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III.3. Analytic Functions as Mapping,

Möbius Transformations

Note. To graph y = f(x) where x, y ∈ R, we can simply plot points (x, y) in R
2

(that is, we can graph y = f(x) is “two dimensional”). However, to graph w = f(z),

we need 4 dimensions (2 for the input z ∈ C and 2 for the output z ∈ C). Since we

can’t “see” this (or even abstractly visualize it), we commonly see how certain sets

in C are mapped under f . In our Complex Variables (MATH 4337/5337) class, the

mapping of one region to another is often used in solving applied problems in the

setting of conformal mapping.

Example. Consider f(z) = z2 and the set {z | Re(z) ∈ [0, 1], Im(z) ∈ [0, 1]}. We

know that the squaring function doubles arguments and squares moduli. So we

have

Except at (0, 0), “angles are preserved.”
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Note. The problem of mapping one open connected set to another open connected

set is a question in a “paramount position” in the theory of analytic functions,

according to Conway (page 45). This problem is solved for open simply connected

regions in the Riemann Mapping Theorem in Section VII.4.

Definition III.3.1. A path in a region G ⊂ C is a continuous function γ : [a, b] →

G for some interval [a, b] ⊂ R. If γ′(t) exists for each t ∈ [a, b] and γ′ : [a, b] → C

is continuous (that is, γ ∈ C1([a, b])) then γ is a smooth path. Also, γ is piecewise

smooth if there is a partition of [a, b], a = t0 < t1 < · · · < tn = b, such that γ is

smooth on each subinterval [tj−1, tj ] for 1 ≤ j ≤ n (smooth on a closed interval

means the usual thing on the open interval and differentiability and continuity in

terms of one sided limits at the endpoints).

Notes. If γ : [a, b] → G is a smooth path and t0 ∈ (a, b) where γ′(t0) 6= 0, then we

can associate a “direction vector” with the path at point z0 = γ(t0). The direction

vector is the complex number γ′(t0). Notice that an angle arg(γ′(t0)) is associated

with this vector, as well as a slope of tan(argγ′(t0)).

Definition. If γ1 and γ2 are smooth paths with γ1(t1) = γ2(t2) = z0 and γ′
1(t1) 6= 0,

γ′
2(t2) 6= 0, then the (or “an”) angle between the paths γ1 and γ2 at z0 is arg(γ′

2(t2))−

arg(γ′
1(t1)).

Theorem III.3.4. If f : G → C is analytic then f preserves angles at each point

z0 of G where f ′(z0) 6= 0.
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Definition. A function f : G → C which preserves angles as described in Theorem

3.4 is a conformal map.

Note. So if f : G → C is analytic and f ′(z) 6= 0 for any z ∈ G, then f is conformal.

Example. Consider f(z) = ez defined on G = {z | −π < Im(z) < π}. A vertical

line segment x = c in G is mapped to a circle in C of radius ec:

A horizontal line y = d is mapped to a ray in C of the form {reid | 0 < r < ∞}:

In fact f(G) = C \ {0} and since f ′(z) = ez 6= 0, f is conformal on all of G.

Combining the above images shows that horizontal and vertical lines which intersect
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at right angles in G are mapped to rays and circles which intersect at right angles

in C:

Of course the principal branch of the logarithm is the inverse of this mapping.

Definition III.3.5. A mapping of the form S(z) =
az + b

cz + d
is a linear fractional

transformation (or bilinear transformation). If ad − bc 6= 0 then S(z) is a Möbius

transformation.

Note. The text calls the Möbius transformations “an amazing class of mappings”!

Any Möbius transformation S(z) =
az + b

cz + d
is invertible with S−1(z) =

dz − b

−cz + a
.

We’ll see that Möbius transformations map “circles” to “circles.” The collection

of Möbius transformations that map the unit disk D{z | |z| < 1} to itself are

fundamental in hyperbolic geometry (see page 85 of Michael Hitchman’s Geometry

with an Introduction to Cosmic Topology, Jones and Bartlett Publishers, 2009).
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Note. We can create an onto correspondence between Möbius transformations and

the set of 2 × 2 invertible matrices with complex entries. Consider the association

S(z) =
az + b

cz + d
→





a b

c d



 .

