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Note. The purpose of these notes is to contrast the behavior of functions of a
real variable and functions of a complex variable. Recall that a function of a
complex variable which is continuously differentiable on a ball of center a and
radius R > 0 has a power series representation on B(a; R) (Theorem 1V.2.8
of Conway). Of course, a function of a real variable can be differentiable but
not twice differentiable. Or it can be twice differentiable, but not three times
differentiable. Even worse, a function of a real variable can be infinitely

differentiable but not have a power series representation, as shown by the

fa) = { e, w0

0, r <0.

classic example:

This function is infinitely differentiable at 2 = 0 and f™(0) = 0 for all
n=20,1,2,.... But then f cannot have a power series representation which
is valid on an open interval containing 0. These comments about functions
of a real variable imply that the set of n-times differentiable functions are
a proper subset of the set of (n + 1)-times differentiable functions and that
the set of infinitely differentiable functions is a proper subset of the set of
functions with a power series representation. In fact, these sets can be further
divided using the property of “Lipschitz.” This allows us to create an infinite
chain of sets of functions of a real variable, starting with continuous functions
and ending with functions with a power series representation. In the setting
of functions of a complex variable, there is no such chain since a function
which is continuously differentiable has a power series representation and the

chain of sets of functions in the complex setting is of length only two or three.
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Note. Since we are interested in contrasting functions of a real variable
and functions of a complex variable, we sometimes consider real functions
(when speaking of differentiation), but when possible we consider functions
f: X — Q where (X, d) and (€2, p) are metric spaces (when speaking of the
property of Lipschitz). When we use the expression “function f is analytic”
in these notes, we mean that f has a power series representation over the set

under consideration.

Definition. Function f is Lipschitz on X if there exists M € R such that
p(f(x), fly) < Md(z,y) for all z,y € X; M is a Lipschitz constant for f on
X. Function f is locally Lipschitz on W C X if for each w € W there exists
open Wy C W containing w such that f is Lipschitz on Wj.

Theorem 1. If f : R — R is continuously differentiable, then f is locally
Lipschitz.

Proof. Let x,y € R where, say, x < y. The by the Fundamental Theorem of

Calculus (this is where we need f to have a continuous derivative) we have

flx) = fly)=fly+ )z —y) — fly+(0)(z—y))

= [ Gl te—aat= [ rly e - -y e
So

@) — f(y)| = / Py +te — 9) (@ — y) dt

1 1

< [1Ft+tta=y)lle—yldi= [ £+t —y)dtlo—y] < Moy
0 0

where maxo<;<1 | f'(y +t(x — y))| = max,<u<y | f'(u)| = M. So for any w € R

we can take Wy = (w — 1,w + 1) and f is Lipschitz on W, with Lipschitz

constant max,,_1<y<w+1 |f'(u)]. Hence, f is locally Lipschitz, as claimed. 1
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Theorem 2. If I/ C R is an interval and f : I — R is differentiable on I,
then f is Lipschitz on I if and only if f’ is bounded on [ (this is Theorem
9.5.1 of Searcoid).

Proof. First, suppose f’ is bounded on I, say by M: |f'(z)] < M for all

x € I. Let x and y be any two distinct elements of I. Then by the Mean Value
fz) = f(y)

r—Y
Since |f'(w)| < M, then |f(x) — f(y)| < M|z — y|. Therefore f is Lipschitz

on [ with Lipschitz constant M.

Theorem, there exists w between z and y such that f'(w) =

Second, suppose f’ is not bounded on I. Let » € R be arbitrary. Then

for some distinct x,y € I we have that the difference quotient satisfies
f(@) — f(y)
r—=y

then f is not Lipschitz. |

| > r, or that |f(z) — f(y)| > 7|z — y|. Since r is arbitrary,

Theorem 3. If f is locally Lipschitz on X and X is compact, then f is
Lipschitz on X.

Proof. Since f is locally Lipschitz on X, for each x € X there exists an
open W, containing x such that f is Lipschitz on W,. Consider the col-
lection of all such W,. This collection forms an open cover of X and so
there is a finite subcollection {W7y, Wy, ..., W, } which also covers X, since
X is compact. Since f is Lipschitz on each W;, there is an M; such that
p(f(x), fly:)) < M;d(z;,y;) for all z;,y; € W;, for i € {1,2,...,n}. Taking
M = max{Mi, Ms, ..., M,}, we see that f is Lipschitz on X. |



Theorem 4. If f: X — Q is Lipschitz on X then f is uniformly continuous
on X (this is Theorem 9.4.2(i) of Searcéid.) If f is locally Lipschitz on X

then f is continuous on X.

