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Supplement: Laurent Series Development

(Theorem V.1.11)

Note. In this section, we give a detailed proof of Theorem V.1.11, the “Laurent

Series Development” theorem. First, we recall some previous results which are

needed in the proof of this theorem.

Theorem III.1.3. If
∞∑

n=0

an(z − a)n, define the number R as 1
R

= lim |an|
1/n (so

0 ≤ R ≤ ∞). Then

(a) if |z − a| < R, the series converges absolutely,

(b) if |z − a| > R, the series diverges, and

(c) if 0 < r < R then the series converges uniformly on |z − a| ≤ r. Moreover,

R is the only number having properties (a) and (b). R is called the radius of

convergence of the power series.

Theorem IV.2.8. Let f be analytic in B(a;R). Then f(z) =
∞∑

n=0

an(z − a)n for

|z − a| < R where an = f (n)(a)/n! and this series has radius of convergence ≥ R.

Lemma IV.5.1. Let γ be a rectifiable curve and suppose ϕ is a function defined

and continuous on {γ}. For each m ≥ 1 let Fm(z) =
∫

γ ϕ(w)(w − z)−m dw for

z /∈ {γ}. Then each Fm is analytic on C \ {γ} and F ′
m(z) = mFm+1(z).
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Corollary IV.5.9. (Theorem 5.8 with one curve.) Let G be an open set and

f : G → C analytic. If γ is a closed rectifiable curve in G such that n(γ;w) = 0 for

all w ∈ C \ G then for a ∈ G \ {γ}

f (k)(a)n(γ; a) =
k!

2πi

∫

γ

f(z)

(z − a)k+1
dz.

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable

singularity if and only if lim
z→a

(z − a)f(z) = 0.

Note. Now for our main result.

Theorem V.1.11. Laurent Series Development.

Let f be analytic in ann(a;R1, R2). Then

f(z) =

∞∑

n=−∞

an(z − a)n

where the convergence is absolute and uniform over the closure of ann(a; r1, r2) if

R1 < r1 < r2 < R2. The coefficients an are given by

an =
1

2πi

∫

γ

f(w)

(w − a)n+1
dw (1.12)

where γ is the circle γ(t) = a + reit where t ∈ [0, 2π] for any r with R1 < r < R2.

Moreover, this series is unique.

Proof. If R1 < r1 < r2 < R2 and γ1, γ2 are the circles γ1(t) = a + r1e
it for

t ∈ [0, 2π] and γ2(t) = a + r2e
it for t ∈ [0, 2π], then γ1 ∼ γ2 in ann(a;R1, R2).

Then by Cauchy’s Theorem (Third Version, Theorem IV.6.7) for any analytic g on
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ann(a;R1, R2), we have
∫

γ1
g =

∫

γ2
g. So the integral in (1.12) is independent of r,

so for each n ∈ Z, an is a constant (i.e., independent of γ).

Claim. Definition of f1 and f2; f(z) = f1(z) + f2(z).

Moreover, function f2 : B(a;R2) → C given as

f2(z) =
1

2πi

∫

γ2

f(w)

w − z
dw,

where |z − a| < r2 and R1 < r2 < R2, is a well defined function (independent of

r2). By Lemma IV.5.1 (with m = 1 and ϕ(w) = f(w)), f2 is analytic in B(a; r2).

Similarly, if G = {z | |z − a| > R1} then f1 : G → C defined as

f1(z) =
−1

2πi

∫

γ1

f(w)

w − z
dw,

where |z−a| > r1 (so r1 is chosen such that z /∈ {γ1}) and R1 < r1 < R2 is analytic

in G.

