
IX.4. Topological Spaces and Neighborhood Systems 1

IX.4. Topological Spaces and Neighborhood Systems.

Note. A topological space consists of a set X of points and a set T of subsets

of X which are, by definition, open. In the formal definition of a topological

space, we take our lead from the behavior of open sets as given in Proposition

II.1.9. Many of the results will be familiar from the metric space setting and

the proofs will often be similar. Most of the results of this section are covered

in our Introduction to Topology (MATH 4357/5357) class. Notes from this class

based on J. R. Munkres’ Topology, 2nd Edition (Prentice Hall, 2000) are online

at http://faculty.etsu.edu/gardnerr/5357/notes.htm. We omit proofs from

most of this section and instead refer to the proofs either from the metric space

setting or from the Introduction to Topology setting.

Definition IX.4.1. A topological space is a pair (X,T ) where X is a set and T is

a collection of subsets of X having the following properties:

(a) ∅ ∈ T an dX ∈ T ;

(b) if U1, U2, . . . , Un are in T then ∩n
j=1

Uj ∈ T ;

(c) if {Ui | i ∈ I} is any collection of sets in T then ∪i∈IUi is in T .

Note. Similar to the definition of “closed set” in the metric space setting (Defini-

tion II.1.10) we have the following.
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Definition IX.4.2. A subset F of a topological space X is closed if X \F is open.

A point a ∈ X is a limit point of a set A if for every open set U that contains a

there is a point x in A ∩ U such that x 6= a.

Note. The next result corresponds to Proposition II.1.11 and Theorem 17.1 of

Munkres.

Proposition IX.4.3. Let (X,T ) be a topological space. Then:

(a) ∅ and X are closed sets;

(b) if F1, F2, . . . , Fn are closed sets then F1 ∪ F2 ∪ · · · ∪ Fn is closed;

(c) if {Fi | i ∈ I} is a collection of closed sets then ∩i∈IFi ic a closed set.

Note. The nest result corresponds to Proposition II.1.13(b) and Corollary 17.7 of

Munkres.

Proposition IX.4.4. A subset of a topological space is closed if and only if it

contains all its limit points.
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Note. Not all topological spaces have open sets which are the result of being

open based on the ε-definition of open under a metric. Such spaces are said to

be nonmetrizable. One way to show that a topological space is nonmetrizable is

to show that its open sets violate the properties of open sets in a metric space.

See Section 21 of Munkres, “The Metric Topology (continued),” for two examples

of nonmetrizable spaces. Conway gives these nonmetrizable spaces on page 223,

one of which we give here. By the way, a topological space for which there is a

metric producing the open sets, is called metrizable and the topology is the metric

topology. First we need a definition of limit in a topological space.

Definition. In topological space (X,T ), sequence {xn} ⊂ X has limit x ∈ X if for

all open sets U containing x, there is N ∈ N such that for n ≥ N we have xn ∈ U .

Example. Let X = [0, 1] and let T consist of all sets U such that:

(i) if 0 ∈ U then X \ U is either empty or a sequence of points in X (i.e., X \ U

is either empty or countable);

(ii) if 0 6∈ U then U can be any set.

“It is left to the reader to prove that (X,T ) is a topological space.” ASSUME there

is a metric d for which T is the metric topology (i.e., assume (X,T ) is metrizable).

That is, U ∈ T ) if and only if for each x ∈ U there is ε > 0 such that B(x; ε) ⊂ U .

Let A = (0, 1). If U ∈ T and 0 ∈ U then there is a ∈ U ∩ A. So 0 is a limit point

of A in (X,T ). Then (under the metric d) there is a sequence {tn} ⊂ A such that

d(tn, 0) → 0. For U = [0, 1] \ {t1, t2, . . .} we have that 0 ∈ U and U is open (by (i)
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since X \ U = {t1, t2, . . .}). But then for tn → 0 in (X,T ) we need tn ∈ U for all

n ≥ N for some N ∈ N. Since no tn ∈ U , this CONTRADICTION shows that the

assumption that (X,T ) is metrizable is false. This example is similar to Munkres’

examples which are based on the Sequence Lemma (Munkres’ Lemma 21.2) which

states that in a metrizable space, if t ∈ A− then there is a sequence {tn} ⊂ A such

that tn → t in the topological space.

Note. You are familiar with limits of sequences and functions being unique when

they exist. However, there are topological spaces where limits may not be unique.

