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V.3. The Argument Principle

Note. In this section, we concentrate on zeros and poles of a function. In the

Argument Principle we relate the value of an integral to winding numbers of zeros

or poles. In Rouche’s Theorem, a quantity related to the number of zeros and the

number of poles is given which is preserved between functions satisfying a certain

(inequality) relationship. The specific class of functions of concern is defined in the

following.

Definition V.3.3. If G is open and f is a function defined and analytic on G

except for poles, then f is a meromorphic function on G.

Note. If f is meromorphic on G, then we can define f : G → C∞ by setting

f(z) = ∞ at each pole of f . By Exercise V.3.4 f is then a continuous mapping

where we treat C∞ as a metric space with the metric given in section I.6.

Note. If f is analytic at z = a and f has a zero of order m at z = a, then

f(z) = (z − a)mg(z) where g(a) 6= 0 be Definition IV.3.1. Hence

f ′(z)

f(z)
=

m(z − a)m−1g(z) + (z − a)mg′(z)

(z − a)mg(z)
=

m

z − a
+

g′(z)

g(z)
. (3.1)

Since g(a) 6= 0, then g′/g is analytic “near” z = a.
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Note. If f has a pole of order m at z = a, then f(z) = (z − a)−mg(z) where g is

analytic at z = a and g(a) 6= 0 by the definition of pole of order m and Proposition

V.1.6. Then

f ′(z)

f(z)
=

−m(z − a)−m−1g(z) + (z − a)−mg′(z)

(z − a)−mg(z)
=

−m

z − a
+

g′(z)

g(z)
. (3.2)

Again, since g(a) 6= 0, then g′/g is analytic “near” z = a.

Theorem V.3.4. Argument Principle.

Let f be meromorphic in G with poles p1, p2, . . . , pm and zeros z1, z2, . . . , zn repeated

according to multiplicity. If γ is a closed rectifiable curve in G where γ ≈ 0 and

not passing through p1, p2, . . . , pm, z1, z2, . . . , zn, then

1

2πi

∫

γ

f ′(z)

f(z)
dz =

n
∑

k=1

n(γ; zk) −

m
∑

j=1

n(γ; pj).

Note. Given the representation of f ′/f given in the proof, we see that winding

numbers naturally arise here. Also, we would expect a primitive of f ′/f to be

log(f), which of course does not exist on {γ} (unless the winding numbers are 0),

but again this hints at multiples of 2πi.

Theorem V.3.6. Let f be meromorphic on region G with zeros z1, z2, . . . , zn and

poles p1, p2, . . . , pm repeated according to multiplicity. If g is analytic on G and γ

is a closed rectifiable curve in G where γ ≈ 0 and γ does not pass through any zero

or pole of f , then

1

2πi

∫

γ

g(z)
f ′(z)

f(z)
dz =

n
∑

k=1

g(zk)n(γ; zk) −

m
∑

j=1

g(pj)n(γ; pj).
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Note. The proof of Theorem V.3.6 is to be given in Exercise V.3.1.

Proposition V.3.7. Let f be analytic on an open set containing B(a;R) and

suppose that f is one to one on B(a;R). If Ω = f [B(a;R)] and γ is the circle

|z − a| = R, then f−1(ω) is defined for each ω ∈ Ω by

f−1(ω) =
1

2πi

∫

γ

zf ′(z)

f(z) − ω
dz.

Note. We now state as “Rouche’s Theorem” what is actually a generalization of

the traditional version (see Conway’s reference at the bottom of page 125).

Theorem V.3.8. Rouche’s Theorem.

Suppose f and g are meromorphic in a neighborhood of B(a;R) with no zeros

or poles on the circle γ(t) = a + Reit, t ∈ [0, 2π]. Suppose Zf and Zg are the

number of zeros inside γ, and Pf and Pg are the number of poles inside γ (counted

according to their multiplicities) and that |f(z)+g(z)| < |f(z)|+ |g(z)| on γ. Then

Zf − Pf = Zg − Pg.

Note. Rouche’s Theorem can be further generalized by replacing the circle γ =

{z | |z − a| = R} with any closed rectifiable curve γ where γ ≈ 0 in G, and with

the introduction of winding numbers (this is Exercise V.3.7).
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Note. Ahlfors in his Complex Analysis (McGraw Hill, 1979, page 153) state

Rouche’s Theorem as:

Let γ ≈ 0 in region G where n(γ; z) is either 0 or 1 for any point z 6= {γ}. Let f

and g be analytic in G and for all z ∈ {γ} suppose |f(z) − g(z)| < |f(z)|. Then f

and g have the same number of zeros enclosed by γ.

Note. Another statement of Rouche’s Theorem (see page 119 of Murray Spiegel,

Complex Variables with an Introduction to Conformal Mapping and Its Applications

in the Schaum’s Outline Series, NY: McGraw-Hill, 1964):

If f and g are analytic inside and on a simple closed curve C and if |g(z)| < |f(z)|

on C, then f(z) + g(z) and f(z) have the same number of zeros inside C.

This version follows from Ahlfors’ version by replacing Ahlfors’ g(z) with f(z) +

g(z).

Note. Rouche’s Theorem can be used to give another easy (analytic) proof of the

Fundamental Theorem of Algebra.

Theorem. Fundamental Theorem of Algebra.

If p(z) = zn + an−1z
n−1 + · · ·+ a2z

2 + a1z + a0 is a (complex) polynomial of degree

n, then p has n zeros (counting multiplicities).

Proof. We have

p(z)

zn
= 1 +

an−1

z
+ · · · +

a2

zn−2
+

a1

zn−1
+

a0

zn
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for z 6= 0, and lim
z→∞

p(z)

zn
= 1. So with ε = 1, we have that there exists R > 0

such that for all |z| > R we have

∣

∣

∣

∣

p(z)

zn
− 1

∣

∣

∣

∣

< ε = 1. That is, for |z| > R,

|p(z) − zn| < |zn|. With f(z) = zn and g(z) = p(z), we have by Ahlfor’s version

of Rouche’s Theorem (of course, this also follows from Conway’s version as well)

that, since f(z) = zn has n zeros, then g(z) = p(z) has the same number of zeros.
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