Supplement. Transformations of \mathbb{C} and $\mathbb{C}_{\infty}-\mathrm{An}$ Approach to Geometry

Note. We now supplement Section III.3 "Analytic Functions as Mappings: Möbius Transformations" of Conway with a related topic on geometry from Geometry with an Introduction to Cosmic Topology by Michael Hitchman, Boston: Jones and Bartlett Publishers (2009). We first explore transformations in general, define geometry in a transformation setting, and finally use Möbius transformations to explore hyperbolic geometry. When quoting from Hitchman, we use his numbering scheme prefaced with an "H."

Definition H.3.1.1. A transformation on set A is a function $T: A \rightarrow A$ that is one to one and onto.

Note. A transformation $T: A \rightarrow A$ has an inverse $T^{-1}: A \rightarrow A$ such that $T\left(T^{-1}(x)\right)=T^{-1}(T(x))=x$. If S and T are translations on set A then the compositions $S \circ T$ and $T \circ S$ are also transformations on A.

Example H.3.1.6. The transformation $T(z)=k z$ where $k>0$ is a stretch transformation of \mathbb{C}. If $k>1$ then it "stretches" point z to point $k z$ (along a line passing through 0 and z). If $0<k<1$ then it "shrinks" point z to $k z$ (along a line passing through 0 and z).

Example H.3.1.7. Let $a, b \in \mathbb{C}, a \neq 0$. Then $T(z)=a z+b$ is a general linear transformation of \mathbb{C}.

Note. General linear transformations are combinations of translations $\left(T_{b}\right)$, rotations $\left(R_{\arg (a)}\right)$, and stretches (by an amount $\left.k=|a|\right)$:

$$
T(z)=a z+b=\left(e^{i \arg (a)}(|a| z)\right)+b
$$

Note. We will approach geometry by finding transformations which preserve "geometrical objects" (such as lines and circles). This was the approach of Felix Klein (1849-1925) who started with a group of transformations on a set and then "threw out all concepts that did not remain unchanged under these transformations. ...Klein's approach to geometry, called the Erlangen Program after the university at which he worked at the time, has the benefit that all three geometries (Euclidean, hyperbolic, and elliptic) emerge as special cases from a general space and a general set of transformations" [Hitchman, page 6]. For these reasons, we are interested in lines and circles.

Recall. A line in \mathbb{C} containing point a with direction $b \neq 0$ is [Conway page 6] $\operatorname{Im}((z-a) / b)=0$. We can write this as

$$
\begin{aligned}
\operatorname{Im}\left(\frac{z-a}{b}\right) & =\operatorname{Im}\left(\frac{z}{z}\right)+\operatorname{Im}\left(\frac{-a}{b}\right) \\
& =\frac{z / a+\bar{z} / \bar{b}}{2 i}+\operatorname{Im}\left(\frac{-a}{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{z}{2 b i}+\frac{\bar{z}}{-2 \bar{b} i}+\operatorname{Im}\left(\frac{-a}{b}\right) \\
& =\alpha z+\bar{\alpha} \bar{z}+d=0
\end{aligned}
$$

where $\alpha=1 /(2 b i)$ and $d=\operatorname{Im}(-a / b) \in \mathbb{R}$. So a line in \mathbb{C} can be written in the form $\alpha z+\bar{\alpha} \bar{z}+d=0$ for some $\alpha \in \mathbb{C}$ and $d \in \mathbb{R}$.

Recall. A circle C in \mathbb{C} with center z_{0} and radius r is the set of all $z \in \mathbb{C}$ such that $\left|z-z_{0}\right|=r$ or $\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)=r^{2}$.

Theorem H.3.1.9. Suppose T is a general linear transformation. Then T maps lines to lines and T maps circles to circles.

Definition III.3.1. A path (or as Hitchman says, a curve) in a region $G \subset \mathbb{C}$ is a continuous function $\gamma:[a, b] \rightarrow G$ for some interval $[a, b] \subset \mathbb{R}$. If $\gamma^{\prime}(t)$ exists and is continuous then γ is a smooth path. γ is piecewise smooth if for $a=t_{0}<t_{1}<\cdots<t_{n}=b, \gamma$ is smooth on $\left[t_{j-1}, t_{k}\right]$ for $j=1,2, \ldots, n$.

Note. We can associate a vector in \mathbb{R}^{2} with each element of \mathbb{C}. If γ is a smooth path, then $\gamma^{\prime}(t)$ represents the vector tangent to γ in the direction of increasing t.

