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Supplement. The Extended Complex Plane

Note. In Section I.6. ‘The Extended Plane and Its Spherical Representation, we

introduced the extended complex plane, C∞ = C ∪ {∞}. We defined the function

d : C∞ × C∞ → R as

d(z1, z2) =
2|z1 − z2|

{(1 + |z1|2)(1 + |z2|2}1/2 for z1, z2 ∈ C

d(z,∞) =
2

(1 + |z|2)1/2 for z ∈ C.

Definition. A metric space is a pair (X, d) where X is a set and d is a function

mapping X ×X into R called a metric such that for all x, y, z ∈ X we have

d(x, y) ≥ 0

d(x, y) = d(y, x) (Symmetry)

d(x, y) = 0 if and only if x = y

d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

For a given x ∈ X and r > 0, define the open ball of center x and radius r as

B(x; r) = {y | d(x, y) < r}. Define the closed ball of center x and radius r as

B(x; r) = {y | d(x, y) ≤ r}.

Metric Theorem for C∞. The function d : C∞ × C∞ → R defined above is a

metric on C∞.

https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
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Proof/Comment. It is easy to see that d(z1, z2) ≥ 0, d(z1, z2) = 0 if and only if

z1 = z2, and d(z1, z2) = d(z2, z1) for all z1, z2 ∈ C∞. To prove that d satisfies the

Triangle Inequality, we must show that

d(z1, z3) ≤ d(z1, z2) + d(z2, z3) for all z1, z2, z3 ∈ C,

d(z1, z2) ≤ d(z1,∞) + d(∞, z2) for all z1, z2 ∈ C, and

d(z1,∞) ≤ d(z1, z2) + d(z2,∞) for all z1, z2,∈ C.

This is to be done in Exercise II.1.7. �

Note. So we have two metrics on C; namely the metric induced by modulus,

d′(z1, z2) = |z1− z2| (we denote this metric as | · |), and the metric d defined on C∞

(treating C and a metric subspace of C∞).

Definition II.1.8/10. A set G ⊂ X (where (X, d) is a metric space) is open if for

all x ∈ G there exists ε > 0 such that B(x; ε) ⊂ G. A set F ⊂ X is closed if X \F

is open.

Definition II.4.1. A subset K of a metric space X is compact if for every collection

G of open sets in X with the property K ⊂ ∪G∈GG, there is a finite number of sets

G1, G2, . . . , Gn in G such that K ⊂ ∪n
k=1Gk. The collection G is called an open

cover of K.

Note. The next result is from Section VII.3, “Spaces of Meromorphic Functions,”
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Proposition VII.3.3.

(a) If a ∈ C and r > 0, then there is ρ > 0 such that B∞(a; ρ) ⊂ B(a; r).

(b) Conversely, if ρ > 0 is given and a ∈ C then there is a number r > 0 such that

B(a; r) ⊂ B∞(a; ρ).

(c) If ρ > 0 is given then there is a compact set K ⊂ C such that C∞ \ K ⊂

B∞(∞; ρ).

(d) Conversely, if a compact set K ⊂ C is given, then there is ρ > 0 such that

B∞(∞; ρ) ⊂ C∞ \K.

Note. The following result shows that metrics | · | and d determined the same open

sets on C. That is, | · | and d induce the same (metric) topology on C. This is

spelled out in the following result.

Topologies on C∞ Theorem. Let G ⊂ C. Then G is open in metric space

(C, | · |) if and only if G is open in metric space (C∞, d).

Definition II.3.1. If {x1, x2, . . .} is a sequence in a metric space (X, d) then {xn}

converges to x, denoted x = lim xn or xn → x, if for every ε > 0 there exists N ∈ N

such that for all n ≥ N we have d(x, xn) < ε.

Note. When two different metrics induce the same topology on a set, they imply

the same convergence of sequences. That is, we have the following theorem.
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Sequences in C∞ Theorem. Let {zn}∞n=1 be a sequence of complex numbers.

Then for z ∈ C, zn → z in metric space (C, | · |) if and only if zn → z in metric

space (C∞, d).

Definition II.3.5. A sequence {xn} is called a Cauchy sequence if for every ε > 0

there is N ∈ N such that d(xn, xm) < ε for all n, m ≥ N . If metric space (X, d) has

the property that each Cauchy sequence has a limit in X, then (X, d) is complete.

Note. Exercise II.3.4 states: Let an, z ∈ C and let d be the metric on C∞. Then

|zn − z| → 0 if and only if d(zn, z) → 0. Also, if |zn| → ∞ then {zn} is a Cauchy

sequence in C∞.

Note. In Introduction to Topology (MATH 4357/5357), we introduce the idea of

compactification. From Section 3.29, “Local Compactness,” in Chapter 3, “Con-

nectedness and Compactness,” of James Munkres’ Topology, 2nd edition (Prentice

Hall, 2000) we have the following.

Definition. If Y is a compact Hausdorff space and X is a proper subspace

of Y whose closure equals Y , then Y is a compactification of X. If Y \X is

a single point, then Y is the one-point compactification of X.

All metric spaces are “Hausdorff,” so this doesn’t affect us. For more information,

see my online notes for Introduction to Topology.

https://faculty.etsu.edu/gardnerr/5357/notes.htm
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Compactness of C∞ Theorem.

C∞ is a compact metric space under d.

Note. Corollary II.4.5 state that“Every compact metric space is complete.” There-

fore the Compactness of C∞ Theorem gives that C∞ is also complete (that is,

Cauchy sequences converge).

Note. We see that C∞ is the one-point compactification of C. We can similarly

define the one-point compatification of R as R∞ = R ∪ {∞} (this is to be dealt

with in Conway’s Exercise II.3.7).

Note. In Section V.3, “The Argument Principle,” we define a function on open

set G ⊂ C as a meromorphic function on G if f is analytic on G, except for poles.

In Section V.1, point z = a is defined as a pole of function f if a is an isolated

singularity of f and limz→a |f(z)| = ∞.

Note. If f is meromorphic on open set G and we define f(z) = ∞ at each pole

of meromorphic function f , then by Exercise V.3.4, f : G → C∞ is continuous

function from metric space (C, | · |) to metric space (C∞, d).
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Note. In analysis, it is common to study “spaces” of functions. In Chapter

VII, “Compactness and Convergence in the Spaces of Analytic Functions,” we

will consider spaces of continuous functions, analytic functions, and meromorphic

functions. Completeness of these spaces is a common topic. The following result

from Chapter VII shows that the meromorphic functions, along with the function

f : C → C∞ which takes on the constant value ∞, is a complete metric space.

Corollary VII.3.5. Let G be a region in C (i.e., an open connected subset in C).

Then the meromorphic functions on G combined with f ≡ ∞ on G, M(G)∪ {∞},

is a complete metric space under metric ρ.
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