If R1 < |z − a| < R2, fix r1 and r2 so that R1 < r1 < |z − a| < r2 < R2. Let

γ1(t) = a + r1e
it for t ∈ [0, 2π] and γ2(t) = a + r2e

it for t ∈ [0, 2π], as above. Let

λ be a line segment from a point on γ1 radially to a point on γ2 which does not
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contain z:

Since γ1 ∼ γ2 on ann(a;R1, R2), we have that the closed curve γ = γ2 − λ− γ1 + λ

is homotopic to 0. Next, n(γ2; z) = 1 and n(γ1; z) = 0 gives:

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw by the Cauchy’s Integral Formula

=
1

2πi

∫

γ2

f(w)

w − z
dw −

1

2πi

∫

γ1

f(w)

w − z
dw since γ is piecewise smooth

= f2(z) + f1(z) by the definitions of f1 and f2.

We now create series for f1 (with negative powers of (z−a)) and f2 (with the usual

positive powers of (z − a)). �

Claim. The an are as claimed for n ≥ 0.

Since f2 is analytic in B(a;R2) then by Theorem IV.2.8

f2(z) =

∞∑

n=0

an(z − a)n and an =
f (n)(a)

n!
.

Since f2(z) = 1
2πi

∫

γ2

f(w)
w−z dw, in Lemma IV.5.1 with m = 1 we have F1(z) =

1
2πi

∫

γ2

ϕ(w)
w−z dw where ϕ(w) = f(w), and therefore by induction

f
(n)
2 (z) = n!Fn+1(z) =

n!

2πi

∫

γ2

ϕ(w)

(w − z)n+1
dw.
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We then have

an =
f (n)(a)

n!
= Fn+1(a) =

1

2πi

∫

γ2

f(w)

(w − a)n+1
dw,

as claimed. �

Claim. Definition of g(z); g(z) is analytic for z ∈ B(0; 1/R1).

Now define g(z) for 0 < |z| < 1/r1 as g(z) = f1(a + 1/z). Notice that a + 1/z =

a − (−1/z) and | − 1/z| > r1, so a + 1/z ∈ ann(a; r1,∞). Since f1 is defined as

f1(z) =
−1

2πi

∫

γ1

f(w)

w − z
dw

where γ1(t) = a + r1e
it with t ∈ [0, 2π], then f1(a + 1/z) is defined as long as

a + 1/z /∈ {γ1}. We have:

Since f1(z) is analytic for all z with |z−a| > r1 (from the definition of f1), then

g(z) is analytic for all a + 1/z with |(a + 1/z) − a| > r1, or |1/z| > r1 or 0 < |z| <

1/r1. So g has an isolated singularity at z = 0. We now show g has a removable

singularity at z = 0 by showing limz→0 g(z) exists (and hence limz→0 zg(z) = 0,

as required by Theorem V.1.2 for g to have a removable singularity at z = 0).

Suppose R2 > r > r1, z ∈ ann(a; r,∞), and ρ(z) = d(z, C) where C is the circle
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{w | |w − a| = r}:

Define M = max{|f(w)| | w ∈ C} and give C a counterclockwise orientation. Then

for such z “outside” of C,

|f1(z)| =

∣
∣
∣
∣

−1

2πi

∫

γ1

f(w)

w − z
dw

∣
∣
∣
∣

=

∣
∣
∣
∣

−1

2πi

∫

C

f(w)

w − z
dw

∣
∣
∣
∣

since γ1 ∼ C on ann(a;R1, R2)

≤
1

2π

∫

C

|f(w)|

|w − z|
|dw| ≤

1

2π

M2πr

ρ(z)
=

Mr

ρ(z)
.

Now limz→∞ ρ(z) = ∞ and M, r are constants, so limz→∞ f1(z) = 0. Therefore,

lim
z→0

g(z) = lim
z→0

f1(a + 1/z) = lim
z→∞

f1(z) = 0.

Since limz→0 g(z) = 0, g has a removable singularity at z = 0 by Theorem V.1.2. We

define g(0) = 0 and then g is analytic on B(0; 1/r1) (by the definition of removable

singularity). Notice that r1 > R1 was arbitrary above, and we can conclude that

each claim is valid for r1 replace with R1 (as in the text). So g can be written

g(z) =
∑∞

n=1 Bnz
n (B0 = 0 since g(0) = 0). So, f1(a + 1/z) = g(z) =

∑∞
n=1 Bna

n
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for z ∈ B(0; 1/R1). �

Claim. The an are as claimed for n ≤ −1.

