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Theorem Xl1.4.1

Theorem XIl.4.1. Montel-Carathéodory Theorem.
If F is the family of all analytic functions on a region G that do not
assume the values 0 and 1, then F is normal in C(G,C).
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Theorem XII.4.1. Montel-Carathéodory Theorem

Theorem Xll.4.1

Theorem XIl.4.1. Montel-Carathéodory Theorem.

If F is the family of all analytic functions on a region G that do not
assume the values 0 and 1, then F is normal in C(G,C).

Proof. Fix a point zyg € G and define

G=A{feF||f(zn) <1}, H={f € F||f(z)| > 1}.
So F=GUH.
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Theorem Xl1.4.1

Theorem XIl.4.1. Montel-Carathéodory Theorem.
If F is the family of all analytic functions on a region G that do not
assume the values 0 and 1, then F is normal in C(G,C).

Proof. Fix a point zy € G and define
G={feF||f(n) <1}, H={f € F||f(20)] > 1}.

So F = GUH. We will show that G is normal in H(G) (where H(G) is
the collection of functions analytic on G) and that H is normal in
C(G,Cx) (notice that the function which is a constant of oo is a limit of
a sequence of certain constant functions in H).
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Theorem Xl1.4.1

Theorem XIl.4.1. Montel-Carathéodory Theorem.
If F is the family of all analytic functions on a region G that do not
assume the values 0 and 1, then F is normal in C(G,C).

Proof. Fix a point zy € G and define
G={feF||f(n) <1}, H={f € F||f(20)] > 1}.

So F = GUH. We will show that G is normal in H(G) (where H(G) is
the collection of functions analytic on G) and that H is normal in
C(G,Cx) (notice that the function which is a constant of oo is a limit of
a sequence of certain constant functions in H). Recall that a set is normal
in a function space if every sequence in the set has a subsequence
convergent to an element of the space; by Motel's Theorem (Theorem
VI1.2.9), G is normal in H(G) if and only if G is locally bounded (that is,
for each point a € G there are constants M and r > 0 such that for all
f € G we have |f(z)| < M for |z — a] < r).
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Theorem XIll.4.1 (continued 1)

Proof (continued). Let a be any point in G and let y be a curve in G
from zy to a. Let Dy, D1,..., D, be disks in G with centers

20,21,...,2p = aon {7y} and such that zx_; and zx are in Dy_1 N Dy for
1<k < n. Also assume D, C G for 0 < k < n.

N o o oo o o -
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Theorem XIll.4.1 (continued 2)

Proof (continued). We apply Schottky's Theorem (Theorem XII.3.3) to
Do. If Dy = B(zo;r) and R > r is such that B(zy; R) C G then, by
Corollary XI1.3.7, there is a constant C(1,3) (we have oo = 1 since

|f(z0)] <1 = a because f € G) such that |f(z)| < C(1, /) for z € Dy
provided [ is chosen so that r < BR and this bound holds for all f € G by
Schottky's Theorem. (Actually, we need to replace z with z — zy in
Corollary XI1.3.7 so that f(z — zp)|,=z = f(0) and “|f(z)| < C(«, 3) for
|z| < BR" becomes “|f(z)| < C(a, ) for z € B(z; BR)"; then

|f(z)| < C(a, B) for z € Dy = B(zo;r) C B(z0; BR) since r < BR.) With
Co = C(13) we have |f(z)| < G for all z € Dy and for all f € G.
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Theorem XIll.4.1 (continued 2)

Proof (continued). We apply Schottky's Theorem (Theorem XII.3.3) to
Do. If Dy = B(zo;r) and R > r is such that B(zy; R) C G then, by
Corollary XI1.3.7, there is a constant C(1,3) (we have oo = 1 since
|f(z0)] <1 = a because f € G) such that |f(z)| < C(1, /) for z € Dy
provided [ is chosen so that r < BR and this bound holds for all f € G by
Schottky's Theorem. (Actually, we need to replace z with z — zy in
Corollary XI1.3.7 so that f(z — zp)|,=z = f(0) and “|f(z)| < C(«, 3) for
|z| < BR" becomes “|f(z)| < C(a, ) for z € B(z; BR)"; then

|f(z)| < C(a, B) for z € Dy = B(zo;r) C B(z0; BR) since r < BR.) With
Co = C(13) we have |f(z)| < G for all z € Dy and for all f € G. Since
x1 € Dy then |f(z1)| < Go. Since this holds for all f € G, then by
Schottky's Theorem and Corollary XI1.3.7 there is C; where |f(z)| < G
for all z € Dy and for all f € G.
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Theorem XIll.4.1 (continued 2)

