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V.2. Residues

Note. Given our previous experience with integrals over closed and rectifiable

curves, we expect lots of integrals to be 0, except those related to 1/(z−a). Hence,

in a Laurent expansion, our attention is drawn to a−1. In this section, we also

develop some techniques with which we can evaluate integrals of functions of a real

variable.

Definition V.2.1. Let f have an isolated singularity at z = a and let f(z) =
∞

∑

n=−∞
an(z − a)n be its Laurent expansion about z = a. The residue of f at z = a

is the coefficient a−1, denoted Res(f ; a) = a−1.

Note. The following relates residues to integrals and winding numbers.

Theorem V.2.2. Residue Theorem.

Let f be analytic in the region G, except for the isolated singularities a1, a2, . . . am.

If γ is a closed rectifiable curve in G which does not pass through any of the points

ak and if γ ≈ 0 in G then

1

2πi

∫

γ

f =

m
∑

k=1

n(γ; ak) Res(f ; ak).
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Note. The Residue Theorem allows us to evaluate certain integrals, provided

we can evaluate winding numbers and residues. The following result allows us to

compute residues in terms of derivatives.

Proposition V.2.4. Suppose f has a pole of order m at z = a. Let g(z) =

(z − a)mf(z). Then

Res(f ; a) =
1

(m − 1)!
g(m−1)(a).

Note V.2.A. If z = a is a simple pole of f , then

f(z) =
a−1

z − a
+

∞
∑

k=0

ak(z − a)k and Res(f ; a) = lim
z→a

(z − a)f(z) = a−1.

Example V.2.5. Show

∫ ∞

−∞

x2

1 + x4
dx =

π√
2
.

Solution. With f(z) = z2/(1 + z4), f has simple poles at the 4th roots of −1,

a1 = exp(πi/4), a2 = exp(3πi/4), a3 = exp(5πi/4), and a4 = exp(7πi/4). So by

Note V.2.A,

Res(f ; a1) = lim
z→a1

(z − a1)f(z) = lim
z→a1

(z − a1)
z2

(z − a1)(z − a2)(z − a3)(z − a4)

=
a2

1

((a1 − a2)(a1 − a3)(a1 − a4)
=

i

(2/
√

2)(2/
√

2 + 2i/
√

2)(2i/
√

2)

=
2
√

2

4i(2 + 2i)

(

2 − 2i

2 − 2i

)

=
4
√

2(1 − i)

4i8
=

1 − i

4
√

2
,

and

Res(f ; a2) = lim
z→a2

(z − a2)
z2

(z − a1)(z − a2)(z − a3)(z − a4)
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=
a2

(a2 − a1)(a2 − a3)(a2 − a4)
=

−i

(−2/
√

2)(2i/
√

2)(−2/
√

2 + 2i/
√

2)

=
−2

√
2i

(−2)(2i)(−2 + 2i)
=

√
2

−4(1 − i)

(

1 + i

1 + i

)

=
√

2(1 + i)−8 =
−1 − i

4
√

2
.

Let R > 1 and let γ be the closed path:

Then by the Residue Theorem (Theorem V.2.2),

1

2πi

∫

γ

f(z) dz = Res(f ; a1) + Res(f ; a2) =
1 − i

4
√

2
+

−1 − i

4
√

2
=

−i

2
√

2
.

But breaking γ into the interval [−R,R] ⊂ R and the semicircle {Reit | 0 ≤ t ≤ π}
gives

1

2πi

∫

γ

f(z) dz =
1

2πi

∫ R

−R

x2

1 + x4
dx +

1

2πi

∫ π

0

R2e2it

1 + R4e4it
iReit dt

and so
∫ R

−R

x2

1 + x4
dx =

π√
2
− iR3

∫ π

0

e3it

1 + R4e4it
dt.

For 0 ≤ t ≤ π, |1 + R4e4it| ≥ R4 − 1, so

∣

∣

∣

∣

iR3

∫ π

0

3eit

1 + R4e4it
dt

∣

∣

∣

∣

≤ πR3

R4 − 1
.

So

lim
R→∞

(

iR3

∫ π

0

e3it

1 + R4e4it
dt

)

= 0
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and

∫ ∞

−∞

x2

1 + x4
dx = lim

R→∞

(
∫ R

−R

x2

1 + x4
dx

)

= lim
R→∞

(

π√
2
− iR3

∫ π

0

e3it

1 + R4e4it
dt

)

=
π√
2
.

Notice that this was evaluated using residues and no mention is made of antideriva-

tives!

Example V.2.12. Show that

∫ ∞

0

x−c

1 + x
dx =

π

sin(πc)
for 0 < c < 1.

Solution. We want to use residues and circles around 0 to set up a contour

integral that produces the desired real definite integral in the limit. However,

z−c = exp(−c log z) requires a branch of the logarithm and so a branch cut from 0

to ∞.

Let G = {z | z 6= 0 and 0 < arg(z) < 2π}. Define a branch of the logarithm on G

of `(z) = `(reiθ) = log(r) + iθ where 0 < θ ≤ 2π. Then on G, f(z) = exp(−c`(z))

is a branch of z−c. Now we define contour γ over which we will integrate. Let

0 < r < a < R and let δ > 0. Let L1 be the line segment [r + δi, R + δi], let γR be

the part of the circle |z| = R from R + δi counterclockwise to R− δi, let L2 be the

line segment [R − δi, r − δi], and let γr be the part of the circle |z| = r from r − δi

clockwise to r + δi. Put γ = L1 + γR + L2 + γr. See figure the figure below.
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Then {γ} ⊂ G, γ ∼ 0 in G, and −1 is inside γ. Now z−c/(1 + z) has a simple

pole at z = −1 so by Note V.2.A,

Res(z−c/(1 + z);−1) = lim
z→−1

(1 + z)(z−c/(1 + z)) = lim
z→−1

z−c

= f(−1) = exp(−c(log(1) + i(π))) = e−ciπ.

