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II.4. Compactness

Note. Conway states on page 20 that the concept of compactness is an extension

of benefits of finiteness to infinite sets. I often state this idea as: “Compact sets

allow us to transition from the infinite to the finite.”

Definition II.4.1. A subset K of a metric space X is compact if for every collection

G of open sets in X with the property K ⊂ ∪G∈GG, there is a finite number of sets

G1, G2, . . . , Gn in G such that K ⊂ ∪n
k=1Gk. The collection G is called an open

cover of K.

Note. We can paraphrase the definition of compact as: “Every open cover has a

finite subcover.” You may recall from senior level analysis that a set of real numbers

is compact if and only if it is closed and bounded (the Heine-Borel Theorem). The

Heine-Borel Theorem holds in C (and Rn and Cn), but it does not hold in all metric

spaces. BEWARE! The important property of a compact set is that every open

cover has a finite subcover, not something else (like “closed and bounded” which,

in general, is not true for compact sets). In fact, let’s violate Heine-Borel in `2!

Example. In `2, consider the set

H = {(1, 0, 0, . . .), (0, 1, 0, 0, . . .), (0, 0, 1, 0, 0, . . .), . . .}.

Then the distance between any two distinct points in H is
√

2. So all points of

H are isolated and hence H is closed (if you like, consider the complement of H).
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Since each element of H is distance 1 from the “origin” (0, 0, 0, . . .), then H is

bounded. However, H is not compact! Consider the open cover G = {B(x; 1/2) |

x ∈ H}. Since the distance between any two distinct points of H is
√

2, then

B(x; 1/2) ∩B(y; 1/2) = ∅ for x 6= y. So no set in G can be eliminated from G and

the result still cover H. Therefore there is no finite subcover of G, and H is not

compact. The reason this example works in `2 (and not in Rn or Cn) is because

of the infinite number of “directions” (i.e., axes) in `2. Consider the first three

elements of H and G:

Imagine this example extended along infinitely many axes and you will get the idea

of how the construction works in `2.

Note. In fact, in a normed linear space, the closed unit ball is compact if and only

if the dimension of the normed linear space is finite. For a proof, see my online

notes for Fundamentals of Functional Analysis on Section 2.8. Finite Dimensional

Normed Linear Spaces; notice Theorem 2.34.

http://faculty.etsu.edu/gardnerr/Func/notes/2-8.pdf
http://faculty.etsu.edu/gardnerr/Func/notes/2-8.pdf
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Note. Set H is also an example of an infinite bounded set with no limit point.

Recall that Weierstrass’ Theorem says that an infinite bounded set of real numbers

(or elements of Rn or Cn) has a limit point.

Proposition II.4.3. Let K be a compact subset of X. Then

(a) K is closed, and

(b) if F is closed and F ⊂ K then F is compact.

Note. In fact, we can show that, in a metric space, a compact set is closed AND

bounded (by “bounded” we mean that a set A satisfies A ⊂ B(x; K) for some x ∈ X

and some K ∈ R). If A is not bounded then the open cover {B(x; N) | N ∈ N}

of A (where x is some element of X) has no finite subcover. That is, A is not

compact. Hence, if A is compact then it is bounded.

Definition. If F is a collection of subsets of X such that whenever {F1, F2, . . . , Fn} ⊂

F we have F1 ∩ F2 ∩ · · · ∩ Fn 6= ∅, then F has the finite intersection property (de-

noted “f.i.p.”).

Proposition II.4.4. A set K ⊂ X is compact if and only if every collection F of

closed subsets of K with the finite intersection property satisfies ∩F∈FF 6= ∅.
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Note. The following two results are useful corollaries which follow from the finite

intersection property result and they illustrate the use of Proposition 4.4

Corollary II.4.5. Every compact metric space is complete.

Note. The following may remind you of Weierstrass’ Theorem.

Corollary II.4.6. If X is a compact set in a metric space, then every infinite set

has a limit point in X.

Note. The following definition makes use of sequences and defines a sequentially

compact metric space. We will see that this definition is equivalent to the standard

compactness.

Definition II.4.7. A metric space (X, d) is sequentially compact if every sequence

in X has a convergent subsequence.

Lemma II.4.8. Lebesgue’s Covering Lemma.

If (X, d) is sequentially compact and G is an open cover of X then there is an ε > 0

such that if x ∈ X, there is a set G ∈ G with B(x; ε) ⊂ G.

Note. We now give special conditions equivalent to the compactness of X.
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Proposition II.4.9. Let (X, d) be a metric space. The following are equivalent:

(a) X is compact,

(b) every infinite subset of X has a limit point,

(c) X is sequentially compact, and

(d) X is complete and for all ε > 0 there are a finite number of points x1, x2, . . . , xn ∈

X such that X = ∪n
k=1B(xk; ε). This property is called total boundedness.