Proof (continued). We apply Schottky's Theorem (Theorem XII.3.3) to
Do. If Dy = B(zo;r) and R > r is such that B(zy; R) C G then, by
Corollary XI1.3.7, there is a constant C(1,3) (we have oo = 1 since
|f(z0)] <1 = a because f € G) such that |f(z)| < C(1, /) for z € Dy
provided [ is chosen so that r < BR and this bound holds for all f € G by
Schottky's Theorem. (Actually, we need to replace z with z — zy in
Corollary XI1.3.7 so that f(z — zp)|,=z = f(0) and “|f(z)| < C(«, 3) for
|z| < BR" becomes “|f(z)| < C(a, ) for z € B(z; BR)"; then

|f(z)| < C(a, B) for z € Dy = B(zo;r) C B(z0; BR) since r < BR.) With
Co = C(13) we have |f(z)| < G for all z € Dy and for all f € G. Since
x1 € Dy then |f(z1)| < Go. Since this holds for all f € G, then by
Schottky's Theorem and Corollary XI1.3.7 there is C; where |f(z)| < G
for all z € D; and for all f € G. Similarly, by induction, there is C, such
that |f(z)| < C, for all z € D, and for all f € G. Since a is an arbitrary
element of region G, then G is locally bounded on G. So by Montel's
Theorem (Theorem VI1.2.9) G is normal in H(g) C C(G,Cx).
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Theorem XII.4.1 (continued 3)

Proof (continued). Now consider H = {f € F | |f(z)| > 1}. For
f eH CF, a/f is analytic since f does not assume the value 0. Since f
never assumes the value 1, then neither does 1/f. Moreover,

(1/F)(20)| = [1/£(20)] < 1.
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Theorem XII.4.1 (continued 3)

Proof (continued). Now consider H = {f € F | |f(z)| > 1}. For

f eH CF, a/f is analytic since f does not assume the value 0. Since f
never assumes the value 1, then neither does 1/f. Moreover,

I(1/f)(20)| = |1/f(20)| < 1. So H = {1/f | f € H} C G and so, by the
above argument, H is normal in H(G). So, by the definition of “normal,”
if {fo} is a sequence in H there is a subsequence {f,, } and an analytic
function hon G (i.e., h € H(G)) such that {1/f,, } converges in H(G) to
h. By Corollary VII.2.6 (a corollary to Hurwitz's Theorem, Theorem

VI1.2.5) either h =0 or h is never 0 on G.
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Theorem XII.4.1 (continued 3)

Proof (continued). Now consider H = {f € F | |f(z)| > 1}. For

f eH CF, a/f is analytic since f does not assume the value 0. Since f
never assumes the value 1, then neither does 1/f. Moreover,

I(1/f)(20)| = |1/f(20)| < 1. So H = {1/f | f € H} C G and so, by the
above argument, H is normal in H(G). So, by the definition of “normal,”
if {fo} is a sequence in H there is a subsequence {f,, } and an analytic
function hon G (i.e., h € H(G)) such that {1/f,, } converges in H(G) to
h. By Corollary VII.2.6 (a corollary to Hurwitz's Theorem, Theorem
VI1.2.5) either h =0 or his never 0 on G. If h =0 then "it is easy to see
that” (we leave the details to Exercise XII.4.A) f, — oo uniformly on
compact subsets of G in C(G,Cy). If h never vanishes then 1/h is
analytic and f,, (z) — 1/h(z) uniformly on compact subsets of G. So by

Proposition VII.1.10(b), f,, — 1/hin C(G,Cx).
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Theorem XII.4.1 (continued 3)

Proof (continued). Now consider H = {f € F | |f(z)| > 1}. For

f eH CF, a/f is analytic since f does not assume the value 0. Since f
never assumes the value 1, then neither does 1/f. Moreover,