These are not the places we want to do analysis or applied math! We prefer

spaces in which we can separate points. For a general discussion on this, see

Munkres’ Section 31, “The Separation Axioms.” Here, we restrict our attention to

one particular separation axiom.

Definition IX.4.5. A topological space (X,T ) is a Hausdorff space if for any two

distinct points a and b in X there are disjoint open sets U and V such that a ∈ U

and b ∈ V . Such a space is also called T2.

Note. The definition of “connected set” is the same as for the metric space set-

ting (Definition II.2.1). This is the same as Munkres’ definition (see Section 23,

“Connected Sets”) though the terminology is slightly different.
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Definition IX.4.6. A topological space (X,T ) is connected if the only nonempty

subset of X which is both open and closed is the set X itself.

Note. The following result corresponds to Lemma II.2.6 (see Munkres’ Theorem

25.1).

Proposition IX.4.7. Let (X,T ) be a topological space. Then X = sup{Ci |

i ∈ I} where each Ci is a component of X (a maximal connected subset of X).

Furthermore, distinct components of X are disjoint and each component is closed.

Note. Since there is no metric necessarily present for a topological space, then

we cannot use the usual ε/δ definition of limit of a function. Instead, we take our

inspiration from Proposition II.5.3 (see Munkres’ Section 18, “Continuous Func-

tions”).

Definition IX.4.8. Let (X,T ) and (Ω,S) be topological spaces. A function

f : X → Ω is continuous if f−1(∆) ∈ T whenever ∆ ∈ S.

Note. The next result expresses continuity in terms of closed sets. Part (c) is

analogous to the ε/δ definition where “ for all ε > 0” is replaced with “for all open

sets. . . .”
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Proposition IX.4.9. Let (X,T ) and (Ω,S) be topological spaces and let f : X →

Ω be a function. Then the following are equivalent:

(a) f is continuous;

(b) if Γ is a closed subset of Ω then f−1(Γ) is a closed subset of X ;

(c) if a ∈ X and if f(a) ∈ ∆ ∈ S then there is a set U ∈ T such that a ∈ U and

f(U) ⊂ ∆.

Note. The next proposition justifies the use of the term “continuous” for functions

satisfying Definition IX.4.8 and Proposition IX.4.9. A continuous function maps

connected sets to connected sets; it doesn’t “break” a continuous set ( a “contin-

uum”), it keeps it continuous. This is related to Theorem II.5.8(b) from the metric

space setting (and is Munkres’ Theorem 23.4).

Proposition IX.4.10. Let (X,T ) and (Ω,S) be topological spaces and suppose

that X is connected. If F : X → Ω is a continuous function such that f(X) = Ω

then Ω is connected.

Note. Our definition os “compact set” is the usual one (the universal one, really)

and we can show that continuous functions map compact sets to compact sets). Bo

Proposition IX.4.12 is related to Theorem II.5.8(a) and is Munkres’ Theorem 26.5.
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Definition IX.4.11. A set K ⊂ X is compact is for every sub-collection O of T

such that K ⊂ ∪{U | U ∈ O} there are a finite number of sets U1, U2, . . . , Un in O

such that K ⊂ ∪n
k=1

Uk.

Proposition IX.4.12. Let (X,T ) and (Ω,S) be topological spaces and suppose

K is a compact subset of X . If f : X → Ω is a continuous function then f(K) is

compact in Ω.

Definition IX.4.13. If Y is a subset of a topological space (X,T ) then TY =

{U ∩ Y | U ∈ T } is the relative topology of Y . A subset W of Y is relatively open

in Y if W ∈ TY . W is relatively closed in Y if Y \ W ∈ TY .

Proposition IX.4.14. Let (X,T ) be a topological space and let Y be a subset of

X .

(a) If X is compact and Y is a closed subset of X then (Y,TY ) is compact.

(b) Y is a compact subset of X if and only if (Y,TY ) is a compact topological

space.

(c) If (X,T ) is a Hausdorff space then (Y,TY ) is a Hausdorff space.

(d) If (X,T ) is a Hausdorff space and (Y,TY ) is compact then Y is a closed subset

of X .
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Note. The metric space equivalents of Proposition IX.4.14 are Proposition II.4.3(b)

for part (a) (see Munkres’ Theorem 26.2), and Proposition II.4.3(a) for part (d)

(see Munkres’ Theorem 26.3); by the way, Conway gives a proof of part (d) on

page 225. Parts (b) and (c) don’t really have metric space equivalents (we should

observe that every metric space is a Hausdorff topological space). Munkres’ Lemma

26.1 is related to part (b) and Munkres’ Theorem 31.2(a) is part (c).

