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II.3. Sequences and Completeness

Note. Probably the most important concept in analysis is that of completeness.

Informally, a space, field, linear space, or metric space is complete if it has no holes

in it (i.e., if it is a “continuum”). Completeness is necessary if we want to pursue

any of the standard topics of analysis such as limits, continuity, and series. The

real numbers are a complete ordered field where the Axiom of Completeness states

that every nonempty set of real numbers with an upper bound has a least upper

bound. However, this definition requires an ordering (a notion of “greater than”

and “less than”). That concept does not exist in C and may not exist in a metric

space or vector space. So an alternate approach to completeness must be developed

in these settings.

Definition II.3.1. If {x1, x2, . . .} is a sequence in a metric space (X, d) then {xn}
converges to x, denoted x = lim xn or xn → x, if for every ε > 0 there exists N ∈ N

such that for all n ≥ N we have d(x, xn) < ε.

Note. We’ll now use sequences to explore several topological properties in metric

spaces, including completeness.

Proposition II.3.2. A set F ⊂ X is closed if and only if for each sequence {xn}
in F with x = lim xn we have x ∈ F .
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Definition II.3.3. If A ⊂ X then a point x ∈ X is a limit point of A if there is a

sequence {xn} of distinct points in A such that x = lim xn.

Note. The following result links limit points of a set to the closure of a set. It’s

proof is Exercise II.3.1.

Proposition II.3.4.

(a) A set is closed if and only if it contains all of its limit points.

(b) If A ⊂ X then A− = A ∪ {x | x is a limit point of A}.

Definition II.3.5. A sequence {xn} is called a Cauchy sequence if for every ε > 0

there is N ∈ N such that d(xn, xm) < ε for all n,m ≥ N . If metric space (X, d) has

the property that each Cauchy sequence has a limit in X , then (X, d) is complete.

Note. Recall that a sequence of real numbers is Cauchy if and only if it is conver-

gent. By the Triangle Inequality, all convergent sequences are Cauchy. However,

the convergence of Cauchy sequences requires the Completeness of R. In fact, the

convergence of Cauchy sequences of real numbers is equivalent to the completeness

of R. This is why we take the above definition of completeness in the metric space

setting. We now use this definition to show that C is complete. The proof is ac-

tually quite easy (the hard work is done in the real setting showing that Cauchy

sequences converge).
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Proposition II.3.6. C is complete.

Proof. Let {xn+iyn} be a Cauchy sequence. Then for all ε > 0 there exists N ∈ N

such that for m,n > N we have

d(xn + iyn, xm + iym) =
√

(xn − xm)2 + (yn − ym)2 < ε.

Then if m,n ≥ N we have both |xn −xm| < ε and |yn − ym| < ε. So {xn} and {yn}
are both Cauchy sequences of real numbers. So there are x, y ∈ R such that xn → x

and yn → y (by the completeness of R). So for all ε > 0, there exist N1, N2 ∈ N

such that if n ≥ N1 then |x − xn| < ε/
√

2 and if n ≥ N2 then |y − yn| < ε/
√

2. So

for all n ≥ N3 = max{N1, N2} we have:

d(xn + iyn, x + iy) =
√

(x − xn)2 + (y − yn)2 <

√

(

ε√
2

)2

+

(

ε√
2

)2

= ε.

So {xn + iyn} → x + iy and hence C is complete.

Note. The metric space (C∞, d) where d is defined in Section I.6 is complete and

if |zn| → ∞ in C then {zn} is Cauchy in C∞. This is part of Exercise II.3.4.

Definition. If A ⊂ X , define the diameter of A as diam(A) = sup{d(x, y) | x, y ∈
A}.

Note. The above definition is similar to the definition of the diameter of a graph!
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Cantor’s Theorem. A metric space (X, d) is complete if and only if for any

sequence {Fn} of nonempty closed sets with F1 ⊃ F2 ⊃ F3 ⊃ · · · and diam(Fn) → 0,

then the set ∩∞
n=1Fn consists of a single point.

Note. Consider the metric space (X, d) where X = R \ {0} and d(x, y) = |x − y|.
Then this space is not complete. So we can construct a sequence Fn = [−1/n, 0) ∪
(0, 1/n] of closed nested sets such that diam(Fn) = 2/n → 0, but ∩∞

n=1
Fn = ∅.

Proposition II.3.8. Let (X, d) be a complete metric space and let Y ⊂ X . Then

(Y, d) is a complete metric space if and only if Y is closed in X .
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