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IX.6. Analytic Manifolds.

Note. In this section we define a topological space (an “analytic manifold”) on
which we define a complete analytic function from the manifold into C. In this
sense, we will map a Riemann surface into C in an analytic way (see Theorem
[X.6.9). We extend the Maximum Modulus Theorem, Liouville’s Theorem, and

the Open Mapping Theorem to this setting.

Note. We start with a motivational example. Consider the extended plane C,, =
CU{o0}. If a € C and a # oo then a finite neighborhood U, of a is an open
subset of the plane C. We define ¢, : U, — C as the identity map ¢,(z) = z. Then
©q gives a “coordinatization” of the neighborhood U, (though trivially). If a = oo
then let Uy, = {z | |z] > 1} U {00} and define ¢, : Uy, — C as

1/z if z # o0
9000(2) =
0 ifz=00

Notice ¢ is a homeomorphism (see Definition VIII.2.1) of Uy, onto B(0;1). So to
each point a € C, there is a pair (Uy, ,) such that U, is a neighborhood of a and
v, 18 a homeomorphism of U, onto an open subset of the plane. Notice that since
each ¢, is one to one then ¢! exists (we have ¢, : Coo — C and ¢! : C — C,).
We now consider what happens when U, N U, # @. First, suppose a # oo and
UNUsyx # @. Let Goo = B(0;1) = po(Ux) and let G, = p,(U,) = U,. Then

1)z ifz#0

oo ifz=0
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for all z € G, and 5o 001 (2) = 1/z for all 2 € oo (UsNU,) (since co ¢ U, then
0 ¢ 0oo(UssNU,) C C and 00 1(2) = 1/z is analytic on ¢u(UsxsNU,)). Similarly
Voo 0 ;1 (2) = 1/2 for all z € (U, N Uy) and s 0 0, (2) = 1/z is analytic on
0a(UsNUs). If a = 0o then U, N Uy = Uy and ¢, 0 1 (2) = oo 0 0,1 (2) = 2
is analytic on ¢ (Uss NU,) = ¢u(U, NUs) = Go = B(0;1). If both a and b are
finite then ¢, o gpb_l(z) =z for all z € (U, NU,) = U, NU,. In each case, notice
that ¢, o gpb_l : C — C is analytic on its domain ¢, (U, N U,) = ¢p(U, N Uy). Also,

each ¢, : C, — C. This example inspires the following two definitions.

Definition IX.6.1. Let X be a topological space. A coordinate patch on X is a
pair (U, p) where U is an open subset of X and ¢ is a homeomorphism of U onto
an open subset of C. If a € U then the coordinate patch (U, ¢) = (U,, ,) is said

to contain a.

Definition IX.6.2. An analytic manifold (or analytic surface) is a pair (X, D)
where X is a Hausdorff connected topological space and ® is a collection of coor-

dinate patches on X such that
(i) each point of X is contained in at least one member of ®, and

(ii) if (Us, @a), (U, pp) € @ with U, NU, # & then ¢, o gpb_l is an analytic function
of gOb(Ua N Ub) C C onto gOa(Ua N Ub) c C.

The set @ of coordinate patches is an analytic structure on X.
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Note. The relationships between the functions and sets are as follows:

Note. We follow Conway’s terminology and use the term “analytic surface” for
the structures studied here. Since ¢ o gpb_l maps subsets of C into C (analytically),
then the term “surface” or “l-dimensional complex manifold” is appropriate. In
the event we considered analytic functions mapping subsets of C" into C", then we

could consider n dimensional complex manifolds.

Note. Trivially, C is an analytic surface. We see that C., is also an example of an

analytic surface.

Note. By convention, we impose one more condition on the collection of coordinate

patches ®. First, we need a preliminary result.
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Proposition IX.6.3. Let (X, ®) be an analytic surface.

(a) Let V be an open connected subset of X. If
Oy ={(UNV,0) | (U, ¢) € 0}
then (V, ®y ) is an analytic surface.

(b) If Q is a topological space such that there is a homeomorphism h of X onto
then with
© = {(h(U),poh™") | (U, p) € 0}

we have that (€2, ) is an analytic surface.

Note. Consider the 2-sphere S = {(x1, z2, x3) € R | 23+23+23 = 1} of Section 1.6
under the subspace topology where S C R? and R? has the usual metric topology.
S is homeomorphic to C.,, so by Proposition 1X.6.3(b), S is an analytic surface

since C,, is.

Note. By Proposition 1X.6.3(a), if (U,) € ® and V is an open subset off U
then (V) is a coordinate patch on X (technically, we are using ¢ restricted to V/,
¢|y, here; Conway states that “...for the sake of brevity, care will not be taken in
mentioning the appropriate domain of a function ...” [page 234]). By convention,
we take the following as a third property of analytic surfaces:

Definition IX.6.2 (continued). An analytic manifold (or analytic surface) is a
pair (X, ®) where X is a Hausdorff connected topological space and ® is a collection

of coordinate patches on X such that (i) and (ii) above hold and:

(iii) if (U,¢) € ® and V is an open subset of U then (V, ) € ®.
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Note. When giving an analytic structure ® on a Hausdorff connected topological
space X, we only need to give the coordinate patches that “generate” ® in the

sense given in Definition IX.6.3(iii).

