
IV.6. The Homotopic Version of Cauchy’s Theorem and Simple Connectivity 1

IV.6. The Homotopic Version of Cauchy’s Theorem

and Simple Connectivity

Note. In this section, we give a more thorough version of Cauchy’s Theorem.

Informally, we show that if path γ0 can be continuously transformed into path γ1

over the region of analyticity of function f , then
∫

γ0
f =

∫
γ1

f. This is accomplished

in Cauchy’s Theorem, Third Version (Theorem IV.6.7). The process of continuously

transforming is accomplished through a “homotopy.”

Definition IV.6.1. Let γ0, γ1 : [0, 1] → G be two closed rectifiable curves in

a region G. Then γ0 is homotopic to γ1 in G if there is a continuous function

Γ : [0, 1]× [0, 1] → G such that Γ(s, 0) = γ0(s) and Γ(s, 1) = γ1(s) for s ∈ [0, 1]

Γ(0, t) = Γ(1, t) for t ∈ [0, 1].

Γ is a homotopy, and this is denoted γ0 ∼ γ1 (where G is understood).

Note. Closed rectifiable paths γ0 and γ1,and homotopy Γ are related as follows:
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Note. We have that for each t ∈ [0, 1], γt(s) = Γ(s, t) is closed. However, we do

not require γt(s) to be rectifiable, though this will, in practice, be the case.

Note IV.6.A. It is fairly easy to show that “homotopic,” ∼, is an equivalence

relation. We have that ∼ is reflexive and γ ∼ γ, as is shown by homotopy Γ(s, t) =

γ(s). If γ0 ∼ γ1 under homotopy Γ(s, t), then γ1 ∼ γ0 as is shown by homotopy

Λ(s, t) = Γ(s, 1 − t). Hence ∼ is symmetric. Suppose γ0
∑

γ1 and γ1 ∼ γ2, say

under homotopies Γ(s, t) and Λ(s, t) respectively. Then

Φ(s, t) =

 Γ(s, 2t) for 0 ≤ t ≤ 1/2

Λ(s, 2t− 1) for 1/2 < t ≤ 1

is a homotopy between γ0 and γ1, so that ∼ is transitive. Therefore, ∼ is an

equivalence relation.

Note IV.6.B. In Section IV.4. The Index of a Closed Curve we saw how to find

the inverse of a path γ (we denoted the inverse as −γ) and how to add paths γ and

σ where γ(1) = σ(0) (denoted γ + σ). We now give a brief description of the use

of these ideas in the area of algebraic topology. This information can be found in

Appendix A of Andrew Wallace’s Algebraic Topology: Homology and Cohomology

(NY: W. A. Benjamin, 1970). This book is still in print through Dover Publications,

but and can also be viewed online on the archive.org (accessed 12/6/2023). We can

form a group out of the equivalence classes of closed paths “based” at some point

x ∈ E. It can also be shown that the set of equivalence classes (called homotopy

classes) of closed paths based at x form a group under the operation + given in

our Section IV.4 (Theorem A-6). This group is called the fundamental group of E

https://faculty.etsu.edu/gardnerr/5510/notes/IV-4.pdf
https://archive.org/details/algebraictopolog0000wall


IV.6. The Homotopic Version of Cauchy’s Theorem and Simple Connectivity 3

with respect to the base point x and is denoted π(E, x) (Definition A-9). If points

x, y ∈ E can be joined by a path in E, then π(E, x) ∼= π(E, y) (Theorem A-7). In

fact, the fundamental group of a space E is a topological invariant of the space;

that is, if spaces E and F are homeomorphic (i.e., there is a one to one and onto

continuous mapping from E to F ) then the fundamental group of E is isomorphic

to the fundamental group of F (Exercise A-4).

Definition. A set G is convex if given any two points a and b in G, the line segment

joining a and b, [a, b], lies entirely in G. The set G is star shaped if there is a point

a in G such that for each z ∈ G, the line segment [a, z] lies entirely in G. Such a

set is a-star shaped.

