I.5. Lines and Half-Planes in \mathbb{C}

Note. A line in \mathbb{C} is a collection of complex numbers which give a line when plotted in an Argand diagram. A half-plane in \mathbb{C} is the collection of complex numbers on one side of a line in \mathbb{C}. In this brief section we give an equation for a line and a half-plane in \mathbb{C}. We'll see that this involves a condition on the imaginary part of a quantity involving variable complex number z.

Note. In Calculus 3 (MATH 2110) we see that the parametric equation for a line in \mathbb{R}^{2} is $(x, y)=\left(a_{1}, a_{2}\right)+t\left(b_{1}, b_{2}\right)$ where $t \in \mathbb{R}$ (see my online Calculus 3 notes on Section 12.5. Lines and Planes in Space). The line passes through the point (a_{1}, a_{2}) (when $t=0$) and has direction vector $\left[b_{1}, b_{2}\right]$ (where we notationally distinguish between the coordinates of a point (x, y) and the components of a vector $\vec{u}=[x, y])$. So the equation of a line in \mathbb{C} is $z=a+t b$ where $t \in \mathbb{R}$ and $a, b \in \mathbb{C}$. This can be rearranged as $t=(z-a) / b$. Since t is real, the equation of a line in \mathbb{C} is of the form

$$
\operatorname{Im}\left(\frac{z-a}{b}\right)=0 \text { where } b \neq 0
$$

Note. Let $a=0$ and $b=\operatorname{cis}(\beta)=\cos \beta+i \sin \beta$ (i.e., without loss of generality $|b|=1)$. Then the line is $\operatorname{Im}(z / b)=0$. If $z=r \operatorname{cis}(\theta)$ and $\operatorname{Im}(z / b)>0$, then

$$
\operatorname{Im}(r \operatorname{cis}(\theta-\beta))=\operatorname{Im}(r(\cos (\theta-\beta)+i \sin (\theta-\beta))=r \sin (\theta-\beta)>0
$$

and so $r \sin (\theta-\beta)>0$. Now $\sin (\theta-\beta)>0$ is satisfied when $0<\theta-\beta<\pi$, or $\beta<\theta<\beta+\pi$. So $\operatorname{Im}(z / b)>0$ is the half plane:

If we translate all z satisfying $\operatorname{Im}(z / b)>0$ by an amount a, we get the half plane:

Notice that if we interpret b as a vector and we travel along the line in the direction b, then $\operatorname{Im}\left(\frac{z-a}{b}\right)>0$ lies to the left of the line and $\operatorname{Im}\left(\frac{z-a}{b}\right)<0$ lies to the right of the line.

