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Note. The purpose of these notes is to contrast the behavior of functions of a

real variable and functions of a complex variable. Recall that a function of a

complex variable which is continuously differentiable on a ball of center a and

radius R > 0 has a power series representation on B(a; R) (Theorem IV.2.8

of Conway). Of course, a function of a real variable can be differentiable but

not twice differentiable. Or it can be twice differentiable, but not three times

differentiable. Even worse, a function of a real variable can be infinitely

differentiable but not have a power series representation, as shown by the

classic example:

f(x) =

{
e−1/x2

, x > 0

0, x ≤ 0.

This function is infinitely differentiable at x = 0 and f (n)(0) = 0 for all

n = 0, 1, 2, . . .. But then f cannot have a power series representation which

is valid on an open interval containing 0. These comments about functions

of a real variable imply that the set of n-times differentiable functions are

a proper subset of the set of (n + 1)-times differentiable functions and that

the set of infinitely differentiable functions is a proper subset of the set of

functions with a power series representation. In fact, these sets can be further

divided using the property of “Lipschitz.” This allows us to create an infinite

chain of sets of functions of a real variable, starting with continuous functions

and ending with functions with a power series representation. In the setting

of functions of a complex variable, there is no such chain since a function

which is continuously differentiable has a power series representation and the

chain of sets of functions in the complex setting is of length only two or three.
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Note. Since we are interested in contrasting functions of a real variable

and functions of a complex variable, we sometimes consider real functions

(when speaking of differentiation), but when possible we consider functions

f : X → Ω where (X, d) and (Ω, ρ) are metric spaces (when speaking of the

property of Lipschitz). When we use the expression “function f is analytic”

in these notes, we mean that f has a power series representation over the set

under consideration.

Definition. Function f is Lipschitz on X if there exists M ∈ R such that

ρ(f(x), f(y)) ≤ M d(x, y) for all x, y ∈ X; M is a Lipschitz constant for f on

X. Function f is locally Lipschitz on W ⊂ X if for each w ∈ W there exists

open W0 ⊂ W containing w such that f is Lipschitz on W0.

Theorem 1. If f : R → R is continuously differentiable, then f is locally

Lipschitz.

Proof. Let x, y ∈ R where, say, x < y. The by the Fundamental Theorem of

Calculus (this is where we need f to have a continuous derivative) we have

f(x)− f(y) = f(y + (1)(x− y))− f(y + (0)(x− y))

=

∫ 1

0

d

dt
[f(y + t(x− y))] dt =

∫ 1

0
f ′(y + t(x− y))(x− y) dt.

So

|f(x)− f(y)| =
∣∣∣∣∫ 1

0
f ′(y + t(x− y))(x− y) dt

∣∣∣∣
≤

∫ 1

0
|f ′(y + t(x− y))| |x− y| dt =

∫ 1

0
|f ′(y + t(x− y))| dt |x− y| ≤ M |x− y|

where max0≤t≤1 |f ′(y + t(x− y))| = maxx≤u≤y |f ′(u)| = M. So for any w ∈ R
we can take W0 = (w − 1, w + 1) and f is Lipschitz on W0 with Lipschitz

constant maxw−1≤u≤w+1 |f ′(u)|. Hence, f is locally Lipschitz, as claimed.
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Theorem 2. If I ⊂ R is an interval and f : I → R is differentiable on I,

then f is Lipschitz on I if and only if f ′ is bounded on I (this is Theorem

9.5.1 of Searcóid).

Proof. First, suppose f ′ is bounded on I, say by M : |f ′(x)| ≤ M for all

x ∈ I. Let x and y be any two distinct elements of I. Then by the Mean Value

Theorem, there exists w between x and y such that f ′(w) =
f(x)− f(y)

x− y
.

Since |f ′(w)| ≤ M , then |f(x) − f(y)| ≤ M |x − y|. Therefore f is Lipschitz

on I with Lipschitz constant M .

Second, suppose f ′ is not bounded on I. Let r ∈ R be arbitrary. Then

for some distinct x, y ∈ I we have that the difference quotient satisfies∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ > r, or that |f(x) − f(y)| > r|x − y|. Since r is arbitrary,

then f is not Lipschitz.

Theorem 3. If f is locally Lipschitz on X and X is compact, then f is

Lipschitz on X.

Proof. Since f is locally Lipschitz on X, for each x ∈ X there exists an

open Wx containing x such that f is Lipschitz on Wx. Consider the col-

lection of all such Wx. This collection forms an open cover of X and so

there is a finite subcollection {W1, W2, . . . ,Wn} which also covers X, since

X is compact. Since f is Lipschitz on each Wi, there is an Mi such that

ρ(f(xi), f(yi)) ≤ Mi d(xi, yi) for all xi, yi ∈ Wi, for i ∈ {1, 2, . . . , n}. Taking

M = max{M1, M2, . . . ,Mn}, we see that f is Lipschitz on X.
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Theorem 4. If f : X → Ω is Lipschitz on X then f is uniformly continuous

on X (this is Theorem 9.4.2(i) of Searcóid.) If f is locally Lipschitz on X

then f is continuous on X.

