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Supplement. Transformations of C and C∞—An

Approach to Geometry

Note. We now supplement Section III.3 “Analytic Functions as Mappings: Möbius

Transformations” of Conway with a related topic on geometry from Geometry with

an Introduction to Cosmic Topology by Michael Hitchman, Boston: Jones and

Bartlett Publishers (2009). We first explore transformations in general, define

geometry in a transformation setting, and finally use Möbius transformations to

explore hyperbolic geometry. When quoting from Hitchman, we use his numbering

scheme prefaced with an “H.”

Definition H.3.1.1. A transformation on set A is a function T : A → A that is

one to one and onto.

Note. A transformation T : A → A has an inverse T−1 : A → A such that

T (T−1(x)) = T−1(T (x)) = x. If S and T are translations on set A then the

compositions S ◦ T and T ◦ S are also transformations on A.

Example H.3.1.6. The transformation T (z) = kz where k > 0 is a stretch

transformation of C. If k > 1 then it “stretches” point z to point kz (along a line

passing through 0 and z). If 0 < k < 1 then it “shrinks” point z to kz (along a

line passing through 0 and z).
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Example H.3.1.7. Let a, b ∈ C, a 6= 0. Then T (z) = az + b is a general linear

transformation of C.

Note. General linear transformations are combinations of translations (Tb), rota-

tions (Rarg(a)), and stretches (by an amount k = |a|):

T (z) = az + b =
(

eiarg(a)(|a|z)
)

+ b.

Note. We will approach geometry by finding transformations which preserve “ge-

ometrical objects” (such as lines and circles). This was the approach of Felix

Klein (1849–1925) who started with a group of transformations on a set and then

“threw out all concepts that did not remain unchanged under these transforma-

tions. . . . Klein’s approach to geometry, called the Erlangen Program after the

university at which he worked at the time, has the benefit that all three geometries

(Euclidean, hyperbolic, and elliptic) emerge as special cases from a general space

and a general set of transformations” [Hitchman, page 6]. For these reasons, we

are interested in lines and circles.

Recall. A line in C containing point a with direction b 6= 0 is [Conway page 6]

Im((z − a)/b) = 0. We can write this as

Im

(

z − a

b

)

= Im
(z

z

)

+ Im

(

−a

b

)

=
z/a + z/b

2i
+ Im

(

−a

b

)
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=
z

2bi
+

z

−2bi
+ Im

(

−a

b

)

= αz + α z + d = 0

where α = 1/(2bi) and d = Im(−a/b) ∈ R. So a line in C can be written in the

form αz + α z + d = 0 for some α ∈ C and d ∈ R.

Recall. A circle C in C with center z0 and radius r is the set of all z ∈ C such

that |z − z0| = r or (z − z0)(z − z0) = r2.

Theorem H.3.1.9. Suppose T is a general linear transformation. Then T maps

lines to lines and T maps circles to circles.

Definition III.3.1. A path (or as Hitchman says, a curve) in a region G ⊂ C

is a continuous function γ : [a, b] → G for some interval [a, b] ⊂ R. If γ′(t)

exists and is continuous then γ is a smooth path. γ is piecewise smooth if for

a = t0 < t1 < · · · < tn = b, γ is smooth on [tj−1, tk] for j = 1, 2, . . . , n.

Note. We can associate a vector in R2 with each element of C. If γ is a smooth

path, then γ′(t) represents the vector tangent to γ in the direction of increasing t.

Definition. Suppose γ1 and γ2 are smooth paths and γ1(t1) = γ2(t2) = a0 and

γ′
1(t1) 6= 0, γ′

2(t2) 6= 0. Then an angle between paths γ1 and γ2 at z0 is arg(γ′
2(t2))−

arg(γ′
1(t1)).
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Notice. With appropriate interpretation of “arg(z)” we can say arg(z1z2) =

arg(z1)+arg(z2) [Conway, Page 5] and arg(z1/z2) = arg(z1)−arg(z2) for all nonzero

a1 and z2.

Theorem H.3.1.11. General linear transformations preserve angles between in-

tersecting lines.

Definition H.3.1.13. A Euclidean isometry is a transformation T of C that

preserves the Euclidean distance between two points: |T (z)− T (w)| = |z − w|.

Note. Time permitting, we will define hyperbolic isometry and elliptic isometry

later.

Example H.3.1.14. Rotations and translations are Euclidean isometries of C.

Therefore a general linear transformation of the form T (z) = az + b where |a| = 1

is a Euclidean isometry.

