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Chapter II. Metric Spaces and the

Topology of C

Note. In this chapter we study, in a general setting, a “space” (really, just a set) in

which we can measure “distance.” This simple idea of measuring distance allows us

to do lots of analysis stuff (open sets, closed sets, compact sets, limits, continuity,

convergent sequences, completeness, etc.).

II.1. Definitions and Examples of Metric Spaces

Note. We introduce metric spaces and give some examples not in the text which

you may encounter in other analysis classes. In addition, we briefly discuss topo-

logical spaces.

Definition. A metric space is a pair (X, d) where X is a set and d is a function

mapping X ×X into R called a metric such that for all x, y, z ∈ X we have

d(x, y) ≥ 0

d(x, y) = d(y, x) (Symmetry)

d(x, y) = 0 if and only if x = y

d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

For a given x ∈ X and r > 0, define the open ball of center x and radius r as

B(x; r) = {y | d(x, y) < r}. Define the closed ball of center x and radius r as

B(x; r) = {y | d(x, y) ≤ r}.
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Example II.1.1. (R, d) where d(x, y) = |x − y| is a metric space. Of prime

importance for us in metric space (C, d) where d(z, w) = |z − w|.

Example. (R2, d) where d((x1, x2), (y1, y2)) = |y1 − x1| + |y2 − x2| is a metric

space. d is the taxicab metric. Notice that the closed unit ball has an unexpected

appearance under this metric:

Example. (Rn, d) where

d(~x, ~y) = d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =

{
n∑

k=1

|yk − xk|p
}1/p

is a metric space for 1 ≤ p < ∞. For p = 2, this is the usual Euclidean metric in

Rn. (For 0 < p < 1, the quantity d can still be considered, but it fails the Triangle

Inequality.)
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Example. (Cn, d) where

d(~z, ~w) = d((z1, z2, . . . , zn), (w1, w2, . . . , wn)) =

{
n∑

k=1

|wk − zk|2
}1/2

=

{
n∑

k=1

(wk − zk)(wk − zk)

}1/2

is a metric space. In fact, this is an inner product space (an “inner product” is a

dot product like encountered in Linear Algebra). That is, Cn is a vector space with

inner product as follows: For ~z = (z1, z2, . . . , zn) and ~w = (z1, w2, . . . , wn), we have

~z · ~w =
∑n

k=1 zkwk. Then the norm of ~z is

‖~z‖ =
√

~z · ~z =

{
n∑

k=1

zkzk

}1/2

=

{
n∑

k=1

|zk|2
}1/2

.

The metric in terms of the norm is d(~x, ~y) = ‖~x − ~y‖. Alternatively, the norm in

terms of the metric is ‖~z‖ = d(~0, ~z).

Example. Let

`2 =

{
(x1, x2, x3, . . .)

∣∣∣∣∣xk ∈ R for all k ∈ N and
∞∑

k=1

|xk|2 < ∞

}
.

Then (`2, d) is a metric space. In fact, `2 is an infinite dimensional vector space

with (“Schauder”) basis {~e1, ~e2, . . .} where ~e1 = (1, 0, 0, . . .), ~e2 = (0, 1, 0, . . .),

~e3 = (0, 0, 1, 0, . . .), . . .. in some sense, `2 is the “most useful” infinite dimensional

vector space. The inner product is

~x · ~y =
∞∑

k=1

xkyk,
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the norm and inner product are:

‖~x‖ =

{ ∞∑
k=1

|xk|2
}1/2

and d(~x, ~y) =

{ ∞∑
k=1

|xk − yk|2
}1/2

.

In `2, the idea that a vector has “magnitude and direction” is valid. We will use

this space to violate a couple of familiar results. In `2 we construct a closed and

bounded set that is not compact (as opposed to the Heine-Borel Theorem) and an

infinite bounded set without a limit point (as opposed to Weierstrass’s Theorem).

In fact, we can also produce an `2 space out of complex numbers.

Example. We can also define `p spaces for 1 ≤ p < ∞. Let

`p =

{
(x1, x2, . . .)

∣∣∣∣∣xk ∈ R for all k ∈ N and
∞∑

k=1

|xk|p < ∞

}
.

Define

d(~x, ~y) = d((x1, x2, . . .), (y1, y2, . . .)) =

{ ∞∑
k=1

|yk − xk|p
}1/p

.

Then (`p, d) is a metric space. In fact,

‖~x‖ =

{ ∞∑
k=1

|xk|p
}1/p

is a norm. Also, `p is complete in the sense that Cauchy sequences converge (or

in the informal sense that there are “no holes” in the space). So the `p spaces

are complete normed vector spaces. Such spaces are called Banach spaces. When

p = 2, as above, we have that `2 is a complete inner product space. A complete

inner product space is called a Hilbert space. In fact, we have relationships between

familiar vector spaces and these new objects as follows:
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There are examples of vector spaces which do not have a norm (this would be exam-

ples of “nonmetrizable vector spaces”), though they are by our current standards

exotic. One might wonder is such vector spaces have bases. They do! Every vector

space has basis in the sense of the term “basis” used in Linear Algebra (using finite

linear combinations; such a basis is called a Hamel basis), but the proof of this

requires Zorn’s Lemma, a result equivalent to the dreaded Axiom of Choice! For a

proof, see my supplemental notes for Fundamentals of Functional Analysis (MATH

5740) on Supplement. Groups, Fields, and Vector Spaces (see Theorem 5.1.4.).