We can then represent evaluation of the Möbius transformation in terms of matrix

multiplication by representing z = z1/z2 ∈ C as [z1, z2] ∈ C
2. This representation

then yields:

S(z) =
az + b

cz + d
=





az + b

cz + d



 =





a b

c d









z

1



 .

This idea is explored in more detail in Exercise III.3.26.

Note. We consider S defined on C∞ by defining S(∞) = a/c (where we interpret

a/c as ∞ if a 6= 0 and c = 0, and S(∞) = ∞ if c = 0) and S(−d/c) = ∞ (where

we interpret −d/c as ∞ when c = 0).

Definition. A Möbius transformation of the form S(z) = z + a is a translation. If

S(z) = az where a > 0, then S is a dilation. If S(z) = eiθz then S is a rotation. If

S(z) = 1/z then S is an inversion.

Proposition III.3.6. If S is a Möbius transformation then S is a composition of

translations, dilations, rotations, and inversions.

Proof. If c = 0, then S(z) = (a/d)z+b/d and so S = S2 ◦S1 where S1(z) = (a/d)z

(a rotation and dilation) and S2(z) = z + b/d (a translation). If c 6= 0 then

S = S4 ◦ S3 ◦ S2 ◦ S1 where

S1(z) = z + d/c (a translation),
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S2(Z) = 1/z (an inversion),

S3(z) = ((bc − ad)/c2)z (a rotation and dilation), and

S4(z) = z + 1/c (a translation).

Note. If z is a finite fixed point of Möbius transformation S then

S(z) =
az + b

cz + d
= z implies cz2 + (d − a)z − b = 0.

So if c 6= 0, then S has two finite fixed points (and ∞ is not fixed by S). If c = 0,

then S has one finite fixed point and also S(∞) = ∞. If c = 0, d − a = 0, and

b = 0 then S(z) = z and all points in C∞ are fixed. So, unless S(z) = z, Möbius

transformation S has at most two fixed points. So the only Möbius transformation

with three fixed points is the identity.

Lemma III.3.A. A Möbius transformation is uniquely determined by the action

on any three given points in C∞.

Proof. Let a, b, c ∈ C∞ be distinct. Suppose S is a Möbius transformation with

α = S(a), β = S(b), and γ = S(c). Suppose T is another Möbius transformation

with α = T (a), β = T (b), and γ = T (c). Then T−1 ◦ S fixes a, b, and c, so T−1 ◦ S

must be the identity transformation and so T−1 = S−1 and S = T .



III.3. Analytic Functions as Mapping, Möbius Transformations 7

Note. Let z2, z3, z4 ∈ C∞ be distinct. Based on these three points, define Möbius

transformation S as

S(z) =



































(

z−z3

z−z4

) /(

z2−z3

z2−z4

)

if z2, z3, z4 ∈ C

z−z3

z−z4

if z2 = ∞

z2−z4

z−z4

if z3 = ∞

z−z3

z2−z3

if z4 = ∞.

Then in each case S(z2) = 1, S(z3) = 0, and S(z4) = ∞. By Lemma III.3.A, this

is the only transformation mapping z2, z3, z4 in this way.

Definition III.3.7. If z1 ∈ C∞ then the cross ratio (z1, z2, z3, z4), where z2, z3, z4 ∈

C∞ are distinct, is the image of z1 under the unique Möbius transformation S (given

above) where S(z2) = 1, S(z3) = 0, and S(z4) = ∞.

Note. We’ll use the cross ratio to show that Möbius transformations preserve

certain properties.

Proposition III.3.8. If z2, z3, z4 ∈ C∞ are distinct, and T is a Möbius transfor-

mation then (z1, z2, z3, z4) = (Tz1, Tz2, Tz3, Tz4) for any z1 ∈ C∞.