Example H.3.1.15. Reflections about the axis (or the “x-axis”) is obtained with

the transformation z → z. In fact, any reflection about a line can be obtained

through translations, rotations, and conjugation. Reflection about the line y =

mx + b (where x, y,m, b ∈ R) is obtained as a transformation of C to C asRL(z) =
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e2iθz + ib(e2iθ + 1) where θ = tan−1(m). Notice that

RL(z) = e2iθ(z + ib) + ib

= eiθ
(

e−iθ(z − ib)
)

+ ib

= Tib(Rθ(C(R−θ(T−ib))))

where

T−ib(z) = z − ib (translation by −ib)

R−θ(z) = e−iθz (rotation by −θ)

C(z) = z (conjugation)

Rθ(z) = eiθz (rotation by θ)

Tib(z) = z + ib (translation by ib)

Geometrically, this is:
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Note. Reflections are fundamental transformations in the current setting (rota-

tions, translations, and isometries). Some relevant results illustrating this are:

Theorem H.3.1.16. A translation of C is the composition of reflections about

two parallel lines. A rotation of C about a point z0 is the composition of reflections

about two lines that intersect z0.

Theorem H.3.1.17. Reflection across a line is a Euclidean isometry. Moreover,

any reflection sends lines to lines, sends circles to circles, and preserves angle mag-

nitudes.

Theorem H.3.1.18. Any Euclidean isometry is the composition of, at most, three

reflections.

Note. The proof of Theorem H.3.1.18 can be found in Geometry on Surfaces by

J. Stillwell, NY: Springer (1992).

Note. There is one additional “fundamental transformation” of interest to the

study of geometry. It is the inversion with respect to a cline. We have seen inversion

(i.e., reflection) with respect to a line. We will explore reflection with respect to a

circle and see that T (z) = 1/z is reflection with respect to the unit circle.
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Note. T (z) = 1/z fixes the points of the unit circle: T (eiθ) = 1/
(

eiθ

)

= 1/e−iθ =

eiθ. For z = reiθ 6= 0, we have

T (z) = T (reiθ) =
1

reiθ
=

1

re−iθ
=

1

r
eiθ ≡ z∗.

The points z and z∗ are symmetric with respect to the unit circle. Geometrically,

z and z∗ are colinear with 0 and lie on the same side of 0, and |z| = 1/|z∗|:

Definition. Points z and z∗ are symmetric with respect to circle C where C has

center z0 and radius r if z and z∗ are colinear with the center of C (point z0), lie

on the same side of z0, and |z − z0||z
∗ − z0| = r2.
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Note. The geometric mean of the distance of z from z0 and the distance of z∗ from

z0 is r.

Note. Since z0, z, and z∗ are colinear and z and z∗ are on the same side of z0,

then z∗ − z0 = k(z − z0) for some positive k. So

k|z − z0| = |z∗ − z0| =
r2

|z − z0|
=⇒ k =

r2

|z − z0|2

and

z∗ − z0 = k(z − z0) = (z − z0)
r2

|z − z0|2
=

(z − z0)r
2

(z − z0)(z − z0)
=

r2

(z − z0)
.

Therefore z∗ =
r2

(z − z0)
+ z0.

Definition (Example H.3.2.1). Let C be a circle with center z0 and radius r.

Define H-inversion with respect to circle C as

iC(z) =
r2

(z − z0)
+ z0.

If L is a line y = mx+b then define H-inversion with respect to line L as in Example

H.3.1.15:

iL(z) = e2iθz + ib(e2iθ + 1)

where θ = tan−1(m).

Note. iC(z) (where C is a circle with center z0) is not a transformation on C since

it is undefined at z0. Soon, we will see that iC(z) is a transformation on C∞.
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Note. One way to visualize functions of a complex variable is to see how certain sets

in the domain (“z-values”) are mapped to the range (“w-values”). For inversion,

we get something like this:

Figure 3.4 from Hitchman.

Note. There are “applets” online that help illustrate various complex functions,

including inversions.

Example. Consider the line y = 1 (or {z | Im(z) = 1} = {z | z = t + i, t ∈ R}).

Applying H-inversion of the line with respect to the unit circle we get:

iC(z) = iC(t + i) =
1

(t + i)
=

1

t − i
=

1

t − i

t + i

t + i
=

t + i

t2 + 1
=

t

t2 + 1
+ i

1

t2 + 1
.

Let x = t
t2+1

and y = 1
t2+1

. Then we have x2 + (y − 1/2)2 = 1/4 and y 6= 0.

Geometrically:
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So H-inversion can map lines to circles (well, “almost circles”). This turns out to

be more important (and convenient) than we might suppose.

Definition H.3.2.2. A cline is a (Euclidean) line or a circle.

Theorem H-Page 41. Any cline can be described by an equation of the form

czz + αz + α z + d = 0 where α ∈ C is constant and c, d ∈ R are constant.

Theorem (Construction H-Page 42). Three distinct complex numbers deter-

mine a unique cline.

