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Note. In this section, we finally prove the fact that an analytic function of a com-
plex variable (that is, a continuously differentiable function of a complex variable)
has a power series representation. For more on this idea, see the introductory note
in Section [I1.2. Analytic Functions. Recall that Corollary II1.2.9 states that a
power series Y a,(z — a)™ with radius of convergence R > 0 is analytic on the disk
B(a; R). The main result of this section is the converse of Corollary I111.2.9, given
in Theorem IV.2.8. We use geometric series and (surprisingly) integrals to estab-
lish our main result. We start with a result which one sees in Advanced Calculus

(unfortunately, ETSU does not have a class on advanced calculus) as “Leibniz’s

Rule.”

Proposition IV.2.1. Let ¢ : [a, b] X [¢,d] — C be a continuous function and define
b

g:le,d] — Chbyg(t) = / ©(s,t)ds. Then g is continuous. Moreover, if %—f exists

and is a continuous function on [a,b] X [c,d] then g is continuously differentiable
and

b
_ [

Jgt) = 5 (s,t)ds.

Note. We need the following to prove our main result. It is justified by a straight-

forward computation.

1S

ds = 2.

2m
Lemma IV.2.A. If |z| < 1 then /
o ¢

S — 2
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Note. The text calls the following result “transitory.” However, it will lead us

from “continuously differentiable” to “power series.”

Proposition IV.2.6. Let f : G — C be analytic and suppose B(a;r) C G (r > 0).
If v(t) = a + re®, and 0 < ¢ < 27. Then

f(2) = 1 Lf(w) Juw

for [z —a| <.

Note IV.2.A. We use Proposition IV.2.6 to introduce series as follows:

1 1 1 1 o (z—a\"
w—z_w—al—;:‘;_w—anz_%(w—a>

Since |z — a| < r = |w — al, the series converges absolutely. We then get

fw) _ S Zo.f(i)

n=0

and with () = a + re' for t € [0, 27] we have by Proposition IV.2.6 that

6= g [ e [ (5 (520) )

1 flw) . N —a\" . 1 f(w) N o —a\"
T o v(w—al&gnmno (w—a) > dw = Nh—r»noo<%/7<w—a§(w—a) ) dw)
N

“m 2 [o [ (72 (25) ) o] = [ (G f s ae) -]

n=0

provided that the equality in red™ holds. This requires uniform convergence of the

sequence of functions.



IV.2. Power Series Representations of Analytic Functions 3

Note I'V.2.B. We addressed uniform convergence in Section I1.6. Uniform Conver-
gence. Recall that a sequence of Riemann integrable functions { f,,} which converges
uniformly to function f on [a, b], the Riemann integral of f equals the limit of the

Riemann integrals of f,:

/abf(x)dx:/a (lim fu(x)) f—gggo(/ fula dx).

See my online notes for Analysis 2 (MATH 4227/5227) on Section 8.1. Sequences of
Functions (notice Theorem 8-3) for details. The next lemma shows that a similar

result holds for line integrals.

Lemma IV.2.7. Let v be a rectifiable curve in C and suppose that F;, and F' are

continuous on {~}. If F'is the uniform limit of F,, on {v} then

/WF:/V(lian):lim </F)

Note. Now, we FINALLY resolve our definition of analytic with that used by the

real analysts.

(0.9]

Theorem IV.2.8. Let f be analytic in B(a; R). Then f(z) = Zan(z —a)" for
n=0
|z — a| < R where a, = f(a)/n! and this series has radius of convergence > R.

Note. Several corollaries follow from Theorem IV.2.8. They relate analytic f to

properties of the power series representing it. In particular, Corollary IV.2.13 is
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useful since it relates the value of a particular integral to the value of a particular
derivative (think: integrals are hard to evaluate and derivatives are easy to find

and evaluate, making the given relationship computationally useful).

Corollary IV.2.11. If f : G — Cis analytic and a € G then f(z) = Z an(z—a)"

n=0
for |z — a] < R where R = d(a, 0G).

Corollary IV.2.12. If f : G — C is analytic then f is infinitely differentiable.
Corollary IV.2.13. If f : G — C is analytic and B(a;r) C G then

f(n)(a)_n!/ f(w) dw

- 2mi ), (w — a)"t!

where v(t) = a + re' and t € [0, 27].

Note. We can use Corollary 2.13 to evaluate integrals using derivatives.

Exercise IV.2.7(b). Evaluate / where v(t) = a + re'.

7Z—CL

Solution. We use Corollary 2.13 with f(z) = 1 (which is analytic in all of C, in

particular it is analytic on B(a;7)) and n = 0. Then

0! 1 1
) =1=— / dw or / dw = 2mi.
271 LW —a LW —a

That is, the given integral has the value 27i. Notice that this reduces to Example

IV.1.A of Section IV.1. Riemann-Stieltjes Integrals if we take a =0 and r = 1. [
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Note. The following is an integral step in our proof of the Fundamental Theorem
of Algebra, as we’ll see in Section IV.3. Zeros of an Analytic Function (see The-
orem IV.3.4, Liouville’s Theorem, and Theorem IV.3.5, Fundamental Theorem of

Algebra). It allows us to put a bound on |f™(a)| for an analytic function f.

Theorem IV.2.14. Cauchy’s Estimate. Let f be analytic in B(a; R) and
suppose |f(z)| < M for all z € B(a; R). Then

n!M

1) < 22

Note IV.2.C. The next proposition shows that an analytic function f on B(a; R)
has a primitive (i.e., an antiderivative) on B(a; R). As shown in the proof, a

primitive of f can be found by integrating the power series of f term-by-term.

That is,

an(z —a)" on B(a; R) and F(z Z Cjﬁl —a)"™ on B(a; R)
n

n=0

NE

f(z) =

I
o

n

implies F'(z) = f(z) on B(a; R).

Proposition IV.2.15. Let f be analytic in B(a; R) and suppose v is a closed
rectifiable curve in B(a; R). Then f has a primitive in B(a; R) and so / f=0.
y
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