Note. The following result shows that any three distinct points in C∞ can be

mapped to any other three distinct points in C∞. In Geometry with an Introduc-

tion to Cosmic Topology, Hitchman calls this result the “Fundamental Theorem of

Möbius Transformations.”
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Proposition III.3.9. If z2, z3, z4 ∈ C∞ are distinct and ω2, ω3, ω4 ∈ C∞ are

distinct, then there is one and only one Möbius transformation such that S(z2) =

ω2, S(z3) = ω3, and S(z4) = ω4.

Note. The proof of Proposition III.3.9 takes advantage of the “standard set”

{1, 0,∞} as follows:

Note. Conway makes the strange statement on page 49 that: “A straight line in

the plane will be called a circle.” The idea is that a line is a circle of “infinite

radius” or, better yet, a circle through ∞. We can then say that three distinct

points in C (or C∞) determine a circle. If the points are finite and non-colinear,

then this is the old result from Euclidean geometry. If the points are finite and

colinear, the “circle” is just the line containing the points. If one of the points is

∞, the “circle” is just the line through the other two points. Hitchman deals with

this a bit more cleanly by saying that a cline in C∞ is either a circle of a line. This

comes up in our setting because Möbius transformations map “clines” to “clines”

(Theorem III.3.14).
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Proposition III.3.10. Let z1, z2, z3, z4 ∈ C∞ be distinct. Then the cross ratio

(z1, z2, z3, z4) is real if and only if the four points lie on a circle/cline.

Theorem III.3.14. A Möbius transformation takes circles/clines onto circles/clines.

Proposition III.3.16. For any given circles/clines Γ and Γ′ in C∞ there is a

Möbius transformation T such that T (Γ) = Γ′. Furthermore we can specify that

T take any three points on Γ onto any three points on Γ′. If we do specify Tzj for

j = 2, 3, 4 (distinct) then T is unique.

Proof. Let z2, z3, z4 ∈ Γ and ω2, ω3, ω4 ∈ Γ′ (distinct). By Proposition III.3.9 there

is a unique Möbius transformation T where Tzj = ωj for j = 2, 3, 4. By Theorem

III.3.14, T (Γ) = Γ′.

Note. We now explore how “interiors” and “exteriors” of circles are mapped under

Möbius transformations. First, we need a technical result.

Lemma III.3.B. (Exercise III.3.11.)

Let Γ be a circle/cline in C∞. Suppose z2, z3, z4 ∈ Γ are distinct and ω2, ω3, ω4 ∈ Γ

are distinct. Then for any z, z∗ ∈ C∞ we have (z∗, z2, z3, z4) = (z, z2, z3, z4) if and

only if (z∗, ω2, ω3, ω4) = (z, ω2, ω3, ω4).
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Definition III.3.17. Let Γ be a circle/cline in C∞ through points z2, z3, z4 (dis-

tinct). The points z, z∗ ∈ C∞ are symmetric with respect Γ if

(z∗, z2, z3, z4) = (z, z2, z3, z4). (3.18)

Note. Lemma III.3.B shows that the definition of symmetric lines with respect

to Γ is independent of the choices of the three points in Γ. Notice that if z is

symmetric to itself with respect to Γ then (z, z2, z3, z4) = (z, z2, z3, z4), and so the

cross ratio is real and by Proposition III.3.10, z ∈ Γ. Conversely, if z ∈ Γ then the

cross ratio is real and z = z∗, again by Proposition III.3.10. We now put geometric

meaning on the idea of symmetry.

Note. If Γ is a straight line (maybe a “Euclidean line”), then ∞ ∈ Γ, so with

z4 = ∞, equation (3.18) becomes (see page 48):

(z∗, z2, z3,∞) =
z∗ − z3

z2 − z3

=
z − z3

z2 − z3

= (z, z2, z3,∞).

