IX.2. Analytic Continuation Along a Path.

Note. Consider a function f analytic on a region G. If f_{1} is a function analytic on a region G_{1} such that G_{1} properly contains G and $f(z)=f_{z}(z)$ for all $z \in G$, then f_{1} is an "analytic continuation" of f from G to G_{1}. In Section VII.8, the Riemann zeta function is defined on $\operatorname{Re}(z)>1$ and then extended to $\operatorname{Re}(z)>0$, $z \neq 1$, to $\operatorname{Re}(z)>-1, z \neq 1$, and finally to $\mathbb{C} \backslash\{1\}$. This is an example of analytic continuation.

Note. Another example of analytic continuation is given by $g(z)=\sum_{n=1}^{\infty}(-1)^{n-1} z^{n} / n$ for $|z|<1$ and $f(z)=\log (1-z)$ (the principal branch of the logarithm) for $\operatorname{Re}(z)>-1$. Similar examples are given by different power series representations for the same analytic functions. For example, with $f(z)=1 / z$ the power series for f centered at 1 , denote it f_{1}, is valid for $|z-1|<1$ and the power series for f centered at 2 , denote it f_{2}, is valid for $|z-2|<2$. So f is an analytic continuation of f_{2}, and f_{2} is an analytic continuation of f_{1}. We revise this verbiage some in Definition IX.2.2

Definition IX.2.1. A function element is a pair (f, G) where G is a region and f is an analytic function on G. For a given function element (f, G), the germ of f at a is the collection of all functions elements (g, D) such that $a \in D$ and $f(z)=g(z)$ for all z in a neighborhood of a, denoted $[f]_{z}$.

Note. Notice that if $(g, D) \in[f]_{a}$ where f is defined on a region G containing a, then there is a neighborhood of a such that $f(z)=g(z)$ for all z in the neighborhood. So we also have $(f, G) \in[g]_{z}$ (and conversely).

Definition IX.2.2. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a path and suppose that for each $t \in[0,1]$ there is a function element $\left(f_{t}, D_{t}\right)$ such that
(a) $\gamma(t) \in D_{t}$;
(b) for each $t \in[0,1]$ there is a $\delta>0$ such that $|s-t|<\delta$ implies $\gamma(s) \in D_{t}$ and

$$
\left[f_{s}\right]_{\gamma(s)}=\left[f_{t}\right]_{\gamma(s)} .
$$

Then $\left.f_{1}, D_{1}\right)$ is the analytic continuation of $\left(f_{0}, D_{0}\right)$ along the path γ, or " $\left(f_{1}, D_{1}\right)$ is obtained from $\left(f_{0}, D_{0}\right)$ by analytic continuation along γ."

Note. Schematically, Definition IX.2.2 gives:

Definition/Note IX.2.A. Notice that since $\{\gamma(s)||s-t|<\delta\}$ is a connected set, then there is a connected component of $D_{s} \cap D_{t}$ which contains $\gamma(t)$ and $\gamma(s)$. In the definition of "germ of f at a " we have equality of functions for z in "a neighborhood" of a; by convention we take the D_{s} and D_{t} sufficiently small so that said neighborhood is the connected component of $D_{s} \cap D_{t}$ which contains $\gamma(s)$. (Conway comments on page 214: "Observe that the sets D_{t} in the definition can be enlarged or diminished without affecting the fact that there is a continuation.") Then $\left[f_{s}\right]_{\gamma(s)}=\left[f_{t}\right]_{\gamma(s)}$ for $|s-t|<\delta$ implies that $f_{s}(z)=f_{t}(z)$ for z in the component of $D_{s} \cap D_{t}$ that contains $\gamma(s)$.

Note. Conway states (page 214): "Whether for a given curve and a given function element there is an analytic continuation along the curve can be a difficult question." As a result, we give no existence theorems about analytic continuations. However, we state a uniqueness theorem, the Monodromy Theorem (theorem IX.3.6), in the next section which gives a condition when the analytic continuation along two different paths to the same point yields the same function (keep in mind extensions of a branch of the logarithm along paths about 0).

Theorem IX.2.4. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a path from a to b and let $\left\{\left(f_{t}, D_{y}\right) \mid 0 \leq\right.$ $t \leq 1\}$ and $\left\{\left(g_{t}, B_{t}\right) \mid 0 \leq t \leq 1\right\}$ be analytic continuations along given path γ such that $\left[f_{0}\right]_{a}=\left[g_{0}\right]_{a}$. Then $\left[f_{1}\right]_{a}=\left[g_{1}\right]_{a}$.

Note. The equality of $\left[f_{1}\right]_{b}$ and $\left[g_{1}\right]_{b}$ in Proposition IX.2.4 gives a uniqueness along a given path of "germ of f_{1} at b." So we have the following definition.

Definition IX.2.6. If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a path from a to b and $\left\{\left(f_{t}, D_{t}\right) \mid 0 \leq t \leq 1\right\}$ is an analytic continuation along γ then the germ $\left[f_{1}\right]_{b}$ is the analytic continuation of $\left[f_{0}\right]_{a}$ along path γ.

Note. The next definition concerns maximizing the domain through the process of analytic continuation.

Definition IX.2.7. If (f, G) is a function element then the complete analytic function obtained from (f, G) is the collection \mathcal{F} of all germs $[g]_{b}$ for which there is a point $a \in G$ and a path from a to $b \in \mathbb{C}$ such that $[g]_{b}$ is the analytic continuation of $[f]_{a}$ along γ. A collection of germs \mathcal{F} is a complete analytic function if there is a function element (f, G) such that \mathcal{F} is the complete analytic function obtained from (f, G).

Note. The complete analytic function \mathcal{F} above is a collection of germs (of functions) more than a function itself. We define $\mathcal{R}=\left\{\left(z,[f]_{z}\right) \mid[f]_{z} \in \mathcal{F}\right\}$ and then define $\mathcal{F}: \mathcal{R} \rightarrow \mathbb{C}$ as $\mathcal{F}\left(\left(z,[f]_{z}\right)\right)=f(z)$. However, we need more structure on the domain \mathcal{R} of \mathcal{F} in order to discuss analyticity. This is accomplished in Section IX. 5 ("The Sheaf of Germs of Analytic Functions on an Open Set") when we define the Riemann Surface of \mathcal{F} in Definition IX.5.14.

