Supplement. Ordering the Complex Numbers

Note. In this supplement, we recall the definition of an ordering of a field. We prove some elementary properties of an ordered field concerning the additive identity 0 and the multiplicative identity 1. We then consider i such that $i^2 = -1$ and show that if such an i is in a field, then the field does not admit an ordering.

Note. The following definition of an ordering of a field \mathbb{F} is from James R. Kirkwood, An Introduction to Analysis, 2nd edition (PWS Publishing Company and Waveland Press, 1995). This is the reference I use for Analysis 1 (MATH 4217/5217) and the definition can by found in my online notes for that class on Section 1.2. Properties of the Real Numbers as an Ordered Field.

Definition. A field \mathbb{F} is *ordered* if there is a nonempty set $P \subset \mathbb{F}$ (called the *positive subset*) for which

- (1) $a, b \in P$ implies $a + b \in P$
- (2) $a, b \in P$ implies $ab \in P$
- (3) $a \in \mathbb{F}$ implies exactly one of the following: $a \in P, -a \in P$, or a = 0.

For $a, b \in \mathbb{F}$, if $b - a \in P$, then we say a < b.

Note. Property (1) is closure under addition, Property (2) is closure under multiplication, and Property (3) is called the *Law of Trichotomy*. We now prove some of the properties of an ordered field.

Theorem 1. If a < b and c > 0, then ac < bc.

Proof. Since a < b, then $b - a \in P$ by the definition of <. Since c > 0, then $c \in P$. By Property 2 (closure of P under multiplication), $(b - a)c = bc - ac \in P$. Therefore, by the definition of <, we have ac < bc as claimed.

Theorem 2. 0 < 1

Proof. ASSUME not. That is, assume $1 \le 0$. Then 1 < 0 (every field has at least two distinct elements: the additive identity 0 and the multiplicative identity 1; so $0 \ne 1$). Then $0 - 1 = -1 \in P$. By Property 2 (closure of P under multiplication), $(-1)(-1) \in P$ and (-1)(-1) = 1 (a property of fields), so that $1 \in P$. But this is a CONTRADICTION, so our assumption that 1 < 0 is false and, since $0 \ne 1$, then the assumption that $1 \le 0$ is false, and hence 0 < 1, as claimed.

Note. In the next two results, we assume that \mathbb{C} is an ordered field. We denote as i a complex number such that $i^2 = -1$. Under the assumption, by the Law of Trichotomy, either $i \in P$, $-i \in P$, or i = 0 (but $0^2 = 0 \neq -1$, so $i \neq 0$).

Corollary 1. Suppose that \mathbb{C} is an ordered field with positive set P, and let $i \in \mathbb{C}$ be such that $i^2 = -1$. Then $i \notin P$.

Proof. ASSUME not. That is, assume that $i \in P$. Then by Property 2 (closure of P under multiplication), $(i)(i) = i^2 = -1 \in P$. But this CONTRADICTS Theorem 2, so our assumption that $i \in P$ is false, and hence $i \notin P$, as claimed.

Corollary 2. Suppose that \mathbb{C} is an ordered field with positive set P, and let $i \in \mathbb{C}$ be such that $i^2 = -1$. Then $-i \notin P$.

Proof. ASSUME not. That is, assume that $-i \in P$. By Property 2 (closure of P under multiplication), $(-i)(-i) = (i)(i) = i^2 = -1 \in P$. But this CONTRADICTS Theorem 2 (which states that 0 < 1, or $1 - 0 = 1 \in P$), so our assumption that $-i \in P$ is false, and hence $-i \notin P$, as claimed.

Note. In the previous two corollaries combine with the Law of Trichotomy to show that \mathbb{C} is not an ordered field, as follows.

Theorem 3. The complex numbers \mathbb{C} do not form ordered field.

Proof. ASSUME that \mathbb{C} is an ordered field. Of course there is $i \in \mathbb{C}$ such that $i^2 = -1$. Since $0^2 = 0 \neq -1$, then $i \neq 0$. By Corollary 1, $i \notin P$. By Corollary 2, $-i \notin P$. But then $i \in \mathbb{C}$ does not satisfy the Law of Trichotomy, a CONTRADICTION. So the assumption that \mathbb{C} is an ordered field is false. That is, \mathbb{C} is not an ordered field, as claimed.