So we have

∣

∣

∣

∣

z∗ − z3

z2 − z3

∣

∣

∣

∣

=

∣

∣

∣

∣

z − z3

z2 − z3

∣

∣

∣

∣

or |z∗ − z3| = |z − z3| = |z − z3|. Now z3 ∈ Γ and

z3 is actually arbitrary otherwise, so z and z∗ are equidistant from Γ (consider a

line through z and z∗, eliminate the possibility that this line is parallel to Γ, then

let z3 be the point of intersection of this line and Γ). Also,

Im

(

z∗ − z3

z2 − z3

)

= Im

(

z − z3

z2 − z3

)

= −Im

(

z − z3

z2 − z3

)

. (∗)

Now for w ∈ C such that Im
(

w−z3

z2−z3

)

= 0 is a line in C containing points z2 and

z3 (see section I.5). So (∗) implies that z∗ and z lie on opposite sides of Γ (unless
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they lie on Γ in which case z = z∗, as explained above). So, by the equidistant

observation above, segment [z, z∗] is a segment perpendicular to Γ and is bisected

by Γ. So, if z and z∗ are symmetric with respect to straight line Γ, we have

Note. Suppose Γ is a “traditional circle,” Γ = {z | |z−a| = R} where 0 < R < ∞.

Let z2, z3, z4 ∈ Γ be distinct. Define T1(z) = z − a, T2(z) = R2

z
, and T3(z) = z + a.

Let z and z∗ be symmetric with respect to Γ and fixed. Then (3.18) and Proposition

III.3.8 imply

(z, z2, z3, z4) = (z, z2, z3, z4) by (3.18)

= (T1z, T1z2, T1z3, T1z4) by Proposition III.3.8

= (z − a, z2 − a, z3 − a, z4 − a) by the definition of T1

= (z − a, z2 − a, z3 − a, z4 − a) from the definition of cross ratio

as a Möbius transformation

=

(

z − a,
R2

z2 − a
,

R2

z3 − a
,

R2

z4 − a

)

since zj ∈ Γ and R2 = (zj − a)(zj − a)

=

(

T2

(

R2

z − a

)

, T2(z2 − a), T2(z3 − a), T2(z4 − a)

)

by definition of T2

=

(

R2

z − a
, z2 − a, z3 − a, z4 − a

)

by Proposition III.3.8
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=

(

T3

(

R2

z − a

)

, T3(z2 − a), T3(z3 − a), T3(z4 − a)

)

by Prop. III.3.8

=

(

R2

z − a
+ a, z2, z3, z4

)

by definition of T3.

So z∗ =
R2

z − a
+a (the cross ratio is a Möbius transformation and so is one to one), or

(z∗−a)(z−a) = R2, or (z∗−a)(z−a)(z−a) = R2(z−a), or (z∗−a)|z−a|2 = R2(z−a),

or
z∗ − a

z − a
=

R2

|z − a|2
> 0. (∗)

So Im

(

z∗ − a

z − a

)

= 0 and z∗ lies on a line through a and with “direction” z−a (see

section I.5). That is, z∗ ∈ {a+ t(z−a) | 0 < t < ∞} (t is positive because the right

hand side of (∗) is positive). Of course, z also lies on this line (when t = 1). So

a, z, z∗ are colinear and lie on a ray with a as an endpoint (when t = 0). Without

loss of generality, say z is inside Γ (since |z − a||z∗− a| = R2, we cannot have both

z and z∗ outside of Γ). Consider:

Then by similar triangles,
|z∗ − a|

R
=

R

|z − a|
provided line segment [z∗, b] is tangent

to circle Γ. So we see that this gives a geometric meaning to symmetry with respect

to a (traditional) circle. It also follows that a and ∞ are symmetric with respect

to Γ.
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Theorem III.3.19. Symmetry Principle.

If a Möbius transformation takes a circle/cline Γ1 onto the circle/cline Γ2 then any

pair of points symmetric with respect to Γ1 are mapped by T onto a pair of points

symmetric with respect to Γ2.

Note. We now put an orientation on a circle/cline which will allow us to discuss left

and right sides and show that those are preserved under Möbius transformations.

Definition III.3.20. If Γ is a circle/cline then an orientation of Γ is an ordered

triple of distinct points (z1, z2, z3) such that each zj ∈ Γ.

Note. Suppose Γ = R and let z1, z2, z3 ∈ R. Let Tz = (z, z1, z2, z3) = az+b
cz+d

. Then

T (R∞) = R∞, so by Exercise III.3.8, a, b, c, d can be chosen to be real numbers.