Note. Other sources deal with Definition IX.6.2(iii) in different ways. Similar
to Conway’s approach, Wald in his General Relativity takes it by convention that
® is maximal in the sense of condition (iii) (in order to avoid the complication
of defining new manifolds from given manifolds by simply adding or deleting a

coordinate system). See my online notes:
http://faculty.etsu.edu/gardnerr/5310/notes-Wald/waldrel-2-1.pdf.

For example, Hawking and Ellis in The Large Scale Structure of Space-Time require
that “atlas” ® be a “complete atlas”; that is, it should satisfy condition (iii). See

my online notes:

http://faculty.etsu.edu/gardnerr/5310/Notes-Hawking-Ellis/

Hawking-Ellis-2-1.pdf.

Note. Conway gives a definition of a real differentiable (or “C'”) surface in R?.

Definition. Let X C R3. X is a differentiable real 2-manifold if each point
in X is contained in a coordinate patch (U, ), where ¢ : U — R2? such that
¢ t:p(U) — U C R3 has coordinate functions with continuous partial derivatives
(more appropriately, X is a “C'” real 2-manifold in R3). That is, with G = ¢(U)
and ! : R? — U satisfies (s,t) € G and &, 1, ¢ have continuous first partial

derivatives.
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Note. Conway observes (page 235) that: “A folded piece of paper is not a dif-
ferentiable real 2-manifold. In fact, if (U, ) is a patch that contains a point on
the crease then ! has at least one non-differentiable coordinate function.” Yet a
“folded piece of paper” (provided it is an open set) is homeomorphic to a region in
R? and so, by Proposition IX.6.3(b) is an analytic surface. The reason we have an-
alytic on the one (complex) hand and don’t even have differentiability on the other
(real) hand is because the homeomorphism h of Proposition 1X.6.3(b) imposes the
analytic structure on the “piece of paper.” But in the real setting, there is already
a “differentiable structure” in R? and this structure yields the nondifferentiability
at the crease. We can similarly show using Proposition IX.6.3(b) that a cube in R3
is an analytic surface since it is homeomorphic to the 2-sphere S C R?® which, as

observed above, is homeomorphic to C,, which is an analytic surface.

Definition. Let GG be a region in C and let f : G — C be an analytic function.
The graphof f on GisT = {(z, f(2)) | z € G} c C2

Note. We wish to put an analytic structure on the graph I'. We will require
f'(z) # 0 for all z € G so that, by Corollary IV.7.6, f is one to one.

Note. The projection p(z, f(z)) = z maps ' — G. Now a basis for the topology on
Cis {B(z;r) | z € C,r > 0}. So a basis for C x C is {B(z1;7,) X B(z9;12) | 21,22 €
C,ry > 0,79 > 0} (see my online Topology notes for Section 15, “The Product

Topology on X XY ,” http://faculty.etsu.edu/gardnerr/5357/notes/Munkres
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-15.pdf). So for v C T an open set, v = v N (UjesB(zj;75) x B(2};7))) for
some indexing set J (under the subspace topology on G). Then p(v) = p(I') N
(UjesB(zj;1;)) is open in G (and so is open in C, since G is open in C). If g C G
is open then (since G is open in C then g is open in C), g = U;jc7B(z;; ;) for some
indexing set J. Since f is analytic, then by the Open Mapping Theorem (Theorem
IV.7.5), f(g) is open in C. Now p~'(g) = {(2,f(2)) | 2 € g} = 'n (g x f(9)).
Since g x f(g) is open in C? then p~'(g) is open in the subspace topology on I
So p : I' — G is one to one, onto, continuous, and p~' is continuous. That is,
p is a homeomorphism of I" with G and p~! is a homeomorphism of G with T.
So, by Proposition IX.6.3(b), ' is an analytic surface. But the analytic structure
on I' is based on the analytic structure of G given in Proposition 1X.6.3(b) which
is only based on the analytic structure of open set G C C and the projection
homeomorphism p. We want an analytic structure on I' that is somehow based on

the analytic function f. This is basic in our exploration of Riemann surfaces and

1s addressed in the next three results.

Proposition IX.6.6. Let G be a region in the plane and let f be an analytic
function on g with non-vanishing derivative. For a = (a, f(a)) € T' = {(z, f(2)) |
z € G}. Let D, be a disk about a such that D, C G and f is one to one on
D, (which is possible since f'(a) # 0). Let U, = {(2, f(2)) | z € D,} and define
Yo : Uy — C by wa(z, f(2)) = f(2) for each (z, f(2)) € U,. If T is the graph of f
and ® = {(U,, ¢a) | @ € T'} then (I, @) is an analytic surface.
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