Note. Some examples of convex and a-star shaped sets are the following:

Proposition IV.6.4. Let G be an open set which is a-star shaped. If γ0 is the

curve which is constantly equal to a (that is, γ0(t) = a for t ∈ [0, 1]), then every

closed rectifiable curve in G is homotopic to γ0.
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Definition. If γ is a closed rectifiable curve in G then γ is homotopic to zero

(γ ∼ 0) if γ is homotopic to a constant curve.

Note. The equivalence class of all curves homotopic to zero form the identity

element in the fundamental group of G (hence the terminology).

Note. We now link Cauchy’s Theorem to curve homotopy. The Second Version of

Cauchy’s Theorem is a special case of the Third Version. We offer a proof of the

Third Version, so we skip a proof of the Second Version.

Theorem IV.6.6. Cauchy’s Theorem (Second Version).

If f : G → C is an analytic function and γ is a closed rectifiable curve in G such

that γ ∼ 0, then
∫

γ f = 0.

Theorem IV.6.7. Cauchy’s Theorem (Third Version).

If γ0 and γ1 are two closed rectifiable curves in G and γ0 ∼ γ1, then
∫

γ0
f =

∫
γ1

f

for every function f analytic on G.

Note. The big idea in the proof of Cauchy’s Theorem—Third Version is to get

integrals over little quadrilaterals that lie inside small disks which are subsets of

G, then to use Proposition IV.2.15. Now for the lengthy proof of Theorem IV.6.7.
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Corollary IV.6.10. If γ is a closed rectifiable curve in G such that γ ∼ 0, then

n(γ; w) = 0 for all w ∈ C \G.

Note. The converse of Corollary 6.10 does not hold. Consider, for example,

Problem IV.6.8: Let G = C \ {a, b}, a 6= b, and γ:

Then for all w ∈ C\G (which is just w = a and w = b) we have n(γ; a) = n(γ; b) =

0:

However γ 6∼ 0 (“convince yourself” as the text says—imagine nails at a and b and

γ as a loop of string).

Note. Next we consider homotopy of non-closed rectifiable curves.
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Definition. If γ0, γ1 : [0, 1] → G are two rectifiable curves in G such that γ0(0) =

γ1(0) = a and γ0(1) = γ1(1) = b. Then γ0 and γ1 are fixed-end-point homotopic

(“FEP” homotopic) if there is a continuous map Γ : [0, 1]× [0, 1] → G such that Γ(s, 0) = γ0(s) and Γ(s, 1) = γ1(s) for s ∈ [0, 1]

Γ(0, t) = a and Γ(1, t) = b for t ∈ [0, 1].

Note. For two given points a, b ∈ G, the relation of fixed-end-point homotopic

between curves with a and b as their initial and final end points (respectively)

is an equivalence relation, is as to be shown in Exercise IV.6.3. If γ0 and γ1 are

rectifiable curves from a to b, then γ0+(−γ1) = γ0 = γ1 is a closed rectifiable curve.

Suppose γ0 and γ1 are fixed-end-point homotopic, and let Γ be the homotopy.

Define γ : [0, 1] → G as

γ(s) =


γ0(3s) for 0 ≤ s ≤ 1/3

b for 1/3 < s < 2/3

−γ1(3− 3s) for 2/3 ≤ s ≤ 1.

Notice that γ starts at a, traces out γ0 to b, “sits” at b (for 1/3 ≤ s ≤ 2/3), and
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then traces out −γ1 back to a. We now show that γ
∑

0. Define Λ : I2 → G as

Λ(s, t) =


Γ(3s(1− t), t) for 0 ≤ s ≤ 1/3

Γ(1− t, 3s− 1 + 2t− 3st) for 1/3 < s < 2/3

γ1((3− 3s)(1− t)) for 2/3 ≤ s ≤ 1.