Theorem H.3.2.4. H-Inversion in a cline maps clines to clines. In particular, if

a cline goes through the center of a circle of H-inversion, its image will be a line;

otherwise the image of a cline will be a circle.
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Note. Some other important properties (from our non-Euclidean geometry per-

spective) of inversion include:

Theorem H.3.2.5. Suppose C is a circle in C centered at z− 0, and z 6= z0 is not

on C. A cline through z is orthogonal to C if and only if it goes through z∗, the

point symmetric to z with respect to C.

Theorem H.3.2.6. H-inversion in C takes clines orthogonal to C to themselves

(i.e., such clines are fixed by the inversion).

Theorem H.3.2.7. H-inversion is a cline preserves angle magnitudes.

Theorem H.3.2.8. Let iC denote H-inversion in a cline C. If p and q are symmetric

with respect to cline D, then iC(p) and iC(q) are symmetric with respect to cline

iC(D). That is, H-inversion preserves symmetric points.

Note. We now return to the extended complex plane C∞ = C ∪ {∞}. We can

then extend general linear transformations T (z) = az + b to the set C∞ by defining

T (∞) = ∞. More interestingly, we can extend inversion as follows:

iC(z) =



















r2

(z−z0)
+ z0 if a /∈ {z0,∞}

∞ if z = z0

z0 if z = ∞

where C is a circle with center z0 and radius r.
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Note. Conway defines an inversion as the swapping i(z) = z/z. Notice that this

type of inversion is a composition of two H-inversions:

i(z) =
1

z
=

(

1

z

)

= iL(iC(z)).

Where iK(z) = z is H-inversion with respect to the x-axis and iC(z) = 1/z is

H-inversion with respect to the unit circle.

Note. Before we jump into the topic of Möbius transformations, we motivate

them by addressing Felix Klein’s approach to geometry. To do so, we need a set

(of “points”) and a group of transformations defined on the set.

Definition H.4.1.3. Let S be any set, and G a group of transformations on S.

The pair (S,G) is called a geometry. A figure in the geometry is any subset A of S.

Two figures A and B are congruent, denoted A ∼= B, if there exists a transformation

T ∈ G such that T (A) = B.

Example H.4.1.4. the group T of all transformations on C, T = {T | T (z) =

z + b, b ∈ C} determines translational geometry on C, (C,T ). Parallel lines and

circles of the same radius are congruent in this geometry. Non-parallel lines and

circles of different radii are not congruent.
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Note. Hitchman in his Example H.4.1.8 defines Euclidean geometry to be (C, E)

where E consists of all general linear transformations of the following form:

E = {T | T (z) = eiθz + b, θ ∈ R, b ∈ C}.

However, this does not include reflections, so that the following triangles would

then not be considered congruent (in violation of “side-side-side”):

According to Elementary Geometry by Ilka Agricola and Thomas Friedrich, Amer-

ican Mathematical Society, Student Mathematical Library, Volume 43 (2007), Eu-

clidean geometry includes all Euclidean isometries. These isometries on R
2 are of

the form T (~v) = A~v + ~b where ~b ∈ R
2 and A is an orthogonal/orthonormal ma-

trix (and the same for Euclidean geometry on R
n). With A =





1 0

0 −1



 we map

(x, y) = x + iy to (x,−y) = x − iy, so reflections are included in this definition.

Theorem H-Page 79. Euclidean distance, d(z1, z2) = |z1 − z2|, is invariant in

Euclidean geometry:

|T (z1) − T (z2)| = |(eiθz1 + b) − (eiθz2 + b)| = |z1 − z2|.
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Note. In Euclidean geometry, parallel lines are equidistant apart. This can be

explained in the setting of Book I of The Elements of Geometry in terms of paral-

lelograms. That is, let ` and m be lines and p and q points on ` (not on m). Then

two lines perpendicular to ` through points p and q will intersect line m in such a

way as to determine a rectangle if and only if ` and m are parallel:

A proof will follow from, say, the Parallel Postulate (Postulate 5) and Proposition

33 (“Straight lines which join the ends of equal and parallel straight lines in the

same directions are themselves equal and parallel.”) Since Euclidean distance is

an invariant of Euclidean geometry, we can prove that parallel lines are equidistant

from one another (in the transformation setting) and therefore prove the Parallel

Postulate in the transformation setting.

Definition H.4.1.9. A geometry (C, G) is called homogeneous if any two points

in C are congruent, and isotropic if the transformation group contains rotations

about each point in C.
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Example H.4.1.10. Translation geometry on C is homogeneous but not isotropic.

Euclidean geometry on C is homogeneous and isotropic.

Note. We now return to Conway and study Möbius transformations. This col-

lection of transformations form a group of transformations on C∞. This “Möbius

geometry” is very general (like “neutral geometry” which is an axiomatic approach

to geometry that does not have a parallel postulate). Certain subgroups of the

Möbius transformations will determine (1) elliptic geometry, (2) Euclidean geome-

try, and (3) hyperbolic geometry, on subsets of C∞.
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