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IX.6. Analytic Manifolds.

Note. In this section we define a topological space (an “analytic manifold”) on

which we define a complete analytic function from the manifold into C. In this

sense, we will map a Riemann surface into C in an analytic way (see Theorem

IX.6.9). We extend the Maximum Modulus Theorem, Liouville’s Theorem, and

the Open Mapping Theorem to this setting.

Note. We start with a motivational example. Consider the extended plane C∞ =

C ∪ {∞}. If a ∈ C∞ and a 6= ∞ then a finite neighborhood Ua of a is an open

subset of the plane C. We define ϕa : Ua → C as the identity map ϕa(z) = z. Then

ϕa gives a “coordinatization” of the neighborhood Ua (though trivially). If a = ∞

then let U∞ = {z | |z| > 1} ∪ {∞} and define ϕ∞ : U∞ → C as

ϕ∞(z) =







1/z if z 6= ∞

0 if z = ∞
.

Notice ϕ∞ is a homeomorphism (see Definition VIII.2.1) of U∞ onto B(0; 1). So to

each point a ∈ C∞ there is a pair (Ua, ϕa) such that Ua is a neighborhood of a and

ϕa is a homeomorphism of Ua onto an open subset of the plane. Notice that since

each ϕa is one to one then ϕ−1

a exists (we have ϕa : C∞ → C and ϕ−1

a : C → C∞).

We now consider what happens when Ua ∩ Ub 6= ∅. First, suppose a 6= ∞ and

Ua ∩ U∞ 6= ∅. Let G∞ = B(0; 1) = ϕ∞(U∞) and let Ga = ϕa(Ua) = Ua. Then

ϕ−1

∞ (z) =







1/z if z 6= 0

∞ if z = 0
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for all z ∈ G∞, and so ϕa◦ϕ−1

∞ (z) = 1/z for all z ∈ ϕ∞(U∞∩Ua) (since ∞ /∈ Ua then

0 /∈ ϕ∞(U∞∩Ua) ⊂ C and ϕa◦ϕ−1

∞ (z) = 1/z is analytic on ϕ∞(U∞∩Ua)). Similarly

ϕ∞ ◦ ϕ−1

a (z) = 1/z for all z ∈ ϕa(Ua ∩ U∞) and ϕ∞ ◦ ϕ−1

a (z) = 1/z is analytic on

ϕa(Ua ∩ U∞). If a = ∞ then Ua ∩ U∞ = U∞ and ϕa ◦ ϕ−1

∞ (z) = ϕ∞ ◦ ϕ−1

a (z) = z

is analytic on ϕ∞(U∞ ∩ Ua) = ϕa(Ua ∩ U∞) = G∞ = B(0; 1). If both a and b are

finite then ϕa ◦ ϕ−1

b (z) = z for all z ∈ ϕb(Ub ∩ Ua) = Ub ∩ Ua. In each case, notice

that ϕa ◦ ϕ−1

b : C → C is analytic on its domain ϕb(Ub ∩ Ua) = ϕb(Ua ∩ Ub). Also,

each ϕa : C∞ → C. This example inspires the following two definitions.

Definition IX.6.1. Let X be a topological space. A coordinate patch on X is a

pair (U,ϕ) where U is an open subset of X and ϕ is a homeomorphism of U onto

an open subset of C. If a ∈ U then the coordinate patch (U,ϕ) = (Ua, ϕa) is said

to contain a.

Definition IX.6.2. An analytic manifold (or analytic surface) is a pair (X,Φ)

where X is a Hausdorff connected topological space and Φ is a collection of coor-

dinate patches on X such that

(i) each point of X is contained in at least one member of Φ, and

(ii) if (Ua, ϕa), (Ub, ϕb) ∈ Φ with Ua ∩Ub 6= ∅ then ϕa ◦ϕ−1

b is an analytic function

of ϕb(Ua ∩ Ub) ⊂ C onto ϕa(Ua ∩ Ub) ⊂ C.

The set Φ of coordinate patches is an analytic structure on X .
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Note. The relationships between the functions and sets are as follows:

Note. We follow Conway’s terminology and use the term “analytic surface” for

the structures studied here. Since ϕ1 ◦ϕ−1

b maps subsets of C into C (analytically),

then the term “surface” or “1-dimensional complex manifold” is appropriate. In

the event we considered analytic functions mapping subsets of C
n into C

n, then we

could consider n dimensional complex manifolds.

Note. Trivially, C is an analytic surface. We see that C∞ is also an example of an

analytic surface.

Note. By convention, we impose one more condition on the collection of coordinate

patches Φ. First, we need a preliminary result.
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Proposition IX.6.3. Let (X,Φ) be an analytic surface.

(a) Let V be an open connected subset of X . If

ΦV = {(U ∩ V, ϕ) | (U,ϕ) ∈ Φ}

then (V,ΦV ) is an analytic surface.

(b) If Ω is a topological space such that there is a homeomorphism h of X onto Ω

then with

Φ = {(h(U), ϕ ◦ h−1) | (U,ϕ) ∈ Φ}

we have that (Ω,Ψ) is an analytic surface.

Note. Consider the 2-sphere S = {(x1, x2, x3) ∈ R
3 | x2

1+x2

2+x2

3 = 1} of Section 1.6

under the subspace topology where S ⊂ R
3 and R

3 has the usual metric topology.

S is homeomorphic to C∞, so by Proposition IX.6.3(b), S is an analytic surface

since C∞ is.