Note. The following is the standard definition of an open set. Remember that if

we replace B(x; ε) with “an open interval (a − ε, a + ε)” then the definition here

should reduce to the definitions in senior level analysis (and even to the definitions

in Calculus).

https://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-1.pdf
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Definition II.1.8. A set G ⊂ X (where (X, d) is a metric space) is open if for all

x ∈ G there exists ε > 0 such that B(x; ε) ⊂ G.

Note. The book denotes the empty set as �. In the notes, we still denote is as ∅.

Theorem II.1.9. Let (X, d) be a metric space. Then

(a) X and ∅ are open,

(b) if all G1, G2, . . . , Gn are open then ∩n
k=1Gk is open, and

(c) if {Gj | j ∈ J} is any collection of open sets then ∪j∈JGj is open.

Definition II.1.10. A set F ⊂ X is closed if X \ F is open.

Note. DeMorgan’s Law allows us to extend Theorem 1.9 to closed sets as follows

(see, for example, my online notes for Analysis 1 (MATH 4217/5217) on Section

3.1. Topology of the Real Numbers; notice Theorem 3-3):

Theorem II.1.11. Let (X, d) be a metric space. Then

(a) X and ∅ are closed,

(b) if all F1, F2, . . . , Fn are closed then ∪n
k=1Fk is closed, and

(c) if {Fj | j ∈ J} is any collection of closed sets then ∩j∈JFj is closed.

https://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
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Note. We now briefly consider topological spaces. For a detailed exploration, see

my online notes for Introduction to Topology (MATH 4357/5357). You can see

that the definition is inspired by Theorem I.1.9.

Definition. A topological space is a pair (X, T ) where X is a set (of “points”) and

T is a collection of subsets of X such that:

(a) X and ∅ are both in T ,

(b) if {O1, O2, . . . , On} ⊂ T then ∩n
k=1Ok ∈ T , and

(c) if {Oj | j ∈ J} ⊂ T then ∪j∈JOj ∈ T .

An element of T is said to be open. If A ⊂ X and X \ A ∈ T then A is closed.

Note. In a topological space we may not have an idea of distance (no metric), but

we can still talk about limits, continuity, convergence of a sequence, connectedness,

etc.

Example. Consider X = {a, b, c}. A topology on X is T1 = {X, ∅}. This is the

trivial topology. By the way, the sequence a, a, a, . . . converges to both a and b (and

c) in this topological space. A second topology is T2 = {X, {a}, {b, c}, ∅}. The

power set T = P(X) always forms a topology on X, called the discrete topology.

https://faculty.etsu.edu/gardnerr/5357/notes.htm
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Note. We now return to Conway, but most of the remaining results of this section

hold in topological spaces as well.

Definition II.1.12. Let A ⊂ X in a metric space. The interior of A, denoted

int(A), is the union

∪{G | G is open and G ⊂ A}.

The closure of A, denoted A− = A = cl(A) is the set

∩{F | F is closed and F ⊃ A}.

The boundary of set A, denoted ∂(A), is the set A− ∩ (X \ A)−.

Example. Let A = {z | |z| ≤ 1} ∪ {z | z ∈ (1, 2)} ∪ {3}. Find the interior of A,

the closure of A, and the boundary of A.

Theorem II.1.13. Let A, B ⊂ X. Then

(a) A is open if and only if A = int(A),

(b) A is closed if and only if A = A−,

(c) int(A) = X \ (X \ A)−, A− = X \ int(X \ A), and ∂(A) = A− \ int(A),

(d) (A ∪B)− = A− ∪B−,

(e) x0 ∈ int(A) if and only if there exists ε > 0 such that B(x0; ε) ⊂ A, and

(f) x0 ∈ A− if and only if for all ε > 0, B(x0; ε) ∩ A 6= ∅.
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Note. Parts (a) through (d) only refer to open and closed sets, and so are valid in

any topological space. Of course, (e) and (f) make sense in a metric space.

Note. Part (f) of Theorem 1.13 means that x0 ∈ A− if (informally) x0 is “really

close to” set A. So if x0 ∈ A, then it certainly is close! For x0 /∈ A, then no matter

how small ε is, B(x0; ε) still intersects set A:

Definition II.1.14. A subset A of a metric space X is dense in X if A− = X.

Example. Familiar examples are: Q is dense in R, R \ Q is dense in R, and

{a + ib | a, b ∈ Q} is dense in C.

Note. In some settings (namely, Hilbert spaces) it is desirable to have a countable

dense subset of a given space. Such a space is called separable. See my supplemen-

tal notes for Fundamentals of Functional Analysis (MATH 5740) on Section 5.4.

https://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-4.pdf
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Projections and Hilbert Space Isomorphisms; notice Definition 5.4.1 and Theorem

5.4.8.

Question. The space `2 (over R, say) is separable. Give a countable dense subset.
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