IV.4. The Index of a Closed Curve

Note. In this section, we consider a geometric property of closed rectifiable curves. We use integrals to define the winding number of such a curve γ about a point a not on the curve. We will relate the winding number of γ to integrals over γ for certain functions in Section 5. Cauchy's Theorem and Integral Formula; see Cauchy's Integral Formula (First and Second Versions), Theorems IV.5.4 and IV.5.6 respectively. The results of this section are foreshadowed by the integral

$$
\int_{\gamma} \frac{1}{z-a} d z=2 \pi i n
$$

where $\gamma(t)=a+r e^{i n t}$ for $t \in[0,2 \pi]$. We computed this integral in Example IV.1.A of Section IV.1. Riemann-Stieltjes Integrals in the special case that $a=0$ and $n=1$. We start with a result concerning the same integrand $1 /(z-a)$, but for an arbitrary closed rectifiable curve γ not containing a (notice that the value of the integral is not given, but instead a property of the integral).

Proposition 4.1. If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin\{\gamma\}$ then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z
$$

is an integer.

Definition. If γ is a closed rectifiable curve in \mathbb{C} then for $a \notin\{\gamma\}$,

$$
n(\gamma ; a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z
$$

is the winding number of γ around a (or index of γ with respect to a).

Definition. Recall that for $\gamma:[0,1] \rightarrow \mathbb{C}$, we have $-\gamma=\gamma^{-1}$ is defined as $\gamma(1-t)$ (see Section IV.1. Riemann-Stieltjes Integrals). If also $\sigma:[0,1] \rightarrow \mathbb{C}$ and $\gamma(1)=\sigma(0)$ then $\gamma+\sigma:[0,1] \rightarrow \mathbb{C}$ is defined as

$$
\gamma+\sigma=\left\{\begin{array}{cc}
\gamma(2 t), & t \in[0,1 / 2] \\
\sigma(2 t-1), & t \in[1 / 2,1]
\end{array}\right.
$$

Proposition IV.4.3. If γ and σ are closed rectifiable curves having the same initial points then
(a) $n(\gamma ; a)=-n(-\gamma ; a)$ for all $a \notin\{\gamma\}$, and
(b) $n(\gamma+\sigma ; a)=n(\gamma ; a)+n(\sigma ; a)$ for all $a \notin\{\gamma\} \cup\{\sigma\}$.

Note. The proof of Proposition IV.4.3 is to be given in Exercise IV.4.1. The idea of the winding number is that it gives, when positive, the number of times γ goes around a in the positive (counter clockwise) direction. If the winding number is negative, then it gives in absolute value the number of times γ goes around a in the negative (clockwise) direction. Conway gives, on his page 82, an informal argument that integrals of $1 /(z-a)$, were they evaluated using antiderivatives (which would have to be some branch of the $\operatorname{logarithm}, \log (z-a)$, but such a branch cannot be defined on γ because of the branch cut, as argued in Note III.2.D of Section III.2. Analytic Functions) would give integral multiples of $2 \pi i$.

Note. Recall that a set X in \mathbb{C} is connected if the only subsets of X which are both open and closed with respect to X are \varnothing and X (see the definition of connected in

Section II.2. Connectedness). A subset $D \subseteq X$ in \mathbb{C} is a component of X if it is a maximal connected subset of X. That is, D is connected and there is no connected subset of X that properly contains D (see Definition II.2.5, also in Section II.2. Connectedness).

Note. For γ a closed rectifiable curve in \mathbb{C}, we have that the set $G=\mathbb{C} \backslash\{\gamma\}$ is an open set. Also, since $\{\gamma\}$ is a compact set (it is a continuous image of the compact set $[0,1]$, and so is compact by Theorem II.5.8(a)), then by the HeineBorel Theorem (Theorem II.4.10), $\{\gamma\}$ is closed and bounded so that it is a subset of $B(0 ; R)$ for some R sufficiently large. Then $\{z \in \mathbb{C}||a|>R\} \subset G$, so that G has one and only one unbounded component. The next result addresses, in part, the winding number of γ about the points in the unbounded component of $\mathbb{C} \backslash\{\gamma\}$.

Theorem IV.4.4. Let γ be a closed rectifiable curve in \mathbb{C}. Then $n(\gamma ; a)$ is constant for a belonging to a component of $G=\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma ; a)=0$ for a belonging to the unbounded component of G.

