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Chapter XII. The Range of an Analytic Function
XII.3. Schottky’s Theorem—Proofs of Theorems
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Theorem XII.3.1

Theorem XII.3.1. Schottky’s Theorem.
For each α and β with 0 < α < ∞ and 0 ≤ β < 1, there is a constant
C (α, β) such that f is an analytic function on some simply connected
region containing B(0; 1) that omits the values 0 and 1, and such that
|f (0)| ≤ α, where |f (z)| ≤ C (α, β) for |z | ≤ β.

Proof. We give a proof for 2 ≤ α < ∞. Since the hypothesis |f (0)| ≤ α
where 0 < α ≤ 2 satisfies |f (0)| ≤ α ≤ 2, this approach covers all values
of α.

Case 1. Suppose 1/2 ≤ |f (0)| ≤ α. Then, with F , H, g , and ` as
discussed above,

|F (0)| =
∣∣∣∣ 1

2πi
`(0)

∣∣∣∣ =

∣∣∣∣ 1

2πi
log(f (0))

∣∣∣∣ =
1

2π
|log |f (0)) + i Im(`(0))|

≤ 1

2π
(| log |f (0)||+ Im(f (0)) ≤ 1

2π
(log(α) + 2π) =

1

2π
log(α) + 1.

Let C0(α) = 1
2π log(α) + 1.
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Theorem XII.3.1. Schottky’s Theorem

Theorem XII.3.1 (continued 1)

Proof (continued). So |F (0)| ≤ C0(α) and
|F (0)− 1| ≤ |F (0)|+ 1 ≤ C0(α) + 1. Also

|
√

F (0)±
√

F (0)− 1| ≤ |
√

F (z)|+ |
√

F (0)− 1|

= exp

(
1

2
log |F (0)|

)
+ exp

(
1

2
log |F (0)− 1|

)
= |F (0)|1/2 + |F (0)− 1|1/2 ≤ C0(α)1/2 + (C0(α) + 1)1/2.

Let C1(α) = C0(α)1/2 + (C0(α) + 1)1/2. Now if
|H(0)| = |

√
F (0)−

√
F (0)− 1| ≥ 1 then log |H(0)| ≥ 0 and so

|g(0)| = | log |H(0)| = | log |H(0)|+ i Im(g(0))|
≤ log |H(0)|+ Im(g(0)) ≤ log |H(0)|+ 2π

≤ log |
√

F (0)| −
√

F (0)− 1|+ 2π ≤ log(C1(α)) + 2π.
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Theorem XII.3.1. Schottky’s Theorem

Theorem XII.3.1 (continued 2)

Proof (continued). If |H(0)| = |
√

F (0)−
√

F (0)− 1| < 1 then
log |H(0)| < 0 and so

|g(0)| = | log(H(0))| = | log |H(0)|+ i Im(g(0))|
≤ log |H(0)|+ Im(g(0)) = − log |H(0|+ Im(g(0))

≤ − log |H(0)|+ 2π = log
1

|H(0)|
+ 2π

= log
1√

F (0)−
√

F (0)− 1
+ 2π

= log
1√

F (0)−
√

F (0)− 1

√
F (z) +

√
F (z)− 1√

F (z) +
√

F (z)− 1
+ 2π

= log |
√

F (0 +
√

F (0)− 1|+ 2π ≤ log(C1(α)) + 2π.

Let C2(α) = log(C1(α)) + 2π.
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Theorem XII.3.1. Schottky’s Theorem

Theorem XII.3.1 (continued 3)

Proof (continued). Let a ∈ C with |a| < 1. Then Corollary XII.1.11
implies that g(B(a; 1− |a|) contains a disk of radius L|g ′(a)|(1− |a|)
where L is Landau’s constant (it is approximately 1/2; see Definition
XII.1.9). By Lemma XII.2.2, g(B(0; 1)) contains no disk of radius 1, so it
must be that L|g ′(a)|(1− |a|) < 1; that is

|g ′(a)| < 1

L(1− |a|)
for |a| < 1. (3.6)

If a ∈ C with |a| < 1, then let γ be the line segment [0, a]. Then

|g(a)| ≤ |g(a) + g(0)− g(0)| ≤ |g(0)|+ |g(a)− g(0)|

≤ C2(α) +

∣∣∣∣∫
γ
g ′(z) dz

∣∣∣∣ ≤ C2(α) + |a| max
z∈[0,a]

|g ′(z)|.
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Theorem XII.3.1. Schottky’s Theorem

Theorem XII.3.1 (continued 4)

Proof (continued). Now (3.6) holds for all a ∈ C with |a| < 1, so for
each z ∈ [0, a] we have

|g ′(z)| <
1

L(1− |z |)
replacing |a| < 1 with |z | ≤ |a| < 1

≤ 1

L(1− |a|)
since |z | ≤ |z | here.

So |g(a)| ≤ C2(α) + |a|
L(1−|a|) . That is (replacing |a| < 1 with |z | < 1), for

|z | < 1

|g(z)| ≤ C2(α) +
|z |

L(1− |z |)
≤ C2(α) +

β

L(1− β)

for |z | ≤ β < 1 (the last inequality holds since f (x) = x/(1− x) is an
increasing function for x 6= 0). With C3(α, β) = C2(α) + β

L(1−β) we have

|g(z)| ≤ C3(α, β) if |z | ≤ β.
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Theorem XII.3.1. Schottky’s Theorem

Theorem XII.3.1 (continued 5)

Proof (continued). Consequently, if |z | ≤ β then

|f (z)| = exp(πi cosh(2g(z))| by Lemma XII.2.1

≤ exp(π| cosh(2g(z))|)
≤ exp(πe2|g(z)|) since | cosh(2g(z))| = |e2g(z) + e−2g(z)|/2

≤ (|e2g(z)|+ |e−2g(z)|)/2 ≤ (2e2|g(z)|)/2 = e2|g(z)|

≤ exp(πe2C3(α,β)).

Define C4(α, β) = exp(πe2C3(α,β)). Then for 1/2 ≤ |f (0)| ≤ α and |z | ≤ β
we now have |f (z)| ≤ C4(α, β).
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Theorem XII.3.1. Schottky’s Theorem

Theorem XII.3.1 (continued 6)

Theorem XII.3.1. Schottky’s Theorem.
For each α and β with 0 < α < ∞ and 0 ≤ β < 1, there is a constant
C (α, β) such that f is an analytic function on some simply connected
region containing B(0; 1) that omits the values 0 and 1, and such that
|f (0)| ≤ α, where |f (z)| ≤ C (α, β) for |z | ≤ β.

Proof (continued). Case 2. Suppose 0 < |f (0)| ≤ 1/2. Then the
function 1− f satisfies the conditions of Case 1 (namely,
1/2 ≤ |1− f (0)| ≤ 1 ≤ α with α = 2). So by Case 1,
|1− f (z)| ≤ C4(2, β) for |z | ≤ β. Hence |f (z)| − 1 ≤ |1− f (z)| ≤ C4(2, β)
and |f (z)| ≤ C4(2, β) + 1 for 0 < |f (0)| < 1/2 and |z | ≤ β.

Therefore, with C (α, β) = max{C4(α, β),C4(α, β) + 1} we have
|f (z)| ≤ C (α, β) for all 0 < α < ∞ and 0 ≤ β < 1 where |f (0)| ≤ α, as
claimed.
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