Proof. Both results follow from the ε and δ definitions where we take δ =

ε/M where M is the Lipschitz constant on X or at point x ∈ X. �

Theorem 5. If f : X → Ω is continuous on X and X is compact, then f is

uniformly continuous on X. (Theorem II.5.15 of Conway.)

Proof. This is a standard result from the senior level Analysis 1 (MATH

4217/5217) class. �

Example 1. If f is continuous on X, then f need not be uniformly contin-

uous on X. Consider f(x) = 1/x on X = (0, 1).

Example 2. If f is uniformly continuous on X, then f need not be Lipschitz

on X. Consider f(x) =
√

1− x2 on X = [−1, 1]. Since f ′ is not bounded,

then by Theorem 2 f is not Lipschitz on X.

Example 3. If f is locally Lipschitz on X, then f need not be Lipschitz on

X. Consider f(x) = 1/x on X = (0, 1). f is continuously differentiable on

X = (0, 1) and so is locally Lipschitz on X by Theorem 1. However,

f(x)− f(y)

x− y
=
−1

xy

can be made arbitrarily large by making x and y near 0, and so f is not

Lipschitz on X = (0, 1).
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Example 4. If f is locally Lipschitz on X, then f need not be differentiable

on X. Consider

f(x) =

{
x sin(1/x) if x ∈ [−1, 0) ∪ (0, 1]

0 if x = 0

and X = [−1, 1]. Then f ′(x) = sin(1/x)−1/x cos(1/x) for x ∈ [−1, 0)∪ (0, 1]

and f ′(0) does not exist (consider x → 0). So f is locally Lipschitz on

[−1, 0) ∪ (0, 1] by Theorem 1. Consider

−1 ≤ f(0)− f(y)

0− y
= sin(1/y) ≤ 1.

Then |f(0)− f(y)| ≤ 1×|0− y| and so f is Lipschitz at x = 0 with Lipschitz

constant M = 1, and therefore f is locally Lipschitz on X = [−1, 1].

Note. If f : R → R then we have the following (pointwise) implications:

f continuously differentiable ⇒ f locally Lipschitz ⇒ f continuous.

If f : R → R and X is compact, then we have the following implications on

set X:

f continuously differentiable ⇒ f locally Lipschitz ⇐⇒ f Lipschitz

⇒ f uniformly continuous ⇐⇒ f continuous.

Each of the one way implications given here cannot be reversed, as is shown

by examples above.
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Note. It is common to study sets of functions defined on compact sets. For

example, the set of all continuous (real) functions defined on [0, 1] forms the

set denoted C0([0, 1]). This set is closed under linear combinations (i.e., if

f, g ∈ C0([0, 1]) then αf + βg ∈ C0([0, 1]) where α, β are real constants).

Therefore this set forms a “linear space.” In fact, a norm can be put on

this space and Cauchy sequences of functions on C0([0, 1]) (“C0 functions”

for short) converge to C0 functions (i.e., the space is complete—the norm of

f ∈ C0 is ‖f‖ = max{|f(x)| | x ∈ [0, 1]}). If f is n times differentiable and

f (n) is continuous on [0, 1], then f is in Cn([0, 1]) and f is said to be “Cn.”

Infinitely differentiable functions are said to be C∞. Recall that a function is

analytic on a set if it has a power series representation at each point of that

set, and analytic functions must be infinitely differentiable. We therefore

have the following inclusions:

{f | f is analytic} ⊂ C∞ ⊂ · · · ⊂ Cn ⊂

· · · ⊂ C2 ⊂ C1 ⊂ C0 = {f | f is continuous}.

As we have seen above, there is another class of related functions called

Lipschitz functions. If f if Lipschitz on [0, 1], then we say f is Lip([0, 1]) and

if f (n) is Lipschitz on [0, 1] then we say that f ∈ Lip(n+1)([0, 1]). (Since we are

considering functions on compact sets, there is no need to consider “locally

Lipschitz” or “uniformly continuous.”) Therefore Cn+1 ⊂ Lipn+1 ⊂ Cn for

all n ∈ N. So our chain of sets becomes refined to:

{f | f is analytic} ⊂ C∞ ⊂ · · · ⊂ Cn+1 ⊂ Lipn+1 ⊂ Cn ⊂

· · · ⊂ Lip3 ⊂ C2 ⊂ Lip2 ⊂ C1 ⊂ Lip ⊂ C0 = {f | f is continuous}.
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Note. For an open set U ⊂ C, here is the corresponding sets of complex

valued functions on U :

{f | f is analytic} = C∞ = · · · = C2 = C1 ⊂ C0 = {f | f is continuous},

or more briefly

{f | f is analytic} = C1 ⊂ C0 = {f | f is continuous},

or more briefly still:

C1 ⊂ C0.

Note. So there are dramatic differences in the behaviors of functions of a real

variable and functions of a complex variable! One way you might informally

read this is that it is “very hard” for a function of a complex variable to be

continuously differentiable. So much so, that if it satisfies this condition then

it has a power series representation!
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