I(1/f)(20)| = |1/f(20)| < 1. So H = {1/f | f € H} C G and so, by the
above argument, H is normal in H(G). So, by the definition of “normal,”
if {fo} is a sequence in H there is a subsequence {f,, } and an analytic
function hon G (i.e., h € H(G)) such that {1/f,, } converges in H(G) to
h. By Corollary VII.2.6 (a corollary to Hurwitz's Theorem, Theorem
VI1.2.5) either h =0 or his never 0 on G. If h =0 then "it is easy to see
that” (we leave the details to Exercise XII.4.A) f, — oo uniformly on
compact subsets of G in C(G,Cy). If h never vanishes then 1/h is
analytic and f,, (z) — 1/h(z) uniformly on compact subsets of G. So by
Proposition VII.1.10(b), f,, — 1/hin C(G,Cy). In either case, sequence
{fa} in H has a subsequence {f,, } which converges in C(G,C); that is,
by definition, H is normal in C(G,C4). So the claim holds. O
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Theorem XI1.4.2. The Great Picard Theorem

Theorem Xl1.4.2

Theorem XIl.4.2. The Great Picard Theorem.
Suppose an analytic function f has an essential singularity at z = a. Then

in each neighborhood of a, f assumes each complex number, with one
possible exception, an infinite number of times.
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Theorem Xl1.4.2

Theorem XlI1.4.2. The Great Picard Theorem.

Suppose an analytic function f has an essential singularity at z = a. Then
in each neighborhood of a, f assumes each complex number, with one
possible exception, an infinite number of times.

Proof. Without loss of generality, we take a = 0. ASSUME there is R > 0
such that there are two numbers not in {f(z) | 0 < |z| < R}. Without loss
of generality we assume the two oriented values are 0 and 1 for

0 < |z| < R (otherwise, we can replace f(z) with (f(z) — a)/(b — a)
where a and b are the omitted values).
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Theorem Xl1.4.2

Theorem XlI1.4.2. The Great Picard Theorem.

Suppose an analytic function f has an essential singularity at z = a. Then
in each neighborhood of a, f assumes each complex number, with one
possible exception, an infinite number of times.

Proof. Without loss of generality, we take a = 0. ASSUME there is R > 0
such that there are two numbers not in {f(z) | 0 < |z| < R}. Without loss
of generality we assume the two oriented values are 0 and 1 for

0 < |z| < R (otherwise, we can replace f(z) with (f(z) — a)/(b — a)
where a and b are the omitted values). Let G = B(0; R) \ {0} and define
fo: G — C by f,(z) = f(z/n). So each f, is analytic on G and no f,
assumes the value 0 or 1. By the Montel-Carathéodory Theorem
(Theorem XI1.4.1), {f,} is a normal family in C(G,C).
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Theorem XIlI.4.2 (continued 1)

Proof (continued). Let {f,, } be a subsequence of {f,} such that

fo. — @ in C(G,Cx). Then by Proposition VII.1.10(b), f,, — ¢
uniformly on compact subsets of G and so f,, — ¢ uniformly on

{z | |z| = R/2}. Since each f,, is analytic on G and the convergence is in
C(G,Cx), then either ¢ is analytic or ¢ = oo (the uniform convergence
on |z| = R/2 implies continuity of ¢ so if ¢ — oo at any point then it must
be oo throughout G = B(0; R) \ {0}).
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Theorem XIlI.4.2 (continued 1)

Proof (continued). Let {f,, } be a subsequence of {f,} such that

fo. — @ in C(G,Cx). Then by Proposition VII.1.10(b), f,, — ¢
uniformly on compact subsets of G and so f,, — ¢ uniformly on

{z | |z| = R/2}. Since each f,, is analytic on G and the convergence is in
C(G,Cx), then either ¢ is analytic or ¢ = oo (the uniform convergence
on |z| = R/2 implies continuity of ¢ so if ¢ — oo at any point then it must
be oo throughout G = B(0; R) \ {0}). ASSUME ¢ is analytic. Let