We have by definition that f1(z) = −1
2πi

∫

γ1

f(x)
w−z dw for |z − a| > R1 where γ1(t) =

a + r1e
it for t ∈ [0, 2π]. So for |a| < R1 we have

f1

(

a +
1

z

)

=
−1

2πi

∫

γ1

f(w)

w −
(
a + 1

z

) dw.

Replacing w with a+1/w, dw with −w−2 dw, and using the inverse of this mapping

to take γ1 to γ′
1 (so that the integrand receives the same values of w) we have

γ′
1(t) =

1

γ1(t) − a
=

1

(a + r1eit) − a
=

1

r1
e−it for t ∈ [0, 2π].

Then f1(a + 1/z) becomes

f1

(

a +
1

z

)

=
−1

2πi

∫

γ′

1

f(a + 1/w)
(
a + 1

w

)
−
(
a + 1

z

) [−w−2] dw =
1

2πi

∫

γ′

1

f(a + 1/w)

w
(
1 − w

z

) dw

=
1

2πi

∫

γ′

1

zf(a + 1/w)

w(z − w)
dw =

1

2πi

∫

−γ′

1

zf(a + 1/w)

w(w − z)
dw

=
z

2πi

∫

−γ′

1

f(a + 1/w)/w

w − z
dw = g(z) for 0 < |z| < 1/R1.

As established above, g(z) is analytic on B(0; 1/R1), so g(z) =
∑∞

n=1 Bnz
n (notice

that B0 = 0 since g(0) = 0). Also, by Theorem IV.2.8, Bn = g(n)(0)/n!. We now

calculate g(n)(0) using Lemma IV.5.1 and the representation of g(z) as

g(z) =
z

2πi

∫

−γ′

1

f(a + 1/w)/w

w − z
dw

(notice that −γ′
1(t) = 1

r1
eit for t ∈ [0, 2π]). From the Product Rule, Lemma IV.5.1

(with ϕ(w) = f(a + 1/w)/w), and Math Induction we can show that

g(n)(z) =
n!

2πi

∫

−γ′

1

f(a + 1/w)/w

(w − z)n
dw +

n!z

2πi

∫

−γ′

1

f(a + 1/w)/w

(w − z)n+1
dw for |z| < R1.
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So g(n)(0) = n!
2πi

∫

−γ′

1

f(a+1/w)
wn+1 dw, so Bn = g(n)(0)

n!
= 1

2πi

∫

−γ′

1

f(a+1/w)
wn+1 dw. Replacing w

with 1/(w − a) and dw with −(w − a)−2 dw and using the inverse of this mapping

to take γ′
1 to γ1 (similar to above)

Bn =
1

2πi

∫

−γ′

1

f(a + 1/w)

wn+1
dw =

1

2πi

∫

−γ1

f(w)
(

1
w−a

)n+1

[
−1

(w − a)2

]

dw

=
−1

2πi

∫

−γ1

f(w)(w − a)n−1 dw =
1

2πi

∫

γ1

f(w)

(w − a)−n+1
dw.

Defining a−n as Bn (and replacing n with −n in Bn) we have

a−n =
1

2πi

∫

γ1

f(w)

(w − a)n+1
dw for − n ≥ 1

and f1(a + 1/z) =
∑∞

n=1 Bnz
n for 0 < |z| < 1/R1 or

f1(z) =

∞∑

n=1

Bn(z − a)−n for z ∈ ann(a;R1,∞)

=

∞∑

n=1

a−n(z − a)−n =

−1∑

n=−∞

an(z − a)n.

So

f(z) = f1(z) + f2(z)

=

−1∑

n=−∞

an(z − a)n

︸ ︷︷ ︸

for |z−a|>R1

+

∞∑

n=0

an(z − a)n

︸ ︷︷ ︸

for |z−a|<R2

=

∞∑

n=−∞

an(z − a)n for z ∈ ann(a;R1, R2)

where the an are as claimed. �

Claim. The Laurent series converges absolutely and uniformly on r1 ≤ |a| ≤ r2.

