{|a|}{L(1-|a|)}$. That is (replacing $|a|<1$ with $\left.|z|<1\right)$, for $|z|<1$

$$
|g(z)| \leq C_{2}(\alpha)+\frac{|z|}{L(1-|z|)} \leq C_{2}(\alpha)+\frac{\beta}{L(1-\beta)}
$$

for $|z| \leq \beta<1$ (the last inequality holds since $f(x)=x /(1-x)$ is an increasing function for $x \neq 0$). With $C_{3}(\alpha, \beta)=C_{2}(\alpha)+\frac{\beta}{L(1-\beta)}$ we have $|g(z)| \leq C_{3}(\alpha, \beta)$ if $|z| \leq \beta$.

Theorem XII.3.1 (continued 4)

Proof (continued). Now (3.6) holds for all $a \in \mathbb{C}$ with $|a|<1$, so for each $z \in[0, a]$ we have

$$
\begin{aligned}
\left|g^{\prime}(z)\right| & <\frac{1}{L(1-|z|)} \text { replacing }|a|<1 \text { with }|z| \leq|a|<1 \\
& \leq \frac{1}{L(1-|a|)} \text { since }|z| \leq|z| \text { here. }
\end{aligned}
$$

So $|g(a)| \leq C_{2}(\alpha)+\frac{|a|}{L(1-|a|)}$. That is (replacing $|a|<1$ with $|z|<1$), for $|z|<1$

$$
|g(z)| \leq C_{2}(\alpha)+\frac{|z|}{L(1-|z|)} \leq C_{2}(\alpha)+\frac{\beta}{L(1-\beta)}
$$

for $|z| \leq \beta<1$ (the last inequality holds since $f(x)=x /(1-x)$ is an increasing function for $x \neq 0$). With $C_{3}(\alpha, \beta)=C_{2}(\alpha)+\frac{\beta}{L(1-\beta)}$ we have $|g(z)| \leq C_{3}(\alpha, \beta)$ if $|z| \leq \beta$.

Theorem XII.3.1 (continued 5)

Proof (continued). Consequently, if $|z| \leq \beta$ then

$$
\begin{aligned}
|f(z)|= & \exp (\pi i \cosh (2 g(z)) \mid \text { by Lemma XII.2.1 } \\
\leq & \exp (\pi|\cosh (2 g(z))|) \\
\leq & \exp \left(\pi e^{2|g(z)|}\right) \text { since }|\cosh (2 g(z))|=\left|e^{2 g(z)}+e^{-2 g(z)}\right| / 2 \\
& \leq\left(\left|e^{2 g(z)}\right|+\left|e^{-2 g(z)}\right|\right) / 2 \leq\left(2 e^{2|g(z)|}\right) / 2=e^{2|g(z)|} \\
\leq & \exp \left(\pi e^{2 C_{3}(\alpha, \beta)}\right) .
\end{aligned}
$$

Define $C_{4}(\alpha, \beta)=\exp \left(\pi e^{2 C_{3}(\alpha, \beta)}\right)$. Then for $1 / 2 \leq|f(0)| \leq \alpha$ and $|z| \leq \beta$ we now have $|f(z)| \leq C_{4}(\alpha, \beta)$.

Theorem XII.3.1 (continued 6)

Theorem XII.3.1. Schottky's Theorem.

For each α and β with $0<\alpha<\infty$ and $0 \leq \beta<1$, there is a constant $C(\alpha, \beta)$ such that f is an analytic function on some simply connected region containing $\bar{B}(0 ; 1)$ that omits the values 0 and 1 , and such that $|f(0)| \leq \alpha$, where $|f(z)| \leq C(\alpha, \beta)$ for $|z| \leq \beta$.

Proof (continued). Case 2. Suppose $0<|f(0)| \leq 1 / 2$. Then the function $1-f$ satisfies the conditions of Case 1 (namely, $1 / 2 \leq|1-f(0)| \leq 1 \leq \alpha$ with $\alpha=2)$. So by Case 1 , $|1-f(z)| \leq C_{4}(2, \beta)$ for $|z| \leq \beta$. Hence $|f(z)|-1 \leq|1-f(z)| \leq C_{4}(2, \beta)$ and $|f(z)| \leq C_{4}(2, \beta)+1$ for $0<|f(0)|<1 / 2$ and $|z| \leq \beta$.

Therefore, with $C(\alpha, \beta)=\max \left\{C_{4}(\alpha, \beta), C_{4}(\alpha, \beta)+1\right\}$ we have $|f(z)| \leq C(\alpha, \beta)$ for all $0<\alpha<\infty$ and $0 \leq \beta<1$ where $|f(0)| \leq \alpha$, as claimed.

Theorem XII.3.1 (continued 6)

Theorem XII.3.1. Schottky's Theorem.

For each α and β with $0<\alpha<\infty$ and $0 \leq \beta<1$, there is a constant $C(\alpha, \beta)$ such that f is an analytic function on some simply connected region containing $\bar{B}(0 ; 1)$ that omits the values 0 and 1 , and such that $|f(0)| \leq \alpha$, where $|f(z)| \leq C(\alpha, \beta)$ for $|z| \leq \beta$.

Proof (continued). Case 2. Suppose $0<|f(0)| \leq 1 / 2$. Then the function $1-f$ satisfies the conditions of Case 1 (namely, $1 / 2 \leq|1-f(0)| \leq 1 \leq \alpha$ with $\alpha=2)$. So by Case 1 , $|1-f(z)| \leq C_{4}(2, \beta)$ for $|z| \leq \beta$. Hence $|f(z)|-1 \leq|1-f(z)| \leq C_{4}(2, \beta)$ and $|f(z)| \leq C_{4}(2, \beta)+1$ for $0<|f(0)|<1 / 2$ and $|z| \leq \beta$.

Therefore, with $C(\alpha, \beta)=\max \left\{C_{4}(\alpha, \beta), C_{4}(\alpha, \beta)+1\right\}$ we have $|f(z)| \leq C(\alpha, \beta)$ for all $0<\alpha<\infty$ and $0 \leq \beta<1$ where $|f(0)| \leq \alpha$, as claimed.