M = max{|¢(z)| | 12| = R/2}. Then' |f(z/ni)] = lfo, (2)] = lfoy () =
o(2) + p(2)] < |fa(2) — o(2)] + |¢(2)] < 2M for ny sufficiently large and
|z| = R/2. Thus |f(z)| < 2M for |z| = R/(2nk) and for sufficiently large
nk (say k > K). So |f(z)| <2M on ann(0; R/(2ny,), R/(2ny,))~ for all
ki > ko > K by the Maximum Modulus Theorem—-2nd Version (Theorem
VI.1.2).
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Theorem XIlI.4.2 (continued 1)

Proof (continued). Let {f,, } be a subsequence of {f,} such that
fo. — @ in C(G,Cx). Then by Proposition VII.1.10(b), f,, — ¢
uniformly on compact subsets of G and so f,, — ¢ uniformly on
{z | |z| = R/2}. Since each f,, is analytic on G and the convergence is in
C(G,Cx), then either ¢ is analytic or ¢ = oo (the uniform convergence
on |z| = R/2 implies continuity of ¢ so if ¢ — oo at any point then it must
be oo throughout G = B(0; R) \ {0}). ASSUME ¢ is analytic. Let
M = max{|¢(z)| | 12| = R/2}. Then' |f(z/ni)] = lfo, (2)] = lfoy () =
o(2) + p(2)] < |fa(2) — o(2)] + |¢(2)] < 2M for ny sufficiently large and
|z| = R/2. Thus |f(z)| < 2M for |z| = R/(2nk) and for sufficiently large
nk (say k > K). So |f(z)| <2M on ann(0; R/(2ny,), R/(2ny,))~ for all
ki > ko > K by the Maximum Modulus Theorem—-2nd Version (Theorem
VI.1.2). Since nx — oo then f is bounded by 2M on a deleted
neighborhood of zero and so by Theorem V.1.2, f has a removable
singularity at z = 0, CONTRADICTING the fact that f has an essential
singularity at z=0. So ¢ = 0 on G.
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Theorem XIlI.4.2 (continued 2)

Theorem Xl1.4.2. The Great Picard Theorem.

Suppose an analytic function f has an essential singularity at z = a. Then
in each neighborhood of a, f assumes each complex number, with one
possible exception, an infinite number of times.

Proof (continued). But then, by Exercise XI1.4.B, f must have a pole at
z =0, again a CONTRADICTION. So the original assumption that f
omits two values is false and f cannot omit two values.
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Theorem XIlI.4.2 (continued 2)

Theorem Xl1.4.2. The Great Picard Theorem.

Suppose an analytic function f has an essential singularity at z = a. Then
in each neighborhood of a, f assumes each complex number, with one
possible exception, an infinite number of times.

Proof (continued). But then, by Exercise XI1.4.B, f must have a pole at
z =0, again a CONTRADICTION. So the original assumption that f
omits two values is false and f cannot omit two values.

To show that f assumes every value an infinite number of times (with one
possible exception). Suppose some complex w is assumed in

G C B(0; R) \ {0} only finitely many times (so w is not the possibly
exceptional point). Then we can find a z value of smallest modulus at
which f takes on the value w, and then repeat the above argument to
show that there is a punctured disk in which f fails to assume two values
which yields a contradiction. O
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Corollary XI1.4.4

Corollary Xl1.4.4

Corollary XI11.4.4. If f is an entire function that is not a polynomial then

f assumes every complex number, with one possible exception, an infinite
number of times.
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Corollary XI1.4.4

Corollary Xl1.4.4

Corollary XI11.4.4. If f is an entire function that is not a polynomial then

f assumes every complex number, with one possible exception, an infinite
number of times.

Proof. Consider g(z) = f(1/z). Since f is not a polynomial then the
power series for f contains infinitely many nonzero coefficients and so g
has an essential singularity at z = 0.
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Corollary Xl1.4.4

Corollary XI11.4.4. If f is an entire function that is not a polynomial then
f assumes every complex number, with one possible exception, an infinite
number of times.

Proof. Consider g(z) = f(1/z). Since f is not a polynomial then the
power series for f contains infinitely many nonzero coefficients and so g
has an essential singularity at z = 0. By the Great Picard Theorem
(Theorem XI1.4.2), g assumes every complex number with one possible
exception. So f has the same property (if w = g(z) where z # 0 then
f(1/z) = w). O
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