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Theorem XII.4.1. Montel-Carathéodory Theorem

Theorem XII.4.1

Theorem XII.4.1. Montel-Carathéodory Theorem.
If F is the family of all analytic functions on a region G that do not
assume the values 0 and 1, then F is normal in C (G , C∞).

Proof. Fix a point z0 ∈ G and define

G = {f ∈ F | |f (z0)| ≤ 1}, H = {f ∈ F | |f (z0)| ≥ 1}.

So F = G ∪ H.

We will show that G is normal in H(G ) (where H(G ) is
the collection of functions analytic on G ) and that H is normal in
C (G , C∞) (notice that the function which is a constant of ∞ is a limit of
a sequence of certain constant functions in H). Recall that a set is normal
in a function space if every sequence in the set has a subsequence
convergent to an element of the space; by Motel’s Theorem (Theorem
VII.2.9), G is normal in H(G ) if and only if G is locally bounded (that is,
for each point a ∈ G there are constants M and r > 0 such that for all
f ∈ G we have |f (z)| ≤ M for |z − a| < r).
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Theorem XII.4.1. Montel-Carathéodory Theorem

Theorem XII.4.1 (continued 1)

Proof (continued). Let a be any point in G and let γ be a curve in G
from z0 to a. Let D0,D1, . . . ,Dn be disks in G with centers
z0, z1, . . . , zn = a on {γ} and such that zk−1 and zk are in Dk−1 ∩ Dk for
1 ≤ k ≤ n. Also assume D−k ⊂ G for 0 ≤ k ≤ n.
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Theorem XII.4.1. Montel-Carathéodory Theorem

Theorem XII.4.1 (continued 2)

Proof (continued). We apply Schottky’s Theorem (Theorem XII.3.3) to
D0. If D0 = B(z0; r) and R > r is such that B(z0;R) ⊂ G then, by
Corollary XII.3.7, there is a constant C (1, β) (we have α = 1 since
|f (z0)| ≤ 1 = α because f ∈ G) such that |f (z)| ≤ C (1, β) for z ∈ D0

provided β is chosen so that r < βR and this bound holds for all f ∈ G by
Schottky’s Theorem. (Actually, we need to replace z with z − z0 in
Corollary XII.3.7 so that f (z − z0)|z=z0 = f (0) and “|f (z)| ≤ C (α, β) for
|z | ≤ βR” becomes “|f (z)| ≤ C (α, β) for z ∈ B(z0;βR)”; then
|f (z)| ≤ C (α, β) for z ∈ D0 = B(z0; r) ⊂ B(z0;βR) since r < βR.) With
C0 = C (1β) we have |f (z)| ≤ C0 for all z ∈ D0 and for all f ∈ G. Since
x1 ∈ D0 then |f (z1)| ≤ C0. Since this holds for all f ∈ G, then by
Schottky’s Theorem and Corollary XII.3.7 there is C1 where |f (z)| ≤ C1

for all z ∈ D1 and for all f ∈ G.

Similarly, by induction, there is Cn such
that |f (z)| ≤ Cn for all z ∈ Dn and for all f ∈ G. Since a is an arbitrary
element of region G , then G is locally bounded on G . So by Montel’s
Theorem (Theorem VII.2.9) G is normal in H(g) ⊂ C (G , C∞).
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Theorem XII.4.1 (continued 2)

Proof (continued). We apply Schottky’s Theorem (Theorem XII.3.3) to
D0. If D0 = B(z0; r) and R > r is such that B(z0;R) ⊂ G then, by
Corollary XII.3.7, there is a constant C (1, β) (we have α = 1 since
|f (z0)| ≤ 1 = α because f ∈ G) such that |f (z)| ≤ C (1, β) for z ∈ D0

provided β is chosen so that r < βR and this bound holds for all f ∈ G by
Schottky’s Theorem. (Actually, we need to replace z with z − z0 in
Corollary XII.3.7 so that f (z − z0)|z=z0 = f (0) and “|f (z)| ≤ C (α, β) for
|z | ≤ βR” becomes “|f (z)| ≤ C (α, β) for z ∈ B(z0;βR)”; then
|f (z)| ≤ C (α, β) for z ∈ D0 = B(z0; r) ⊂ B(z0;βR) since r < βR.) With
C0 = C (1β) we have |f (z)| ≤ C0 for all z ∈ D0 and for all f ∈ G. Since
x1 ∈ D0 then |f (z1)| ≤ C0. Since this holds for all f ∈ G, then by
Schottky’s Theorem and Corollary XII.3.7 there is C1 where |f (z)| ≤ C1

for all z ∈ D1 and for all f ∈ G. Similarly, by induction, there is Cn such
that |f (z)| ≤ Cn for all z ∈ Dn and for all f ∈ G. Since a is an arbitrary
element of region G , then G is locally bounded on G . So by Montel’s
Theorem (Theorem VII.2.9) G is normal in H(g) ⊂ C (G , C∞).