Proof. Both results follow from the € and ¢ definitions where we take § =

e/M where M is the Lipschitz constant on X or at point z € X. [J

Theorem 5. If f: X — () is continuous on X and X is compact, then f is

uniformly continuous on X. (Theorem I1.5.15 of Conway.)

Proof. This is a standard result from the senior level Analysis 1 (MATH
4217/5217) class. O

Example 1. If f is continuous on X, then f need not be uniformly contin-
uous on X. Consider f(z) =1/z on X = (0,1).

Example 2. If f is uniformly continuous on X, then f need not be Lipschitz
on X. Consider f(x) = v1—22 on X = [—1,1]. Since f’ is not bounded,
then by Theorem 2 f is not Lipschitz on X.

Example 3. If f is locally Lipschitz on X, then f need not be Lipschitz on
X. Consider f(z) = 1/z on X = (0,1). f is continuously differentiable on
X =(0,1) and so is locally Lipschitz on X by Theorem 1. However,

fle)—fly) _ -1

r—Y 1Y

can be made arbitrarily large by making x and y near 0, and so f is not
Lipschitz on X = (0,1).



Example 4. If f is locally Lipschitz on X, then f need not be differentiable

on X . Consider

_J @sin(l/z) ifre[-1,0)U(0,1]
fo) = { 0 ifwr=0

and X = [—1,1]. Then f'(x) = sin(1/x)—1/z cos(1/x) for z € [-1,0)U(0, 1]
and f'(0) does not exist (consider x — 0). So f is locally Lipschitz on
[—1,0) U (0, 1] by Theorem 1. Consider

f(0) = f(y)

—1<
> 0—y

=sin(1/y) < 1.

Then |f(0) — f(y)| < 1x|0—y| and so f is Lipschitz at x = 0 with Lipschitz
constant M = 1, and therefore f is locally Lipschitz on X = [—1,1].

Note. If f: R — R then we have the following (pointwise) implications:
f continuously differentiable = f locally Lipschitz = f continuous.

If f:R — R and X is compact, then we have the following implications on
set X:

f continuously differentiable = f locally Lipschitz <= f Lipschitz

= [ uniformly continuous <= f continuous.

Each of the one way implications given here cannot be reversed, as is shown

by examples above.



Note. It is common to study sets of functions defined on compact sets. For
example, the set of all continuous (real) functions defined on [0, 1] forms the
set denoted C°([0,1]). This set is closed under linear combinations (i.e., if
f,g € C°[0,1]) then af + Bg € C°([0,1]) where a, 3 are real constants).
Therefore this set forms a “linear space.” In fact, a norm can be put on
this space and Cauchy sequences of functions on C°([0,1]) (“C° functions”
for short) converge to C° functions (i.e., the space is complete—the norm of
feCis | f]| = max{|f(z)| | z € [0,1]}). If f is n times differentiable and
f") is continuous on [0, 1], then f is in C"(]0,1]) and f is said to be “C™.”
Infinitely differentiable functions are said to be C*°. Recall that a function is
analytic on a set if it has a power series representation at each point of that
set, and analytic functions must be infinitely differentiable. We therefore

have the following inclusions:
{f ‘ fis analytic} cC®c...cC"c

.CcC?cotcob = {f | f is continuous}.

As we have seen above, there is another class of related functions called
Lipschitz functions. If f if Lipschitz on [0, 1], then we say f is Lip([0, 1]) and
if £(") is Lipschitz on [0, 1] then we say that f € Lip™*1([0,1]). (Since we are
considering functions on compact sets, there is no need to consider “locally
Lipschitz” or “uniformly continuous.”) Therefore C"*' C Lip"™ < O™ for

all n € N. So our chain of sets becomes refined to:
{f | f is analytic} cC* C --- c C"" Cc Lip""' c C" C

... C Lip? c C? Cc Lip? c C' c Lip c C° = {f | f is continuous}.



Note. For an open set U C C, here is the corresponding sets of complex

valued functions on U:
{f|fisanalytic} =C® =-..=C*=C' c C° = {f | f is continuous},
or more briefly
{f| f is analytic} = C' € C° = {f | f is continuous},

or more briefly still:

cl c .

Note. So there are dramatic differences in the behaviors of functions of a real
variable and functions of a complex variable! One way you might informally
read this is that it is “very hard” for a function of a complex variable to be
continuously differentiable. So much so, that if it satisfies this condition then

it has a power series representation!
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