IV.7. Counting Zeros; The Open Mapping Theorem

Note. We now use Cauchy's Integral Theorem to (1) count the number of zeros of f inside a curve, and (2) prove that a nonconstant analytic function maps open sets to open sets (WHOA!).

Theorem IV.7.2. Let G be a region and let f be an analytic function on G with zeros $a_{1}, a_{2}, \ldots, a_{m}$ (repeated according to multiplicity). If γ is a closed rectifiable curve in G which does not pass through any point a_{k} and if $\gamma \sim 0$ in G, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{k=1}^{m} n\left(\gamma ; a_{k}\right)
$$

Corollary IV.7.3. Let f, G, and γ be as described in Theorem 7.2, except that $a_{1}, a_{2}, \ldots, a_{m}$ are the points in G such that $f(z)=\alpha$. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-\alpha} d z=\sum_{k=1}^{m} n\left(\gamma ; a_{k}\right)
$$

Example IV.7.A. Evaluate $\int_{\gamma} \frac{2 z+1}{z^{2}+z+1} d z$ where $\gamma(t)=2 e^{i t}$ for $t \in[0,2 \pi]$.

Definition. A simple root of the equation $f(z)=\zeta$ is a zero of function $f(z)-\zeta$ of multiplicity 1.

Note. Exercise IV.7.3 says: "Let f be analytic in $B(a ; R)$ and suppose that $f(a)=0$. Show that a is a zero of multiplicity m if and only if $f^{(m-1)}(a)=$ $f^{(m-2)}(a)=\cdots=f^{\prime}(a)=f(a)=0$ and $f^{(m)}(a) \neq 0$." So a is a simple root of $f(z)=0$ if $f(a)=0$ and $f^{\prime}(a) \neq 0$.

Theorem IV.7.4. The Stability Theorem for Orders of Zeros of Equations.

Suppose f is analytic in $B(a ; R)$ and let $\alpha=f(a)$. If $f(z)-\alpha$ has a zero of order m at $z=a$, then there is an $\varepsilon>0$ and $\delta>0$ such that for $0<|\zeta-\alpha|<\delta$ the equation $f(z)=\zeta$ has exactly m simple roots in $B(a ; \varepsilon)$.

Note. The proof of Theorem IV.7.4 is given in a, sort of, self-contained supplement which describes the concept of stability.

Note. We see from Theorem 7.4 that any ζ with $|\zeta-\alpha|<\delta$ (i.e., $\zeta \in B(\alpha ; \delta)$), there is a solution to $f(z)=\zeta$ in $B(a ; \varepsilon)$. So $f(B(a ; \varepsilon)) \supseteq B(\alpha ; \delta)$. This observation will be used to prove the Open Mapping Theorem.

Theorem IV.7.5. The Open Mapping Theorem.

Let G be a region (open connected set) and suppose that f is a nonconstant analytic function on G. Then for any open set U in $G, F(U)$ is open.

Note. Of course, there is no parallel of the Open Mapping Theorem in the real setting. A simple cubic polynomial of a real variable can map an open interval to a closed interval:

Corollary IV.7.6. Suppose $f: G \rightarrow \mathbb{C}$ is one to one, analytic and $f(G)=\Omega$. Then $f^{-1}: \Omega \rightarrow \mathbb{C}$ is analytic and $\left(f^{-1}\right)^{\prime}(\omega)=1 / f^{\prime}(z)$ where $\omega=f(z)$.

Note. A somewhat surprising implication of the Open Mapping Theorem is given in Exercise IV.7.4: "Suppose that $f: G \rightarrow \mathbb{C}$ is analytic and one-one: show that $f^{\prime}(z) \neq 0$ for any z in G." Again, this is not valid in the real setting as we can see by considering $f(x)=x^{3}$ in an open interval containing $x=0$.