Definition. Suppose γ_{1} and γ_{2} are smooth paths and $\gamma_{1}\left(t_{1}\right)=\gamma_{2}\left(t_{2}\right)=a_{0}$ and $\gamma_{1}^{\prime}\left(t_{1}\right) \neq 0, \gamma_{2}^{\prime}\left(t_{2}\right) \neq 0$. Then an angle between paths γ_{1} and γ_{2} at z_{0} is $\arg \left(\gamma_{2}^{\prime}\left(t_{2}\right)\right)-$ $\arg \left(\gamma_{1}^{\prime}\left(t_{1}\right)\right)$.

Notice. With appropriate interpretation of $" \arg (z)$ " we can say $\arg \left(z_{1} z_{2}\right)=$ $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ [Conway, Page 5] and $\arg \left(z_{1} / z_{2}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$ for all nonzero a_{1} and z_{2}.

Theorem H.3.1.11. General linear transformations preserve angles between intersecting lines.

Definition H.3.1.13. A Euclidean isometry is a transformation T of \mathbb{C} that preserves the Euclidean distance between two points: $|T(z)-T(w)|=|z-w|$.

Note. Time permitting, we will define hyperbolic isometry and elliptic isometry later.

Example H.3.1.14. Rotations and translations are Euclidean isometries of \mathbb{C}. Therefore a general linear transformation of the form $T(z)=a z+b$ where $|a|=1$ is a Euclidean isometry.

Example H.3.1.15. Reflections about the axis (or the " x-axis") is obtained with the transformation $z \rightarrow \bar{z}$. In fact, any reflection about a line can be obtained through translations, rotations, and conjugation. Reflection about the line $y=$ $m x+b($ where $x, y, m, b \in \mathbb{R})$ is obtained as a transformation of \mathbb{C} to \mathbb{C} as $R_{L}(z)=$
$e^{2 i \theta} \bar{z}+i b\left(e^{2 i \theta}+1\right)$ where $\theta=\tan ^{-1}(m)$. Notice that

$$
\begin{aligned}
R_{L}(z) & =e^{2 i \theta}(\bar{z}+i b)+i b \\
& =e^{i \theta}\left(\overline{e^{-i \theta}(z-i b)}\right)+i b \\
& =T_{i b}\left(R_{\theta}\left(C\left(R_{-\theta}\left(T_{-i b}\right)\right)\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
T_{-i b}(z) & =z-i b(\text { translation by }-i b) \\
R_{-\theta}(z) & =e^{-i \theta} z(\text { rotation by }-\theta) \\
C(z) & =\bar{z}(\text { conjugation }) \\
R_{\theta}(z) & =e^{i \theta} z(\text { rotation by } \theta) \\
T_{i b}(z) & =z+i b(\text { translation by } i b)
\end{aligned}
$$

Geometrically, this is:

Note. Reflections are fundamental transformations in the current setting (rotations, translations, and isometries). Some relevant results illustrating this are:

Theorem H.3.1.16. A translation of \mathbb{C} is the composition of reflections about two parallel lines. A rotation of \mathbb{C} about a point z_{0} is the composition of reflections about two lines that intersect z_{0}.

Theorem H.3.1.17. Reflection across a line is a Euclidean isometry. Moreover, any reflection sends lines to lines, sends circles to circles, and preserves angle magnitudes.

Theorem H.3.1.18. Any Euclidean isometry is the composition of, at most, three reflections.

Note. The proof of Theorem H.3.1.18 can be found in Geometry on Surfaces by J. Stillwell, NY: Springer (1992).

Note. There is one additional "fundamental transformation" of interest to the study of geometry. It is the inversion with respect to a cline. We have seen inversion (i.e., reflection) with respect to a line. We will explore reflection with respect to a circle and see that $T(z)=1 / \bar{z}$ is reflection with respect to the unit circle.

Note. $T(z)=1 / \bar{z}$ fixes the points of the unit circle: $T\left(e^{i \theta}\right)=1 /\left(\overline{e^{i \theta}}\right)=1 / e^{-i \theta}=$ $e^{i \theta}$. For $z=r e^{i \theta} \neq 0$, we have

$$
T(z)=T\left(r e^{i \theta}\right)=\frac{1}{r e^{i \theta}}=\frac{1}{r e^{-i \theta}}=\frac{1}{r} e^{i \theta} \equiv z^{*} .
$$

The points z and z^{*} are symmetric with respect to the unit circle. Geometrically, z and z^{*} are colinear with 0 and lie on the same side of 0 , and $|z|=1 /\left|z^{*}\right|$:

Definition. Points z and z^{*} are symmetric with respect to circle C where C has center z_{0} and radius r if z and z^{*} are colinear with the center of C (point z_{0}), lie on the same side of z_{0}, and $\left|z-z_{0}\right|\left|z^{*}-z_{0}\right|=r^{2}$.

Note. The geometric mean of the distance of z from z_{0} and the distance of z^{*} from z_{0} is r.