Hence

Tz =
az + b

cz + d
=

az + b

|cz + d|2
(cz + d) =

1

|cz + d|2
(ac|z|2 + bd + bcz + adz).

So

Im(Tz) = Im(z, z1, z2, z3) =
1

|cz + d|2
Im(ac|z|2 + bd + bcz + adz)

=
1

|cz + d|2
(ad − bc)Im(z) =

ad − bc

|cz + d|2
Im(z).

Now Im(z, z1, z2, z3) = 0 if and only if Im(z) = 0. That is, Im(z, z1, z2, z3) = 0 is

the real axis. So Im(z, z1, z2, z3) < 0 is the lower half plane if ad − bc > 0 and the

upper half plane if ad − bc < 0.
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Note. For arbitrary circle/cline Γ, let z1, z2, z3 ∈ Γ be distinct. For any Möbius

transformation S we have

{z | Im(z, z1, z2, z3) > 0} = {z | Im(Sz, Sz1, Sz2, Sz3) > 0} by Prop. III.3.8

= {S−1z | Im(z, Sz1, Sz2, Sz3) > 0} replacing z with S−1z

= S−1{z | Im(z, Sz1, Sz2, Sz3) > 0}.

So if S : Γ → R∞, then {z | Im(z, z1, z2, z3) > 0} is S−1 of either the upper half

plane or the lower half plane. This is motivation for the following definition.

Definition. For (z1, z2, z3) an orientation of circle/cline Γ, define the right side of

Γ with respect to (z1, z2, z3) as {z | Im(z, z1, z2, z3) > 0}, and the left side of Γ as

{z | Im(z, z1, z2, z3) < 0}.

Note. If we travel along Γ from z1 to z2 to z3, then the right side of Γ will lie on

our right. We’ll further justify this below.

Theorem III.3.21. Orientation Principle.

Let Γ1 and Γ2 be two circles/clines in C∞ and let T be a Möbius transformation

such that T (Γ1) = Γ2. Let (z1, z2, z3) be an orientation for Γ1. Then T takes the

right side and the left side of Γ1 onto the right side and left side of Γ2 (respectively)

with respect to the orientation (Tz1, Tz2, Tz3).
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Proof. Let z be on the right side of Γ1. Then Im(z, z1, z2, z3) > 0. Now by Theorem

3.8, (z, z1, z2, z3) = (Tz, Tz1, Tz2, Tz3), so Im(z, z1, z2, z3) = Im(Tz, Tz1, Tz2, Tz3) >

0, and Tz is on the right side of T (Γ1) = Γ2 with respect to orientation (Tz1, Tz2, Tz3)

of Γ2. Similarly, if z is on the left side of Γ1, then Tz is on the left side of Γ2.

Note. Giving R∞ the orientation (1, 0,∞) we have the cross ratio (z, 1, 0,∞) = z.

So the right side of R∞ with respect to (1, 0,∞) is the upper half plane Im(z) > 0.

If we travel along R∞ from 1 to 0 to ∞, then the upper half plane is on our right.

This fact, combined with the Orientation Principle, justifies our claim above about

left and right sides.

Note. We are interested in general in mapping one set to another with an analytic

function. This can be done for many special cases using Möbius transformations.

This problem is dealt with in a fairly general setting with the Riemann Mapping

Theorem in section VII.4.

Example. We now find a Möbius transformation which maps G = {z | Re(z) > 0}

onto {z | |z| < 1}. This can be done by mapping the imaginary axis onto the unit

circle and using an orientation of the imaginary axis which puts the right half plane

on the right side of the imaginary axis, and an orientation of the unit circle which

puts the interior on the right. So we use the orientation (−i, 0, i) of the imaginary

axis and (−i,−1, i) of the unit circle. Then (from page 48) (z,−i, 0, i) = 2z
z−i

= S(z)

and (z,−i,−1, i) = 2i
i−1

z+1

z−i
= R(z). So S maps the imaginary axis to the real axis
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and R maps the unit circle to the real axis. So T = R−1 ◦ S maps the imaginary

axis to the unit circle. By the Orientation Principle, we are insured that T is the

desired mapping. We find that T = R−1 ◦ S = z−1

z+1
.
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