Note. The above result does not imply that we cannot put *any* sort of ordering on \mathbb{C} ! Only that (in informal terms) we cannot put a *useful* ordering on \mathbb{C} . Consider $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$. Define $z_1 \prec z_2$ if and only if either (1) $a_1 < a_2$ or (2) $a_1 = a_2$ and $b_1 < b_2$. This is called the *lexicographic* ordering of \mathbb{C} . This is because it is similar to the way words are alphabetized. For any $z_1, z_2 \in \mathbb{C}$ we have exactly one of the following: (1) $z_1 \prec z_2$, (2) $z_2 \prec z_1$, or (3) $z_1 = z_2$. Also, if $z_1 \prec z_2$ and $z_2 \prec z_3$, then $z_1 \prec z_3$.

Note. With the lexicographic ordering, $0 \prec i$ (i.e., *i* is "positive; if such a thing makes sense). With a = 0, b = i, and c = i, we have: $a \prec b$ and $0 \prec c$, but $ac = 0 \prec bc = (i)(i) = i^2 = -1$ which is not the case! So Theorem 2 does not hold for the lexicographic ordering of \mathbb{C} .

Note. The lexicographic ordering is also useless in defining completeness. Consider the set $A = \{z \in \mathbb{C} \mid z \prec 0\}$. The set A has an \prec -upper bound (say 1), and has a \prec least upper bound (namely 0). Consider the set $B = \{z = a+ib \mid a \leq 0 \text{ and } b \in \mathbb{R}\}$. Then B has an \prec -upper bound (say 1), but B has no \prec -least upper bound!

Note. Perhaps you are familiar with the idea of a *well-ordering* from set theory. This is *not* related to the type of ordering we are talking about! An *ordering* of a set A is a binary relation \leq on the set such that the relation is (1) reflexive ($a \leq a$ for all $a \in A$), (2) antisymmetric ($a \leq b$ and $b \leq a$ imply a = b), and (3) transitive ($a \leq b$ and $b \leq c$ imply $a \leq c$). An ordering \leq of a set A is a *total ordering* if for any $a, b \in A$, either $a \leq b$ or $b \leq a$ (that is, any two elements of A are *comparable*). An example of a totally ordered set is the set $A = \mathbb{R}$ with ordering \leq .

Note. A total ordering \leq of a set A is a *well-ordering* if every nonempty subset of A has a \leq -least element. That is, if $B \subset A$ then there exists $m \in B$ such that $m \leq b$ for all $b \in B$. An example of a well-ordered set is \mathbb{N} with ordering \leq . Notice that \leq does not well-order \mathbb{R} .

Note. The Well-Ordering Principle states that every set can be well-ordered. This result is equivalent to the Axiom of Choice. It is therefore true that \mathbb{C} can be "well-ordered," but this should not be confused with the idea of ordering \mathbb{C} in a way that generalizes the ordering of \mathbb{R} . The ideas of ordering and well-orderings of sets (and the Well-ordering Principle) are covered in Introduction to Set Theory (not an official ETSU class) in Section 7.1, "Well-Ordered Sets" (these notes are currently [fall 2023] in preparation).

Note. The lexicographic ordering of \mathbb{C} is an example of a total-ordering. However, as shown above, NO ordering of \mathbb{C} can satisfy the Law of Trichotomy, and hence there is no (useful) way to extend the ordering of \mathbb{R} to an ordering of \mathbb{C} .

References

- K. Hrbacek and T. Jech, *Introduction to Set Theory*, 2nd Edition Revised and Expanded, Monographs and Textbooks in Pure and Applied Mathematics #85, Marcel Dekker, Inc., 1984.
- J. R. Kirkwood, An Introduction to Analysis, 2nd edition, PWS Publishing Company and Waveland Press, Inc., 1995.
- "Among any two integers or real numbers one is larger, another smaller. But you can't compare two complex numbers," Copyright 1996–2009 Alexander Bogomolny. This is online at Cut-the-Knot.org (accessed 8/31/2023).

Revised: August 31, 2023