II.6. Uniform Convergence

Note. You have probably encountered uniform convergence in your study of Riemann integrals. Recall that if the sequence of Riemann integrable functions $\{f_n\}$ converges uniformly to f on [a, b], then f is Riemann integrable and

$$\lim_{n \to \infty} \left(\int_a^b f_n(x) \, dx \right) = \int_a^b \left(\lim_{n \to \infty} f_n(x) \right) \, dx = \int_a^b f(x) \, dx.$$

We now extend the idea of uniform convergence to metric spaces.

Definition. Let X be a set and (Ω, ρ) be a metric space and suppose f, f_1, f_2, f_3, \ldots are functions from X to Ω . The sequence $\{f_n\}$ converges uniformly to f, denoted $f = u - \lim(f_n)$, if for every $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\rho(f(x), f_n(x)) < \varepsilon$ for all $x \in X$. Hence

$$\sup\{\rho(f(x), f_n(x)) \mid x \in X\} \le \varepsilon$$

for all $n \ge N$.

Theorem II.6.1. Suppose $f_n : (X, d) \to (\Omega, \rho)$ is continuous for each $n \in \mathbb{N}$ and suppose $f = u - \lim(f_n)$. Then f is continuous.

Note. We will use the following in the next section when addressing the radius of convergence of a complex power series.

Theorem II.6.2. Weierstrass *M*-Test.

Let $u_n : X \to \mathbb{C}$ be a function such that $|u_n(x)| \leq M_n$ for all $x \in X$ and suppose the constants satisfy $\sum_{n=1}^{\infty} M_n < \infty$. Then $\sum_{n=1}^{\infty} u_n$ is uniformly convergent.

Revised: 12/19/2015