Complex Analysis 1, Test 1 Study Guide Prepared by Dr. Robert Gardner

Fall 2011

- The Meaning of Mathematics. Formalism, *Principia Mathematica*, Russell's Paradox, Hilbert, Frege, Russell, Gödel, WFF, completeness, consistence, misapplications of Gödel's work, Peano's axioms.
- **<u>1.1 The Real Numbers.</u>** Complete ordered field, uniqueness of a complete ordered field.
- **1.2 The Field of Complex Numbers.** Definition of \mathbb{C} , "Is \mathbb{C} isomorphic to \mathbb{R}^2 ?" modulus, conjugate.
- **1.3 The Complex Plane.** Geometric relationship between \mathbb{R}^2 and \mathbb{C} , Triangle Inequality and its sharpness, Cauchy sequences of real numbers, Axiom of Completeness.
- Ordering the Complex Numbers. Ordered fields, Law of Trichotomy, Corollaries 1 and 3 (*i* is not positive, -i is not positive), Theorem 3 (\mathbb{C} is not an ordered field), lexicographic ordering of \mathbb{C} and its uselessness, well ordering, total ordering, Well-Ordering Principle.
- **1.4 Polar Representations and Roots of Complex Numbers.** Argument, $cis(\theta)$, DeMoivre's Formula, *n*th roots of unity.
- **1.5 Lines and Half-Planes in the Complex Plane.** Equation for a line, half planes as inequalities.
- Ilieff-Sendov Conjecture. Gauss-Lucas Theorem, Corollary 1 (convex polygon containing zeros of a polynomial), Corollary 2 (circle containing zeros), Theorem 2 (centroid of zeros), Ilieff-Sendov Conjecture.
- **1.6 The Extended Plane and Its Spherical Representation.** Extended plane, Riemann sphere, stereographic projection, projections of circles.

- **<u>3.1 Power Series.</u>** Absolute convergence, lim inf/lim sup, power series, geometric series, radius of convergence, Ratio Test.
- **3.2** Analytic Functions. Differentiable at a point, Differentiable implies Continuous, analytic, Chain Rule, Proposition III.2.5, e^z , $\cos z$, $\sin z$, periodic function, branch of the log, principla branch of log, branch of z^b , region, Cauchy Riemann Equations, harmonic function, harmonic conjugate.
- A Primer on Lipschitz Functions. Derivative of a function between two metric spaces, Lipschitz and locally Lipschitz functions between two metric spaces, examples of functions showing converse statements do not hold, C^n functions, Lipⁿ functions.