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I.4. Polar Representation and Roots of Complex Numbers

Note. Since an element of R2 can be represented in polar coordinates (r, θ), then

there is a similar representation of elements of C. In this section we give some

history of polar coordinates and their use to represent complex numbers. We state

De Moivre’s Formula and use it to calculate roots of a complex number.

Note 1.4.A. The history of polar coordinates in the Cartesian plane seems murky.

Bonaventura Cavalieri (1598–November 30, 1647) was an Italian mathematician

known mostly for his contribution to integral calculus and the method of indi-

visibles (this is addressed in my online notes for History of Mathematics [MATH

3040] on Section 11.6. Cavaleri’s Method of Indivisibles). In 1635 he published

Geometrica indivisilibus continuorum (“Geometric Indivisible Continua”) (with a

second, corrected edition published in 1653). His concern is on the area within a

curve (and hence his contributions to integration), in particular the area within

an Archimedian spiral which he related to the area outside of a parabola. Grego-

rius Saint-Vincent (September 8, 1584–January 27, 1667) published Opus Geomet-

ricum (“Geometrical Work”) in 1647 in which he claimed to have already known

the method used by Cavalieri, setting up a priority controversy. This introductory

work was done with an eye towards computation of areas using transformations

involving polar coordinates, and not in terms of graphs of curves in a new coordi-

nate system. The first to use polar coordinates to graph and visualize points and

curves is Isaac Newton (January 4, 1643–March 31, 1727; under the new calen-

dar) in his The Method of Fluxions (London, 1736). However, Newton used polar

coordinates in special settings and to specific ends. The person usually stated as

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-11-6.pdf
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the “discoverer” or “inventor” of polar coordinates is Jacob Bernoulli (January

6, 1655–August 16, 1705). He uses polar coordinates to locate any point in the

plane. This is given in his “Spécimen calculi differentialis in dimensione parabo-

lae helicoidis,” (“A model of differential calculus in the dimension of a helicoidal

parabola”), Acta Eruditorum (1691). Because of his generalized use of them in

this work, you may find statements along the lines that: “Jacob Bernoulli invents

polar coordinates [in 1691], a method of describing the location of points in space

using angles and distances.” (See, for example, MacTutor webpage on “Chronology

1675–1700”, accessed 9/3/2023.) The main source for this note is J. L. Coolidge’s

“The Origin of Polar Coordinates,” The American Mathematical Monthly, 59(2),

78–85 (February, 1952); this can be viewed online on JSTOR (accessed 9/3/2023).

Images from the MacTutor biography webpages on Cavelieri (left), Newton

(center), and Jacob Bernoulli (right); each accessed 9/3/2023.

Next, we use polar coordinates to give a representation of complex numbers. We

know a complex number can be associated with a point in the Cartesian plane, the

Argand diagram described in Note 1.3.C of Section I.3. The Complex Plane.

https://mathshistory.st-andrews.ac.uk/Chronology/12/
https://mathshistory.st-andrews.ac.uk/Chronology/12/
https://www.jstor.org/stable/2307104
https://mathshistory.st-andrews.ac.uk/Biographies/Cavalieri/
https://mathshistory.st-andrews.ac.uk/Biographies/Newton/
https://mathshistory.st-andrews.ac.uk/Biographies/Bernoulli_Jacob/
https://faculty.etsu.edu/gardnerr/5510/notes/I-3.pdf
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Definition. Let z ∈ C and let θ be an angle between the positive real axis and

the line joining 0 and z (z 6= 0). Then θ is an argument of z, denoted θ = arg(z).

(We cannot think of arg(z) as a function—it is best the think of it as a set.)

Note. If |z| = r and θ = arg(z), then we have:

Then Re(z) = r cos θ and Im(z) = r sin θ. Therefore, z = r(cos θ + i sin θ). We

denote cos θ + i sin θ as cis(θ).