By the Residue Theorem (Theorem V.2.2),

∫

γ

z−c

1 + z
dz = 2πiRes(z−c/(1 + z)) = 2πie−ciπ .

Now L1 = [r + δi, R + δi] can be parameterized as L1(t) = t + δi for t ∈ [r,R].

Then with f(z) = z−c,

∫

L1

f(z)

1 + z
dz =

∫ R

r

f(t + iδ)

1 + t + iδ
dt.

To deal with this integral, we define g(t, δ) on compact set [r,R] × [0, π/2] as

g(t, δ) =







∣

∣

∣

f(t+iδ)
1+t+iδ

− t−c

1+t

∣

∣

∣
if δ ∈ (0, π/2]

0 if δ = 0.

Then g is continuous and so, by Theorem II.5.15, uniformly continuous. So if ε > 0

then there is δ0 > 0 such that if (t−t′)2+(δ−δ′)2 < δ2
0 then |g(t, δ)−g(t′, δ′)| < ε/R.

In particular, with t = t′ and δ′ = 0, we have g(t′, δ′) = g(t′, 0) = 0 and so for

(t − t′)2 + (δ − δ′) = δ2 < δ2
0 (or δ < δ0), |g(t, δ) − g(t′, δ′)| = g(t, δ) < ε/R. So for

δ < δ0 we have
∫ R

r
g(t, δ) dt ≤ (ε/R)R = ε. So limδ→0+

∫ R

r
g(t, δ) dt = 0 and

lim
δ→0+

∣

∣

∣

∣

∫ R

r

f(t + iδ)

1 + t + iδ
dt −

∫ R

r

t−c

1 + t
dt

∣

∣

∣

∣

= lim
δ→0+

∣

∣

∣

∣

∫ R

r

(

f(t + iδ)

1 + t + iδ
− t−c

1 + t

)

dt

∣

∣

∣

∣

≤ lim
δ→0+

(
∫ R

r

∣

∣

∣

∣

f(t + iδ)

1 + t + iδ
− t−c

1 + t

∣

∣

∣

∣

dt

)

= lim
δ→0+

(
∫ R

r

g(t, δ) dt

)

= 0,
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and so

lim
δ→0+

(
∫ R

r

f(t + iδ)

1 + t + iδ
dt

)

=

∫ R

r

t−c

1 + t
dt or lim

δ→0+

(
∫ R

r

f(z)

1 + z
dz

)

=

∫ R

r

t−c

1 + t
dt.

Similarly, as is to be shown in Exercise V.2.A,

−e−2πi

∫ R

r

t−c

1 + t
dt = lim

δ→0+

∫

L2

f(z)

1 + z
dz.

As shown above,

∫

γ

f(z)

1 + z
dz = 2πie−πc and this is independent of δ so letting

δ → 0+ we have

2πie−iπc = lim
δ→0+

(
∫

γ

f(z)

1 + z
dz

)

= lim
δ→0+

(
∫

L1

f(z)

1 + z
dz +

∫

γR

f(z)

1 + z
dz

+

∫

L2

f(z)

1 + z
dz +

∫

γr

f(z)

1 + z
dz

)

=

∫ R

r

t−c

1 + t
dt − e−iπc

∫ R

r

t−c

1 + t
dt + lim

δ→0+

(
∫

γr

f(z)

1 + z
dz +

∫

γR

f(z)

1 + z
dz

)

. (2.16)

Now if ρ > 0 and ρ 6= 1 and if γρ is the part of the circle |z| = ρ from
√

ρ2 − δ2 + iδ

to
√

ρ2 − δ2 − iδ then
∣

∣

∣

∣

∣

∫

γρ

f(z)

1 + z
dz

∣

∣

∣

∣

∣

≤
∫

γρ

|f(z)|
|1 + z| |dz| ≤ ρ−c

|1 − ρ|2πρ.

Since this bound is independent of δ, from (2.16), we have

∣

∣

∣

∣

2πie−iπc − (1 − e−iπc)

∫ R

r

t−c

1 + t
dt

∣

∣

∣

∣

≤ r−c

|1 − r|2πr +
R−c

|1 − R|2πR.

Now taking limits r → 0+ and R → ∞,
r−c

|1 − r|2πr → 0 and
R−c

|1 − R|2πR → 0 since

0 < c < 1. Hence

(1 − e−2πic)

∫ ∞

0

t−c

1 + t
dt = 2πie−iπc
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or
∫ ∞

0

t−c

1 + t
dt =

2πie−iπc

1 − e−2iπc
=

2πi

eiπc − e−iπc
=

2πi

2i sin(πc)
=

π

sin(πc)

since sin z = (eiz − e−iz)/(2i).

Note. A much easier solution to the previous example is given in Schaum’s Outline

Series, Complex Variables by Murray Spiegel [1964], page 185. Unfortunately, it is

incorrect! Effectively, Spiegel takes δ = 0 in our notation. But then γr and γR both

must contain points on the branch cut of the logarithm (and hence on the branch

cut of z−c).

Revised: 4/11/2018


