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Chapter V. Singularities

V.1. Classification of Singularities

Note. In this section, we define various types of singularities of a function and

develop the idea of a Laurent series.

Definition. A function f has an isolated singularity at z = a if there is an R > 0

such that f is defined and analytic in B(a;R) \ {a}, but not in B(a;R). Point a is

a removable singularity if there is an analytic function g : B(a;R) → C such that

g(z) = f(z) for 0 < |z − a| < R.

Example. Functions f1(z) = 1/z and f2(z) = sin z/z, and f3(z) = exp(1/z) each

have isolated singularities at z = 0. As shown in Exercise V.1.1, f2(z) = sin z/z

has a removable singularity.

Theorem V.1.2. If f has an isolated singularity at a then z = a is a removable

singularity if and only if lim
z→a

(z − a)f(z) = 0.

Definition. If z = a is an isolated singularity of f then a is a pole of f if lim
z→a

|f(z)| =

∞. If an isolated singularity is neither a pole nor a removable singularity it is called

an essential singularity.
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Example. Function f(z) =
1

(z − a)m
for m ∈ N has a pole at z = a. Function

g(z) = exp(z−1) has an essential singularity at z = 0. In fact, a function with a

pole at z = a has a well defined form, as given next.

Proposition V.1.4. If G is a region with a ∈ G, and if f is analytic in G \ {a}

with a pole at z = a, then there is a positive integer m and an analytic function

g : G → C such that f(z) =
g(z)

(z − a)m
.

Definition. If f has a pole at z = a and m is the smallest positive integer such

that f(z)(z − a)m has a removable singularity at z = a, then f has a pole of order

m at z = a. A pole of order 1 is called a simple pole.

Note. If f has a pole of order m at z = a, then f(z) = g(z)/(z − a)m where g is

analytic in B(a;R) (for some R > 0), so

g(z) = Am + Am−1(z − a) + · · · + A1(z − a)m−1 + (z − a)m

∞∑
k=0

ak(z − a)k

and

f(z) =
Am

(z − a)m
+

Am−1

(z − a)m−1
+ · · · +

A1

(z − a)
+ g1(z)

where g1 is analytic in B(a;R) and Am 6= 0.
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Definition. If f has a pole of order m at z = a and f satisfies

f(z) =
Am

(z − a)m
+

Am−1

(z − a)m−1
+ · · · +

A1

(z − a)
+ g1(z)

then
Am

(z − a)m
+

Am−1

(z − a)m−1
+ · · · +

A1

(z − a)

is called the singular part of f at z = a.

Note. We will see that an essential singularity behaves rather like a pole of infinite

order. This then produces an infinite singular part. First, some definitions.

Definition V.1.10. If {zn | n ∈ Z} is a doubly infinite sequence of complex

numbers, then
∑∞

n=−∞ an is absolutely convergent if both
∑∞

n=0
an and

∑∞
n=1

a−n

are absolutely convergent. If these series are absolutely convergent then define

∞∑
n=−∞

zn =

∞∑
n=1

z−n +

∞∑
n=0

zn.

If un is a function on a set S for n ∈ Z and
∑∞

n=−∞ un(s) is absolutely convergent for

every s ∈ S, then the convergence is uniform over S if both
∑∞

n=0
un and

∑∞
n=1

u−n

converge uniformly on S.

Definition. If 0 ≤ R1 < R2 ≤ ∞ and a is any complex number, define

ann(a;R1, R2) = {z | R1 < |z − a| < R2}.
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Note. We now deal with a series representation of a function analytic on an

annulus.

Theorem V.1.11. Laurent Series Development.

Let f be analytic in ann(a;R1, R2). Then

f(z) =

∞∑
n=−∞

an(z − a)n

where the convergence is absolute and uniform over the closure of ann(a; r1, r2) if

R1 < r1 < r2 < R2. The coefficients an are given by

an =
1

2πi

∫
γ

f(z)

(z − a)n+1
dz (1.12)

where γ is the circle |z − a| = r for any r with R1 < r < R2. Moreover, this series

is unique.

Note. The proof of Theorem V.1.11 is in a, sort of, self contained supplement.

The Laurent series allows us to classify isolated singularities.

Corollary V.1.18. Let z = a be an isolated singularity of f and let f(z) =
∞∑
−∞

an(z − a)n be its Laurent expansion in ann(a; 0, R). Then

(a) z = a is a removable singularity if and only if an = 0 for n ≤ −1,

(b) a = z is a pole of order m if and only if a−m 6= 0 and an = 0 for n ≤ −(m+1),

and

(c) z = a is an essential singularity if and only if an 6= 0 for infinitely many negative

integers n.
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Note. If f has an essential singularity at z = a, then limz→a |f(z)| does not exist.

The text says: “This means that as z approaches a the values of f(z) must wander

through C.” The following result shows that this wandering is very intense.

Theorem V.1.21. Casorati-Weierstrass Theorem.

If f has an essential singularity at z = a then for every δ > 0, {f(ann(a; 0, δ)}− = C.

Note. A more general result concerning the behavior of f near an essential singu-

larity is in Chapter XII (the last chapter of the text, page 300):

Great Picard Theorem.

Suppose an analytic function has an essential singularity at z = a. Then in each

neighborhood of a, f assumes each complex number, with one possible exception,

an infinite number of times.

Note. Function f(z) = exp(1/z) is such a function, and it clearly does not take

on the value 0.

Note. For the record, from page 297 we have:

Little Picard Theorem.

If f is an entire function that omits two values, then f is a constant.

Note. Of course, f(z) = ez is an example of a function omitting one value.
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