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Supplement. Ordering the

Complex Numbers

Note. In this supplement, we recall the definition of an ordering of a field. We

prove some elementary properties of an ordered field concerning the additive iden-

tity 0 and the multiplicative identity 1. We then consider i such that i2 = −1 and

show that if such an i is in a field, then the field does not admit an ordering.

Note. The following definition of an ordering of a field F is from James R.

Kirkwood, An Introduction to Analysis, 2nd edition (PWS Publishing Company

and Waveland Press, 1995). This is the reference I use for Analysis 1 (MATH

4217/5217) and the definition can by found in my online notes for that class on

Section 1.2. Properties of the Real Numbers as an Ordered Field.

Definition. A field F is ordered if there is a nonempty set P ⊂ F (called the

positive subset) for which

(1) a, b ∈ P implies a + b ∈ P

(2) a, b ∈ P implies ab ∈ P

(3) a ∈ F implies exactly one of the following: a ∈ P , −a ∈ P , or a = 0.

For a, b ∈ F, if b− a ∈ P , then we say a < b.

Note. Property (1) is closure under addition, Property (2) is closure under multi-

plication, and Property (3) is called the Law of Trichotomy. We now prove some

of the properties of an ordered field.

https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
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Theorem 1. If a < b and c > 0, then ac < bc.

Proof. Since a < b, then b − a ∈ P by the definition of <. Since c > 0, then

c ∈ P . By Property 2 (closure of P under multiplication), (b− a)c = bc− ac ∈ P .

Therefore, by the definition of <, we have ac < bc as claimed.

Theorem 2. 0 < 1

Proof. ASSUME not. That is, assume 1 ≤ 0. Then 1 < 0 (every field has at least

two distinct elements: the additive identity 0 and the multiplicative identity 1; so

0 6= 1). Then 0− 1 = −1 ∈ P . By Property 2 (closure of P under multiplication),

(−1)(−1) ∈ P and (−1)(−1) = 1 (a property of fields), so that 1 ∈ P . But this is

a CONTRADICTION, so our assumption that 1 < 0 is false and, since 0 6= 1, then

the assumption that 1 ≤ 0 is false, and hence 0 < 1, as claimed.

Note. In the next two results, we assume that C is an ordered field. We denote

as i a complex number such that i2 = −1. Under the assumption, by the Law of

Trichotomy, either i ∈ P , −i ∈ P , or i = 0 (but 02 = 0 6= −1, so i 6= 0).

Corollary 1. Suppose that C is an ordered field with positive set P , and let i ∈ C
be such that i2 = −1. Then i /∈ P .

Proof. ASSUME not. That is, assume that i ∈ P . Then by Property 2 (closure

of P under multiplication), (i)(i) = i2 = −1 ∈ P . But this CONTRADICTS

Theorem 2, so our assumption that i ∈ P is false, and hence i /∈ P , as claimed.

Corollary 2. Suppose that C is an ordered field with positive set P , and let i ∈ C
be such that i2 = −1. Then −i /∈ P .
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Proof. ASSUME not. That is, assume that −i ∈ P . By Property 2 (closure of P

under multiplication), (−i)(−i) = (i)(i) = i2 = −1 ∈ P . But this CONTRADICTS

Theorem 2 (which states that 0 < 1, or 1 − 0 = 1 ∈ P ), so our assumption that

−i ∈ P is false, and hence −i /∈ P , as claimed.

Note. In the previous two corollaries combine with the Law of Trichotomy to show

that C is not an ordered field, as follows.

Theorem 3. The complex numbers C do not form ordered field.

Proof. ASSUME that C is an ordered field. Of course there is i ∈ C such

that i2 = −1. Since 02 = 0 6= −1, then i 6= 0. By Corollary 1, i /∈ P . By

Corollary 2, −i /∈ P . But then i ∈ C does not satisfy the Law of Trichotomy, a

CONTRADICTION. So the assumption that C is an ordered field is false. That

is, C is not an ordered field, as claimed.

Note. The above result does not imply that we cannot put any sort of ordering on

C! Only that (in informal terms) we cannot put a useful ordering on C. Consider

z1 = a1 + ib1 and z2 = a2 + ib2. Define z1 ≺ z2 if and only if either (1) a1 < a2 or (2)

a1 = a2 and b1 < b2. This is called the lexicographic ordering of C. This is because

it is similar to the way words are alphabetized. For any z1, z2 ∈ C we have exactly

one of the following: (1) z1 ≺ z2, (2) z2 ≺ z1, or (3) z1 = z2. Also, if z1 ≺ z2 and

z2 ≺ z3, then z1 ≺ z3.

Note. With the lexicographic ordering, 0 ≺ i (i.e., i is “positive; if such a thing

makes sense). With a = 0, b = i, and c = i, we have: a ≺ b and 0 ≺ c, but

ac = 0 ≺ bc = (i)(i) = i2 = −1 which is not the case! So Theorem 2 does not hold

for the lexicographic ordering of C.
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Note. The lexicographic ordering is also useless in defining completeness. Consider

the set A = {z ∈ C | z ≺ 0}. The set A has an ≺-upper bound (say 1), and has a ≺-

least upper bound (namely 0). Consider the set B = {z = a+ib | a ≤ 0 and b ∈ R}.
Then B has an ≺-upper bound (say 1), but B has no ≺-least upper bound!

Note. Perhaps you are familiar with the idea of a well-ordering from set theory.

This is not related to the type of ordering we are talking about! An ordering of a

set A is a binary relation � on the set such that the relation is (1) reflexive (a � a

for all a ∈ A), (2) antisymmetric (a � b and b � a imply a = b), and (3) transitive

(a � b and b � c imply a � c). An ordering � of a set A is a total ordering if for

any a, b ∈ A, either a � b or b � a (that is, any two elements of A are comparable).

An example of a totally ordered set is the set A = R with ordering ≤.

Note. A total ordering � of a set A is a well-ordering if every nonempty subset

of A has a �-least element. That is, if B ⊂ A then there exists m ∈ B such that

m � b for all b ∈ B. An example of a well-ordered set is N with ordering ≤. Notice

that ≤ does not well-order R.

Note. The Well-Ordering Principle states that every set can be well-ordered.

This result is equivalent to the Axiom of Choice. It is therefore true that C can

be “well-ordered,” but this should not be confused with the idea of ordering C in

a way that generalizes the ordering of R. The ideas of ordering and well-orderings

of sets (and the Well-ordering Principle) are covered in Introduction to Set Theory

(not an official ETSU class) in Section 7.1, “Well-Ordered Sets” (these notes are

currently [fall 2023] in preparation).

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes.htm
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Note. The lexicographic ordering of C is an example of a total-ordering. However,

as shown above, NO ordering of C can satisfy the Law of Trichotomy, and hence

there is no (useful) way to extend the ordering of R to an ordering of C.
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