Note. The following corollary is similar to the separation property called “regular”

(or “T2”) which requires that for any closed set Y and any point a ∈ X \ Y there

are open sets U and V where a ∈ U , Y ⊂ V , and U ∩ V = ∅. The corollary is

similar but requires Y to be compact as opposed to closed (we know every compact

set in a Hausdorff space is closed by Proposition IX.4.14(d), but there are closed

sets which are not compact).

Corollary IX.4.15. Let (X,T ) be a Hausdorff space and let Y be a compact

subset of X . Then for each point a ∈ X \ Y there are open subsets U and V of X

such that a ∈ U , Y ⊂ V , and U ∩ V = ∅.

Note. Munkres defines a basis for a topology on set X as a collection B of subsets

of X such that

(1) For each x ∈ X there is at least one B ∈ B with x ∈ B.

(2) If x ∈ B1 ∩ B2, then there is B3 ∈ B such that x ∈ B3 and B3 ⊂ B1 ∩ B2.

The topology T generated by B is defined as: A subset U of X is in T if for each
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x ∈ U there is B ∈ B such that x ∈ B and B ⊂ U (see Munkres, page 78).

Conway introduces the same idea, but does so “locally” by first considering a given

x ∈ X and the dealing with basis elements that contain x. He then denotes this

“local basis” as N2 and then defines a neighborhood system on X as {Nx | x ∈ X}.

So Conway’s “neighborhood system” on X is the same as Munkres’ “basis” for

a topology. In both cases, we must confirm that these systems/bases actually

generate a topology on X .

Note. To inspire a neighborhood system/basis for a topology, Conway draws a

parallel with the generation of a metric topology. First, the metric is used to

define open balls and then open ε-balls are used to define open sets. The neighbor-

hood system/basis elements play the role of the open balls and the open sets are

then defined in terms of the neighborhood systems/basis elements (in Proposition

IX.4.17(b) for Conway).

Definition IX.4.16. Let X be a set and suppose that for each point x ∈ X there

is a collection Nx of subsets of X having the following properties:

(a) for each U ∈ Nx we have x ∈ U ;

(b) if U, V ∈ Nx, then there is a W ∈ Nx such that W ⊂ U ∩ V ;

(c) if U ∈ Nx and V ∈ Ny then for each z ∈ U ∩ V there is a W ∈ Nx such that

W ⊂ U ∩ V .

The collection {Nx | x ∈ X} is a neighborhood system of X .
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Note. By letting x = y = z in condition (c) of Definition IX.4.16, we can see that

condition (b) follows. So to show that a collection of sets is a neighborhood system,

we need only verify parts (a) and (c) of the definition.

Note. Part (b) is the most important part of Proposition IX.4.17 since it shows how

to create a topology on X from a neighborhood system on X . This is the same as

Munkres’ Theorem 13.A (see my notes at: http://faculty.etsu.edu/gardnerr/

5357/notes/Munkres-13.pdf) for a basis of a topology. We include a proof of

Proposition IX.4.17(b).

Proposition IX.4.17.

(a) If (X,T ) is a topological space and Nx = {U ∈ T | x ∈ U} then {Nx | x ∈ X}

is a neighborhood system on X .

(b) If {Nx | x ∈ X} is a neighborhood system on a set X then let T = {U |

x in U implies there is a V in Nx such that V ⊂ U}. Then T is a topology

on X and Nx ⊂ T for each x.

(c) If (X,T ) is a topological space and {Nx | x ∈ X} is defined as in part (a),

then the topology obtained as in part (b) is again T .

(d) If {Nx | x ∈ X} is a given neighborhood system and T is the topology defined

in part (b), then the neighborhood system obtained from T contains {Nx |

x ∈ X}. That is, if V is one of the neighborhoods of x obtained from T then

there is a U in Nx such that U ⊂ V .
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Definition IX.4.18. If {Nx | x ∈ X} is a neighborhood system on X and T is

the topology defined in part (b) of Proposition 4.17, then T is called the topology

induced by the neighborhood system.

Note. The final result relates properties of neighborhood systems to Hausdorff

topologies.

Corollary IX.4.19. If {Nx | x ∈ X} is a neighborhood system on X and T is the

induced topology then (X,T ) is a Hausdorff space if and only if for any two distinct

points x, y ∈ X there is a set U ∈ Nx and a set V ∈ Ny such that U ∩ V = ∅.
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