Note. The next result follows by “the formulas for the sine and cosine of the

sum of two angles,” as Conway states it on page 5 of the textbook. You can find
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a proof in my online notes for Complex Variables (MATH 4337/5337) on Section

1.7. Products and Powers in Exponential Form (see Theorem 1.7.1; exponential

notation is used, but computations are done using sines and cosines as we would

need here).

Theorem I.4.A. Suppose z1 = r1cis(θ1) and z2 = r2cis(θ2) where rk = |zk| and

θk = arg(zk) for k = 1, 2. Then z1z2 = r1r2cis(θ1 + θ2). That is, “arg(z1z2) =

arg(z1) + arg(z2).”

Note. By applying mathematical induction, we get the following as a corollary to

Theorem I.4.A.

Corollary I.4.A. de Moivre’s Formula.

If z = rcis(θ), then zn = rncis(nθ). In particular, (cos θ + i sin θ)n = cos(nθ) +

i sin(nθ).

Note 1.4.B. Abraham de Moivre (May 26, 1667–November 27, 1754) is known for

his pioneering work in analytic geometry and probability theory. We give as a very

brief biography of him, the following from Paul Nahin’s An Imaginary Tale: The

Story of
√
−1, Princeton University Press (1998), pages 56 and 57 (this is a nice,

surprisingly technical, history of complex analysis):

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter1-7.pdf
https://faculty.etsu.edu/gardnerr/5337/notes/Chapter1-7.pdf
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“. . . ‘De Moivre’s theorem,’ after the French-born mathematician Abra-

ham De Moivre (1667–1754). De Moivre, a Protestant, left Catholic

France at age eighteen to seek religious freedom in London, where he

became a friend of Isaac Newton. In a 1698 paper published in the

Philosophical Transactions of the Royal Society, he mentions that New-

ton knew of an equivalent expression of De Moivre’s theorem as early

as 1676, which Newton used to calculate the cube roots of the complex

numbers that come out of the Cardan formula for the irreducible case.

. . . It is clear from De Moivre’s writings that he did, in fact, know and

use the above result, but he never actually wrote it out explicitly—

that was done by Euler in 1748, who arrived at it by entirely different

means. . . ”

It is not unusual for mathematical results to be arrived at independently. It is a

little unusual for the correct credit to be given (we have not seen the last of Euler,

and he already has enough results to his name anyhow!).

Image from the MacTutor biography webpage for de Moivre (accessed 9/3/2023).

https://mathshistory.st-andrews.ac.uk/Biographies/De_Moivre/
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Note. We can use de Moivre’s Formula to compute roots. Let w ∈ C, w 6= 0.

We want to find all z ∈ C such that zn = w (for a given n ∈ N). For such a z,

we need |z| = |w|1/n and arg(z) = arg(w)/n. Let α = arg(w), then one such z is

z = |w|1/ncis(α/n). However, there are several choices for α. We find that there

are n such z and are given by

|w|1/ncis

(
α + 2kπ

n

)
for k = 0, 1, . . . , n− 1 (4.5)

(where α is any argument of z). These roots are distributed uniformly around a

circle centered at the origin of the complex plane with radius |w|1/n, starting at

|w|1/ncis(α/n). We now illustrate this.

Example. Find three cube roots of 1 and graph them in the complex plane.

Solution. We have w = 1 and n = 3. Since 1 is a positive real number, we can take

α = 0. From equation (4.5), the desired roots are |1|1/3cis((0+2kπ)/3) = cis(2kπ/3)

for k = 0, 1, 2. So the desired roots are:

cis(0) = cos 0 + i sin 0 = 1,

cis(2π/3) = cos(2π/3) + i sin(2π/3) = −1

2
+ i

√
3

2
,

cis(4π/3) = cos(4π/3) + i sin(4π/3) = −1

2
− i

√
3

2
.

So the roots are distributed along the vertices of an equilateral triangle, as follows.
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