Since

Γ(3s(1− t), t)|s=1/3 = Γ(1− t, t) = γ)1− t, 3s− 1 + 2t− 3st)|s=1/3,

Γ(1− t, 3s− 1 + 2t− 3st)|s=2/3 = Γ(1− t, 1) = −γ1(t) = γ1((3− 3s)(1− t))|s=2/3,

and Γ and γ1 are continuous, then Λ(s, t) is continuous on I2. Notice that for a

fixed value of t, the first piece of Λ takes on the same values as Γ(s, t) for s ranging

from 0 to 1− t, the second piece of Λ takes on the same values as Γ(1− t, t′) for t′

ranging from t to 1, and the third piece of Λ takes on the same values as −γ1(t
′)

for t′ ranging from 1− t to 0. See the figure below.
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Now Λ(0, t) = Γ(0, t) = a and Λ(1, t) = −γ1(0) = γ1(1) = b. Also

Λ(s, 0) =


Γ(3s, 0) for 0 ≤ s ≤ 1/3

Γ(1, 3s− 1) for 1/3 < s < 2/3

γ1(3− 3s) for 2/3 ≤ s ≤ 1

=


γ0(3s) for 0 ≤ s ≤ 1/3

b for 1/3 < s < 2/3

γ1(3− 3s) for 2/3 ≤ s ≤ 1

= γ(s),

and

Λ(s, 1) =


Γ(0, t) for 0 ≤ s ≤ 1/3

Γ(0, 1) for 1/3 < s < 2/3

γ1(0) for 2/3 ≤ s ≤ 1.

=


a for 0 ≤ s ≤ 1/3

a for 1/3 < s < 2/3

a for 2/3 ≤ s ≤ 1

= a.

So by definition, γ is a constant curve (i.e., γ(t) = a for all t ∈ [0, 1]) and γ ∼ 0.

By Cauchy’s Theorem Second Version (Theorem 6.6) we have
∫

γ f =
∫

γ0−γ1
f = 0,

from which we get the next theorem.

Theorem IV.6.13. Independence of Path Theorem.

If γ0 and γ1 are two rectifiable curves in G from a and b and γ0 and γ1 are fixed-

end-point homotopic then
∫

γ0
f =

∫
γ1

f for any function f analytic in G.
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Note. The following definition is really a topological concept.

Definition. An open set G is simply connected if G is connected and every closed

curve G is homotopic to zero.

Note. A region is simply connected if it is connected and has “no holes”:

Note. We have already seen a region that is not simple in connection with Cauchy’s

Theorem (First Version). See Note IV-5-A. In that case we required that simple

closed curves γk have winding numbers which sum to 0 got all points outside of

region G on which function f is analytic (i.e.,
∑m

k=1 N(γk; w) = 0 for all x ∈ C\G).

This insured that the sum of the integrals over the γk of f was 0. In the next version

of Cauchy’s Theorem, we consider only one closed rectifiable curve, but we have

region G as a simply connected so that the winding number of γ about all points

outside of G is 0. Predictably, this implies that the integral of f over γ is 0.
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Theorem IV.6.15. Cauchy’s Theorem (Fourth Version).

If G is simply connected then
∫

γ f = 0 for every closed rectifiable curve and every

analytic function f on G.

Note. The following brings primitives back into the picture. Recall that
∫

γ f = 0

if γ is closed and f is continuous with a primitive on G (by Theorem IV.1.18, our

Fundamental Theorem of Calculus, or by Corollary IV.1.22).

Corollary IV.6.16. If open G is simply connected and f : G → C is analytic in

G then f has a primitive in G.

Note. The Next result is similar to Corollary 6.16, but deals with branches of the

logarithm.

Corollary IV.6.17. Let G be simply connected and let f : G → C be an analytic

function such that f(z) 6= 0 for any z ∈ G. Then there is an analytic function

g : G → C such that f(z) = exp(g(z)) (i.e., g is a branch of log(f(z)) on G). If

z0 ∈ G and ew0 = f(z0), we may choose g such that g(z0) = w0.

Note. Corollary 6.17 verifies some observations we have made about branches of

the logarithm. For example, let σ = {z | z = teit, t ∈ [0,∞)}:
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Then G is simply connected, f(z) = z is nonzero on G, and so there is a branch

of the logarithm on G. One such branch can be defined as follows. Consider a

partition of C \ σ into regions:

For z ∈ Rn define log(z) = log |z|+θi where θ is an argument of z in (2π(n−1), 2πn].
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