Note. The following proof of the Heine-Borel Theorem may be a little different

from the proof given in your senior level analysis class. This is because we have

developed a lot of “heavy equipment” concerning compactness in this section (in

particular, the total boundedness of Theorem 4.9). First, we need a technical

lemma.

Lemma. Let F = [a1, b1]×[a2, b2]×· · ·×[an, bn] ⊂ Rn for some real a1, a2, . . . , an, b1,

b2, . . . , bn where ak < bk for k = 1, 2, . . . , n. Then F is totally bounded.

Outline of the Proof. The result follows by proving Exercises 4.2 and 4.3:

Exercise II.4.2. Let p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) be points in Rn,

with pk < qk for k = 1, 2, . . . , n. Let R = [p1, q1]× [p2, q2]× · · · [pn, qn]. Then

diam(R) = d(p, q) =

{
n∑

k=1

(qk − pk)
2

}1/2

.
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Exercise II.4.3. Let F = [a1, b1]× [a2, b2]× · · · × [an, bn] ⊂ Rn and let ε > 0. Use

Exercise 4.2 to show that there are rectangles R1, R2, . . . Rm such that F = ∪m
k=1Rk

and diam(Rk) < ε for k = 1, 2, . . . ,m. Use this to show that F is totally bounded.

Theorem II.4.10. Heine-Borel Theorem.

A subset K of Rn (n ≥ 1) is compact if and only if K is closed and bounded.

Note. In Section II.1 of these class notes, we introduced topological spaces. Many

of the concepts of this section also hold in the topological space setting. For ex-

ample, a separation of a set is defined in terms of open sets (see the class notes for

Section II.2) and so this definition and hence the definition of connectedness is a

topological property. In the previous section (Section II.3) we explored convergence

of sequences in a metric space. We can also do this in a topological space, as the

following definition shows.

Definition. Let {xn} be a sequence in topological space (X, T ). Let x ∈ X. If for

all open sets )x ∈ T containing x, there exists N ∈ N such that for all n ≥ N we

have xn ∈)x, then x is the limit of sequence {xn}, denoted lim xn = x.

Note. In a topological space, it may not be the case that the limit of a sequence

is unique (it depends on the topology).
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Note. In the next section, we will define continuity of a function from one topo-

logical space to another.

Note. In this section, we approached compactness in a metric space by appealing

to Cauchy sequences. One might assume that a similar approach can be taken in a

topological space. However, this is not the case as illustrated in an example below.

First, we need another topological definition.

Definition. Let (X, T1) and (Y, T2) be topological spaces. A function f : X → Y

is a homeomorphism if f is continuous, one to one, onto, and has a continuous

inverse.

Note. Homeomorphic topological spaces are indistinguishable as topological spaces.

A set in T1 is open if and only if its image is open in T2. So homeomorphic topo-

logical spaces share all “topological” properties.

Example. Let X = (0, 1) and Y = (1,∞) where T1 is the usual topology on X and

T2 is the usual topology on Y . Then the function f(x) = 1/x is a homeomorphism

between (X, T1) and (Y, T2). Since each space has the “usual topology,” then these

spaces are metrizable (that is, there is a metric which induces the topology; it

is the usual metric d(x1, x2) = |x1 − x2| for each space). However, the sequence

{xn} = {1/n} is Cauchy in metric space (X, d) but the sequence {f(xn)} = {n}

is not Cauchy in metric space (Y, d). So we cannot define a Cauchy sequence in a

topological space in a way such that a sequence’s Cauchy-ness is preserved between

homeomorphic topological spaces!
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Note. John von Neumann published “On Complete Topological Spaces” in 1935

(Transactions of the American Mathematical Society 37(1), 1–20). This is available

online on the AMS website (accessed 2/24/2022). In this paper he addresses the

idea of Cauchy sequences in metric spaces and comments: “The need of uniformity

in [metric space] M arises from the fact that the elements of a fundamental sequence

are postulated to be ‘near to each other,’ and not near to any fixed point. As a

general topological space . . . has no property which leads itself to the definition of

such a ‘uniformity,’ it is impossible that a reasonable notion of ‘completeness’ could

be defined in it.” In this paper, von Neumann discusses total boundedness and

compactness is the setting of topological linear spaces. His definition of complete is

then:

Topological linear space L is topologically complete if every

closed and totally bounded set S ⊂ L is compact.

The ‘uniformity’ concern is dealt with by ‘anchoring’ open sets at the origin of the

linear space (that is, using the zero vector 0): “However, linear spaces . . . , even if

only topological, afford a possibility of ‘uniformization’ for their topology: because

of their homogeneity everything can be discussed in the neighborhood of 0.”
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