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Chapter III. Elementary Properties and

Examples of Analytic Functions

III.1. Power Series

Note. We will see that classical complex analysis is about the study of functions

with power series representations (Chapter III) and path integrals of such functions

(Chapter IV). In this section, we define the convergence and absolute convergence

of a series of complex numbers, and describe the types of sets on which a complex

power series converges. This leads to the definition of “radius of convergence”

and the Ratio Test. We’ll use this information to define the complex exponential

function and address products of power series.

Definition. The series
∞∑

n=0

an converges to z if for all ε > 0, there exists N ∈ N

such that for all m ≥ N ,

∣∣∣∣∣
m∑

n=0

an − z

∣∣∣∣∣ < ε. That is, the sequence of partial sums

sm =
m∑

n=0

an converges to z. The series
∑

an converges absolutely if the series of

real numbers
∑
|an| converges.

Note. We see in Analysis 2 (MATH 4227/5227) that an absolutely convergent

series of real numbers is convergent. See my online notes for Analysis 2 on Section

7.2. Operations Involving Series (notice Theorem 7-10). In fact, you likely even see

this in Calculus 2 (MATH 1920) when covering series; see my online Calculus 2

https://faculty.etsu.edu/gardnerr/4217/notes/7-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/7-2.pdf
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notes on Section 10.6. Alternating Series, Absolute and Conditional Convergence,

and notice Theorem 10. The same result holds for complex series, as the following

demonstrates.

Proposition III.1.1. If
∑

an converges absolutely, then the series converges.

Note. As you see in Calculus 2 (MATH 1920), there are convergent sequences

of real numbers that are not absolutely convergent. For example, the harmonic

series
∞∑

n=1

1

n
diverges (as can be shown with the Integral Test; see my Calculus

2 notes on Section 10.3. The Integral Test). However, the alternating harmonic

series
∞∑

n=1

(−1)n+1

n
converges (as can be shown by the Alternating Series Test; see

my Calculus 2 notes on Section 10.6. Alternating Series, Absolute and Conditional

Convergence; notice Theorem 14). In fact, by considering the power series for

ln(1− x) it can be shown that the alternating harmonic series converges to ln 2.

Note. You should encounter the next definition in Analysis 1 (MATH 4217/5217).

See my online notes for Analysis 1 on Section 2.3. Bolzano-Weierstrass Theorem.

Definition. For a sequence {an} ⊆ R, define lim an = lim
n→∞

(inf{an, an+1, . . .}) and

lim an = lim
n→∞

(sup{an, an+1, . . .}) .

https://faculty.etsu.edu/gardnerr/1920/12/c10s6.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s3.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s6.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s6.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
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Note. The values of lim an and lim an could be +∞ or −∞ since these are defined

in terms of suprema and infima. In Analysis 1, we see that lim an is the greatest

subsequential limit point for sequence {an} (that is, there is a subsequence with

lim an as it’s limit, and no convergent subsequence has a greater limit); see Ex-

ercise 2.3.16 in my online notes for that class on Section 2.3. Bolzano-Weierstrass

Theorem. Similarly, lim an is the least subsequential limit point for sequence.

Note. The values lim an and lim an always exist and lim an exists if and only if

lim an = lim an. This is Corollary 2-17 in Section 2.3. Bolzano-Weierstrass Theorem

of Analysis 1 (MATH 4217/5217).

Example III.1.A. Consider {an} = {sin n} (n in radians). Then lim an = −1 and

lim an = 1. The proof of this claim is not trivial. A recent graduate of the ETSU

Mathematical Sciences Master’s Program, Abderrahim Elallam, presented a proof

of this in his thesis Constructions & Optimization in Classical Real Analysis The-

orems (May 2021). In his Section 2.3, “Constructions in the Bolzano-Weierstrass

Theorem,” be proved:

Proposition 2.1. For every α ∈ [−1, 1] there is a subsequence {xnk
} of {xn = n}

such that limk→∞ sin(xnk
) = α.

He lists as a reference for this result G. H. Hardy and E. M. Wright’s An Intro-

duction to the Theory of Numbers (Oxford University Press, 1981). You can see

Mr. Elallam’s thesis online through the Digital Commons @ East Tennessee State

University (accessed 9/18/2023).

https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
https://dc.etsu.edu/etd/3901/
https://dc.etsu.edu/etd/3901/
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Note. Recall that x is a subsequential limit of sequence {an} of real numbers if

and only if for all ε > 0 the interval (x− ε, x+ ε) contains infinitely many terms of

{an}. This is Theorem 2-11 in my online Analysis 1 (MATH 4217/5217) on Section

2.2. Subsequences. This allows us to create sequences with lots of subsequential

limits. Consider the following back-and-forth dialogue:

Question 1. Can you find a sequence with every natural number as a

subsequential limit?

Answer. YES! Consider {1; 1, 2; 1, 2, 3; 1, 2, 3, 4; . . .}.