Since f2(z) =
∑∞

n=0 an(z−a)n for z ∈ B(a;R2) then this series converges absolutely

for |z − a| < R2 by Theorem III.1.3(a) and converges uniformly for |z − a| ≤
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r2 for any 0 < r2 < R2 by Theorem III.1.3(c). Similarly, g(z) =
∑∞

n=1 Bnz
n

converges absolutely for |z − a| < 1/R1 and converges uniformly for |z − a| ≤ 1/r1

for any r1 > R1 by Theorem III.1.3(a) and (c). So f1(z) =
∑∞

n=1 a−n(z − a)−n

converges absolutely for |z − a| > R1 and uniformly for |z − a| ≥ r1. Therefore

f(z) =
∑∞

n=−∞ an(z − a)n converges absolutely and uniformly on ann(a; r1, r2)
− if

R1 < r1 < r2 < R2. �

Claim. The Laurent series representation is unique for given f .

Now for the uniqueness. If we were dealing with an analytic function on B(a;R),

we could deduce that the coefficients are unique, in fact an = f (n)(a)/n! as given

in Theorem IV.2.8. For a Laurent series, we integrate. Let R1 < r1 < r2 < R2

and let γ = ((r1 + r2)/2)e
it for t ∈ [0, 2π]. Notice that the Laurent series converges

uniformly on ann(a; r1, r2)
− as given above. So for f(z) =

∑∞
n=−∞ an(z − a)n we

have for k ≥ 0:

∫

γ

f(w)

(w − a)k+1
dw =

∫

γ

∞∑

n=−∞

an(w − a)n−(k+1) dw

=

∫

γ

(
−1∑

n=−∞

an(w − a)n−(k+1) +
∞∑

n=0

an(w − a)n−(k+1)

)

dw

since the convergence is absolute—see Definition V.1.10

=

∫

γ

(
−1∑

n=−∞

an(w − a)n−(k+1)

)

dw +

∫

γ

(
∞∑

n=0

an(w − a)n−(k+1)

)

dw

=

−1∑

n=−∞

(∫

γ

an(w − a)n−(k+1) dw

)

+

∞∑

n=0

(∫

γ

an(w − a)n−(k+1) dw

)

since the convergence is uniform; Lemma IV.2.7

=
∞∑

n=1

(∫

γ

a−n

(w − a)n+k+1
dw

)

+
∞∑

n=0

(∫

γ

an(w − a)n−(k+1) dw

)

= 0 + 0 +

∫

γ

ak

w − a
dw since each integrand has a primitive on
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G = ann(a; r1, r2) for k 6= n

= ak2πi n(γ; a) = ak2πi.

So for k ≥ 0 it must be that ak = 1
2πi

∫

γ
f(w)

(w−a)k+1 dw. The arbitrary nature of γ is

explained above. For k ≤ −1, consider

∫

γ

f(w)

(w − a)k+1
dw =

∫

γ

∞∑

n=−∞

an(w − a)n−k−1 dw

=

∫

γ

(
−1∑

n=−∞

an(w − a)n−k−1 +

∞∑

n=0

an(w − a)n−k−1

)

dw

=

∫

γ

(
−1∑

n=−∞

an(w − a)n−k−1

)

dw +

∫

γ

(
∞∑

n=0

an(w − a)n−k−1

)

dw

=

−1∑

n=−∞

(∫

γ

an(w − a)n−k−1) dw

)

+

∞∑

n=0

(∫

γ

an(w − a)n−k−1 dw

)

=

∞∑

n=1

(∫

γ

a−n

(w − a)n+k+1
dw

)

+

∞∑

n=0

(∫

γ

an(w − a)n−k−1 dw

)

= 0 +

∫

γ

ak

w − a
dw + 0 = ak2πi n(γ; a) = ak2πi.

So for k ≤ −1 it must be that ak = 1
2πi

∫

γ
f(w)

(w−a)k+1 dw. The arbitrary nature of γ is

explained above.
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