Note. By Proposition IX.6.3(a), if (U,ϕ) ∈ Φ and V is an open subset off U

then (V, ϕ) is a coordinate patch on X (technically, we are using ϕ restricted to V ,

ϕ|V , here; Conway states that “. . . for the sake of brevity, care will not be taken in

mentioning the appropriate domain of a function . . . ” [page 234]). By convention,

we take the following as a third property of analytic surfaces:

Definition IX.6.2 (continued). An analytic manifold (or analytic surface) is a

pair (X,Φ) where X is a Hausdorff connected topological space and Φ is a collection

of coordinate patches on X such that (i) and (ii) above hold and:

(iii) if (U,ϕ) ∈ Φ and V is an open subset of U then (V, ϕ) ∈ Φ.
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Note. When giving an analytic structure Φ on a Hausdorff connected topological

space X , we only need to give the coordinate patches that “generate” Φ in the

sense given in Definition IX.6.3(iii).

Note. Other sources deal with Definition IX.6.2(iii) in different ways. Similar

to Conway’s approach, Wald in his General Relativity takes it by convention that

Φ is maximal in the sense of condition (iii) (in order to avoid the complication

of defining new manifolds from given manifolds by simply adding or deleting a

coordinate system). See my online notes:

http://faculty.etsu.edu/gardnerr/5310/notes-Wald/waldrel-2-1.pdf.

For example, Hawking and Ellis in The Large Scale Structure of Space-Time require

that “atlas” Φ be a “complete atlas”; that is, it should satisfy condition (iii). See

my online notes:

http://faculty.etsu.edu/gardnerr/5310/Notes-Hawking-Ellis/

Hawking-Ellis-2-1.pdf.

Note. Conway gives a definition of a real differentiable (or “C1”) surface in R
3.

Definition. Let X ⊂ R3. X is a differentiable real 2-manifold if each point

in X is contained in a coordinate patch (U,ϕ), where ϕ : U → R2, such that

ϕ−1 : ϕ(U) → U ⊂ R3 has coordinate functions with continuous partial derivatives

(more appropriately, X is a “C1” real 2-manifold in R3). That is, with G = ϕ(U)

and ϕ−1 : R
2 → U satisfies (s, t) ∈ G and ξ, η, ζ have continuous first partial

derivatives.
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Note. Conway observes (page 235) that: “A folded piece of paper is not a dif-

ferentiable real 2-manifold. In fact, if (U,ϕ) is a patch that contains a point on

the crease then ϕ−1 has at least one non-differentiable coordinate function.” Yet a

“folded piece of paper” (provided it is an open set) is homeomorphic to a region in

R
2 and so, by Proposition IX.6.3(b) is an analytic surface. The reason we have an-

alytic on the one (complex) hand and don’t even have differentiability on the other

(real) hand is because the homeomorphism h of Proposition IX.6.3(b) imposes the

analytic structure on the “piece of paper.” But in the real setting, there is already

a “differentiable structure” in R
3 and this structure yields the nondifferentiability

at the crease. We can similarly show using Proposition IX.6.3(b) that a cube in R
3

is an analytic surface since it is homeomorphic to the 2-sphere S ⊂ R3 which, as

observed above, is homeomorphic to C∞ which is an analytic surface.

Definition. Let G be a region in C and let f : G → C be an analytic function.

The graph of f on G is Γ = {(z, f(z)) | z ∈ G} ⊂ C2.

Note. We wish to put an analytic structure on the graph Γ. We will require

f ′(z) 6= 0 for all z ∈ G so that, by Corollary IV.7.6, f is one to one.

Note. The projection p(z, f(z)) = z maps Γ → G. Now a basis for the topology on

C is {B(z; r) | z ∈ C, r > 0}. So a basis for C×C is {B(z1; rz)×B(z2; r2) | z1, z2 ∈

C, r1 > 0, r2 > 0} (see my online Topology notes for Section 15, “The Product

Topology on X×Y ,” http://faculty.etsu.edu/gardnerr/5357/notes/Munkres
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-15.pdf). So for γ ⊂ Γ an open set, γ = γ ∩
(

∪j∈JB(zj ; rj) × B(z′j ; r
′
j)

)

for

some indexing set J (under the subspace topology on G). Then p(γ) = p(Γ) ∩

(∪j∈JB(zj ; rj)) is open in G (and so is open in C, since G is open in C). If g ⊂ G

is open then (since G is open in C then g is open in C), g = ∪j∈JB(zj ; rj) for some

indexing set J . Since f is analytic, then by the Open Mapping Theorem (Theorem

IV.7.5), f(g) is open in C. Now p−1(g) = {(z, f(z)) | z ∈ g} = Γ ∩ (g × f(g)).

Since g × f(g) is open in C
2 then p−1(g) is open in the subspace topology on Γ

So p : Γ → G is one to one, onto, continuous, and p−1 is continuous. That is,

p is a homeomorphism of Γ with G and p−1 is a homeomorphism of G with Γ.

So, by Proposition IX.6.3(b), Γ is an analytic surface. But the analytic structure

on Γ is based on the analytic structure of G given in Proposition IX.6.3(b) which

is only based on the analytic structure of open set G ⊂ C and the projection

homeomorphism p. We want an analytic structure on Γ that is somehow based on

the analytic function f . This is basic in our exploration of Riemann surfaces and

is addressed in the next three results.

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic

function on g with non-vanishing derivative. For α = (a, f(a)) ∈ Γ = {(z, f(z)) |

z ∈ G}. Let Dz be a disk about a such that Da ⊂ G and f is one to one on

Da (which is possible since f ′(a) 6= 0). Let Uα = {(z, f(z)) | z ∈ Da} and define

ϕα : Uα → C by ϕα(z, f(z)) = f(z) for each (z, f(z)) ∈ Uα. If Γ is the graph of f

and Φ = {(Uα, ϕα) | α ∈ Γ} then (Γ,Φ) is an analytic surface.
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