Question 2. Can you find a sequence with every rational number as

a subsequential limit?

Answer. YES! Let {qn} be an enumeration of the rationals and con-

sider {q1; q1, q2; q1, q2, q3; q1, q2, q3, q4; . . .}.

Question 3. Can you find a sequence with every real number as a

subsequential limit?

Answer. YES! Take the sequence {qn} as above and use an ε argument.

(Notice that for this sequence, lim qn = −∞ and lim qn = ∞.)

Note. We now shift our attention to power series in the complex realm. This idea

will form the backbone of much of what we do in the the rest of Chapter III.

Definition. A power series about a ∈ C is an infinite series of the form

∞∑
n=0

an(z − a)n.

https://faculty.etsu.edu/gardnerr/4217/notes/2-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-2.pdf
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A geometric series is of the form
∞∑

n=0

zn.

Note. Since (1− zn+1) = (1− z)(1 + z + z2 + · · ·+ zn) then 1 + z + z2 + · · ·+ zn =

(1− zn+1)/(1− z) for z 6= 1. If |z| < 1 then limn→∞ zn = 0 and so

∞∑
n=0

zn = lim
N→∞

(
N∑

n=0

zn

)
= lim

N→∞

1− zN+1

1− z
=

1

1− z
.

If |z| > 1 then limn→∞ |z|n = ∞ and
∑∞

n=0 zn diverges. Notice that if z = 1 then∑∞
n=0 zn = 1 + 1 + 1 + · · · = ∞, so the series diverges to infinity. Notice that if

z = −1 then
∑∞

n=0 zn = 1− 1 + 1− 1 + 1− 1 + · · ·, so the series diverges because

the sequence of partial sums oscillates between 0 and 1: s0 = 1, s1 = 0, s2 = 1,

s3 = 0, . . . . So we see that there is ambiguity in the behavior of this series when

|z| = 1. Recall that a series of real numbers can diverge in two fundamental ways:

it can (1) diverge to infinity (or negative infinity), or (2) it can diverge because

it bounces around and doesn’t “get close” to any set value. This is the case for∑∞
n=0 zn when z = 1 and z = −1, respectively.

Theorem III.1.3. If
∞∑

n=0

an(z − a)n, define the number R as 1
R = lim |an|1/n (so

0 ≤ R ≤ ∞). Then

(a) if |z − a| < R, the series converges absolutely,

(b) if |z − a| > R, the series diverges, and

(c) if 0 < r < R then the series converges uniformly on |z − a| ≤ r. Moreover,

R is the only number having properties (a) and (b). R is called the radius of
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convergence of the power series.

Note. The following result gives a Ratio Test for complex power series. Compare

it to the Ratio Test from Calculus 2 (MATH 1920); see Section 10.5. The Ratio

and Root Tests.

Proposition III.1.4. If
∞∑

n=0

an(z − a)n is a given power series with radius of

convergence R, then R = lim |an/an+1|, if the limit exists.

Note. We can use power series to define functions of a complex variable, provided

we know the radius of convergence. Next, we define the “exponential function”

with a power series. However, this obliges us to establish that the function behaves

in way expected for an exponential function. We will do so in Lemma III.2.A in

Section III.2. Analytic Functions.

Definition. Define the exponential function ez =
∞∑

n=0

zn

n!
.

Note. By Proposition III.1.4, the radius of convergence of ez is

R = lim

∣∣∣∣ an

an+1

∣∣∣∣ = lim

(
1/n!

1/(n + 1)!

)
= ∞.

Of course when z is real, our complex exponential function is the same as the real

exponential function since we see that the power series are the same in both the

real and complex settings.

Note. The next two propositions concern the behavior of absolutely convergent

https://faculty.etsu.edu/gardnerr/1920/12/c10s5.pdf
https://faculty.etsu.edu/gardnerr/1920/12/c10s5.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/III-2.pdf
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series. In Proposition III.1.5, we consider the product of two series of complex

numbers (the proof is to be given in Exercise III.1.1). In Proposition III.1.6 we

consider the sum and product of two convergent power series in the complex setting.

A partial proof is given in the section of the book with details to be added in

Exercise III.1.2.

Proposition III.1.5. Let
∑

a1 and
∑

bn be two absolutely convergent series and

put cn =
∑n

k=0 akbn−k. Then
∑

cn is absolutely convergent with sum (
∑

an) (
∑

bn).

Proposition III.1.6. Let
∑

an(z − a)n and
∑

bn(z − a)n be power series with

radii of convergence ≥ r > 0. Define cn =
n∑

k=0

akbn−k. Then both power series∑
(an + bn)(z − a)n and

∑
cn(z − a)n have radius of convergence ≥ r and for

|z − a| < r:∑
(an + bn)(z − a)n =

∑
an(z − a)n +

∑
bn(z − a)n and∑

cn(z − a)n =
(∑

an(z − a)n
)(∑

bn(z − a)n
)

.
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