Note. Since z_{0}, z, and z^{*} are colinear and z and z^{*} are on the same side of z_{0}, then $z^{*}-z_{0}=k\left(z-z_{0}\right)$ for some positive k. So

$$
k\left|z-z_{0}\right|=\left|z^{*}-z_{0}\right|=\frac{r^{2}}{\left|z-z_{0}\right|} \Longrightarrow k=\frac{r^{2}}{\left|z-z_{0}\right|^{2}}
$$

and

$$
z^{*}-z_{0}=k\left(z-z_{0}\right)=\left(z-z_{0}\right) \frac{r^{2}}{\left|z-z_{0}\right|^{2}}=\frac{\left(z-z_{0}\right) r^{2}}{\left(z-z_{0}\right) \overline{\left(z-z_{0}\right)}}=\frac{r^{2}}{\overline{\left(z-z_{0}\right)}}
$$

Therefore $z^{*}=\frac{r^{2}}{\overline{\left(z-z_{0}\right)}}+z_{0}$.

Definition (Example H.3.2.1). Let C be a circle with center z_{0} and radius r. Define H-inversion with respect to circle C as

$$
i_{C}(z)=\frac{r^{2}}{\overline{\left(z-z_{0}\right)}}+z_{0}
$$

If L is a line $y=m x+b$ then define H-inversion with respect to line L as in Example H.3.1.15:

$$
i_{L}(z)=e^{2 i \theta} \bar{z}+i b\left(e^{2 i \theta}+1\right)
$$

where $\theta=\tan ^{-1}(m)$.

Note. $i_{C}(z)$ (where C is a circle with center z_{0}) is not a transformation on \mathbb{C} since it is undefined at z_{0}. Soon, we will see that $i_{C}(z)$ is a transformation on \mathbb{C}_{∞}.

Note. One way to visualize functions of a complex variable is to see how certain sets in the domain (" z-values") are mapped to the range (" w-values"). For inversion, we get something like this:

Figure 3.4 from Hitchman.

Note. There are "applets" online that help illustrate various complex functions, including inversions.

Example. Consider the line $y=1$ (or $\{z \mid \operatorname{Im}(z)=1\}=\{z \mid z=t+i, t \in \mathbb{R}\}$). Applying H -inversion of the line with respect to the unit circle we get:

$$
i_{C}(z)=i_{C}(t+i)=\frac{1}{\overline{(t+i)}}=\frac{1}{t-i}=\frac{1}{t-i} \frac{t+i}{t+i}=\frac{t+i}{t^{2}+1}=\frac{t}{t^{2}+1}+i \frac{1}{t^{2}+1} .
$$

Let $x=\frac{t}{t^{2}+1}$ and $y=\frac{1}{t^{2}+1}$. Then we have $x^{2}+(y-1 / 2)^{2}=1 / 4$ and $y \neq 0$. Geometrically:

So H-inversion can map lines to circles (well, "almost circles"). This turns out to be more important (and convenient) than we might suppose.

Definition H.3.2.2. A cline is a (Euclidean) line or a circle.

Theorem H-Page 41. Any cline can be described by an equation of the form $c z \bar{z}+\alpha z+\bar{\alpha} \bar{z}+d=0$ where $\alpha \in \mathbb{C}$ is constant and $c, d \in \mathbb{R}$ are constant.

Theorem (Construction H-Page 42). Three distinct complex numbers determine a unique cline.

Theorem H.3.2.4. H-Inversion in a cline maps clines to clines. In particular, if a cline goes through the center of a circle of H -inversion, its image will be a line; otherwise the image of a cline will be a circle

Note. Some other important properties (from our non-Euclidean geometry perspective) of inversion include:

Theorem H.3.2.5. Suppose C is a circle in \mathbb{C} centered at $z-0$, and $z \neq z_{0}$ is not on C. A cline through z is orthogonal to C if and only if it goes through z^{*}, the point symmetric to z with respect to C.

Theorem H.3.2.6. H-inversion in C takes clines orthogonal to C to themselves (i.e., such clines are fixed by the inversion).

Theorem H.3.2.7. H-inversion is a cline preserves angle magnitudes.

Theorem H.3.2.8. Let i_{C} denote H -inversion in a cline C. If p and q are symmetric with respect to cline D, then $i_{C}(p)$ and $i_{C}(q)$ are symmetric with respect to cline $i_{C}(D)$. That is, H -inversion preserves symmetric points.