() Complex Analysis April 9, 2018 5 / 10



Theorem XII.4.1. Montel-Carathéodory Theorem

Theorem XII.4.1 (continued 3)

Proof (continued). Now consider H = {f ∈ F | |f (z0)| ≥ 1}. For
f ∈ H ⊂ F , a/f is analytic since f does not assume the value 0. Since f
never assumes the value 1, then neither does 1/f . Moreover,
|(1/f )(z0)| = |1/f (z0)| ≤ 1. So H̃ = {1/f | f ∈ H} ⊂ G and so, by the
above argument, H̃ is normal in H(G ). So, by the definition of “normal,”
if {fn} is a sequence in H there is a subsequence {fnk

} and an analytic
function h on G (i.e., h ∈ H(G )) such that {1/fnk

} converges in H(G ) to
h. By Corollary VII.2.6 (a corollary to Hurwitz’s Theorem, Theorem
VII.2.5) either h ≡ 0 or h is never 0 on G .

If h ≡ 0 then “it is easy to see
that” (we leave the details to Exercise XII.4.A) fnk

→∞ uniformly on
compact subsets of G in C (G , C∞). If h never vanishes then 1/h is
analytic and fnk

(z) → 1/h(z) uniformly on compact subsets of G . So by
Proposition VII.1.10(b), fnk

→ 1/h in C (G , C∞). In either case, sequence
{fn} in H has a subsequence {fnk

} which converges in C (G , C∞); that is,
by definition, H is normal in C (G , C∞). So the claim holds.
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Theorem XII.4.2. The Great Picard Theorem

Theorem XII.4.2

Theorem XII.4.2. The Great Picard Theorem.
Suppose an analytic function f has an essential singularity at z = a. Then
in each neighborhood of a, f assumes each complex number, with one
possible exception, an infinite number of times.

Proof. Without loss of generality, we take a = 0. ASSUME there is R > 0
such that there are two numbers not in {f (z) | 0 < |z | < R}. Without loss
of generality we assume the two oriented values are 0 and 1 for
0 < |z | < R (otherwise, we can replace f (z) with (f (z)− a)/(b − a)
where a and b are the omitted values).

Let G = B(0;R) \ {0} and define
fn : G → C by fn(z) = f (z/n). So each fn is analytic on G and no fn
assumes the value 0 or 1. By the Montel-Carathéodory Theorem
(Theorem XII.4.1), {fn} is a normal family in C (G , C∞).
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Theorem XII.4.2. The Great Picard Theorem

Theorem XII.4.2 (continued 1)

Proof (continued). Let {fnk
} be a subsequence of {fn} such that

fnk
→ ϕ in C (G , C∞). Then by Proposition VII.1.10(b), fnk

→ ϕ
uniformly on compact subsets of G and so fnk

→ ϕ uniformly on
{z | |z | = R/2}. Since each fnk

is analytic on G and the convergence is in
C (G , C∞), then either ϕ is analytic or ϕ ≡ ∞ (the uniform convergence
on |z | = R/2 implies continuity of ϕ so if ϕ−∞ at any point then it must
be ∞ throughout G = B(0;R) \ {0}). ASSUME ϕ is analytic. Let
M = max{|ϕ(z)| | |z | = R/2}. Then |f (z/nk)| = |fnk

(z)| = |fnk
(z) =

ϕ(z) + ϕ(z)| ≤ |fnk
(z)− ϕ(z)|+ |ϕ(z)| ≤ 2M for nk sufficiently large and

|z | = R/2. Thus |f (z)| ≤ 2M for |z | = R/(2nk) and for sufficiently large
nk (say k ≥ K ). So |f (z)| ≤ 2M on ann(0;R/(2nk1),R/(2nk2))

− for all
k1 > k2 > K by the Maximum Modulus Theorem–2nd Version (Theorem
VI.1.2).

Since nk →∞ then f is bounded by 2M on a deleted
neighborhood of zero and so by Theorem V.1.2, f has a removable
singularity at z = 0, CONTRADICTING the fact that f has an essential
singularity at z = 0. So ϕ ≡ ∞ on G .
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Theorem XII.4.2. The Great Picard Theorem

Theorem XII.4.2 (continued 2)

Theorem XII.4.2. The Great Picard Theorem.
Suppose an analytic function f has an essential singularity at z = a. Then
in each neighborhood of a, f assumes each complex number, with one
possible exception, an infinite number of times.

Proof (continued). But then, by Exercise XII.4.B, f must have a pole at
z = 0, again a CONTRADICTION. So the original assumption that f
omits two values is false and f cannot omit two values.

To show that f assumes every value an infinite number of times (with one
possible exception). Suppose some complex w is assumed in
G ⊂ B(0;R) \ {0} only finitely many times (so w is not the possibly
exceptional point). Then we can find a z value of smallest modulus at
which f takes on the value w , and then repeat the above argument to
show that there is a punctured disk in which f fails to assume two values
which yields a contradiction.
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Corollary XII.4.4

Corollary XII.4.4

Corollary XII.4.4. If f is an entire function that is not a polynomial then
f assumes every complex number, with one possible exception, an infinite
number of times.

Proof. Consider g(z) = f (1/z). Since f is not a polynomial then the
power series for f contains infinitely many nonzero coefficients and so g
has an essential singularity at z = 0.

By the Great Picard Theorem
(Theorem XII.4.2), g assumes every complex number with one possible
exception. So f has the same property (if w = g(z) where z 6= 0 then
f (1/z) = w).
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(Theorem XII.4.2), g assumes every complex number with one possible
exception. So f has the same property (if w = g(z) where z 6= 0 then
f (1/z) = w).
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