Note. We now return to the extended complex plane $\mathbb{C}_{\infty}=\mathbb{C} \cup\{\infty\}$. We can then extend general linear transformations $T(z)=a z+b$ to the set \mathbb{C}_{∞} by defining $T(\infty)=\infty$. More interestingly, we can extend inversion as follows:

$$
i_{C}(z)=\left\{\begin{array}{cl}
\frac{r^{2}}{\left(z-z_{0}\right)}+z_{0} & \text { if } a \notin\left\{z_{0}, \infty\right\} \\
\infty & \text { if } z=z_{0} \\
z_{0} & \text { if } z=\infty
\end{array}\right.
$$

where C is a circle with center z_{0} and radius r.

Note. Conway defines an inversion as the swapping $i(z)=z / z$. Notice that this type of inversion is a composition of two H -inversions:

$$
i(z)=\frac{1}{z}=\overline{\left(\frac{1}{\bar{z}}\right)}=i_{L}\left(i_{C}(z)\right) .
$$

Where $i_{K}(z)=\bar{z}$ is H -inversion with respect to the x-axis and $i_{C}(z)=1 / \bar{z}$ is H -inversion with respect to the unit circle.

Note. Before we jump into the topic of Möbius transformations, we motivate them by addressing Felix Klein's approach to geometry. To do so, we need a set (of "points") and a group of transformations defined on the set.

Definition H.4.1.3. Let S be any set, and G a group of transformations on S. The pair (S, G) is called a geometry. A figure in the geometry is any subset A of S. Two figures A and B are congruent, denoted $A \cong B$, if there exists a transformation $T \in G$ such that $T(A)=B$.

Example H.4.1.4. the group \mathcal{T} of all transformations on $\mathbb{C}, \mathcal{T}=\{T \mid T(z)=$ $z+b, b \in \mathbb{C}\}$ determines translational geometry on $\mathbb{C},(\mathbb{C}, \mathcal{T})$. Parallel lines and circles of the same radius are congruent in this geometry. Non-parallel lines and circles of different radii are not congruent.

Note. Hitchman in his Example H.4.1.8 defines Euclidean geometry to be (\mathbb{C}, \mathcal{E}) where \mathcal{E} consists of all general linear transformations of the following form:

$$
\mathcal{E}=\left\{T \mid T(z)=e^{i \theta} z+b, \theta \in \mathbb{R}, b \in \mathbb{C}\right\} .
$$

However, this does not include reflections, so that the following triangles would then not be considered congruent (in violation of "side-side-side"):

According to Elementary Geometry by Ilka Agricola and Thomas Friedrich, American Mathematical Society, Student Mathematical Library, Volume 43 (2007), Euclidean geometry includes all Euclidean isometries. These isometries on \mathbb{R}^{2} are of the form $T(\vec{v})=A \vec{v}+\vec{b}$ where $\vec{b} \in \mathbb{R}^{2}$ and A is an orthogonal/orthonormal matrix (and the same for Euclidean geometry on \mathbb{R}^{n}). With $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ we map $(x, y)=x+i y$ to $(x,-y)=x-i y$, so reflections are included in this definition.

Theorem H-Page 79. Euclidean distance, $d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|$, is invariant in Euclidean geometry:

$$
\left|T\left(z_{1}\right)-T\left(z_{2}\right)\right|=\left|\left(e^{i \theta} z_{1}+b\right)-\left(e^{i \theta} z_{2}+b\right)\right|=\left|z_{1}-z_{2}\right| .
$$

Note. In Euclidean geometry, parallel lines are equidistant apart. This can be explained in the setting of Book I of The Elements of Geometry in terms of parallelograms. That is, let ℓ and m be lines and p and q points on ℓ (not on m). Then two lines perpendicular to ℓ through points p and q will intersect line m in such a way as to determine a rectangle if and only if ℓ and m are parallel:

A proof will follow from, say, the Parallel Postulate (Postulate 5) and Proposition 33 ("Straight lines which join the ends of equal and parallel straight lines in the same directions are themselves equal and parallel.") Since Euclidean distance is an invariant of Euclidean geometry, we can prove that parallel lines are equidistant from one another (in the transformation setting) and therefore prove the Parallel Postulate in the transformation setting.

Definition H.4.1.9. A geometry (\mathbb{C}, G) is called homogeneous if any two points in \mathbb{C} are congruent, and isotropic if the transformation group contains rotations about each point in \mathbb{C}.

Example H.4.1.10. Translation geometry on \mathbb{C} is homogeneous but not isotropic. Euclidean geometry on \mathbb{C} is homogeneous and isotropic.

Note. We now return to Conway and study Möbius transformations. This collection of transformations form a group of transformations on \mathbb{C}_{∞}. This "Möbius geometry" is very general (like "neutral geometry" which is an axiomatic approach to geometry that does not have a parallel postulate). Certain subgroups of the Möbius transformations will determine (1) elliptic geometry, (2) Euclidean geometry, and (3) hyperbolic geometry, on subsets of \mathbb{C}_{∞}.

