VI.2. Schwarz's Lemma

Note. Schwarz's Lemma is an inequality concerning functions on the unit disk. As an inequality, I have used it in my research, and we will see some generalizations.

Lemma VI.2.1. Schwarz's Lemma.

Let $D = \{z \mid |z| < 1\}$ and suppose f is analytic on D with (a) $|f(z)| \le 1$ for $z \in D$, and (b) f(0) = 0. Then $|f'(0)| \le 1$ and $|f(z)| \le |z|$ for all z in the disk D. Moreover if |f'(z)| = 1of if |f(z)| = |z| for some $z \ne 0$ then there is a constant $c \in \mathbb{C}$, |c| = 1, such that f(w) = cw for all $w \in D$.

Note. A proof of the following version of Schwarz's Lemma is similar to the proof of Lemma VI.2.1. We leave the proof as Exercise 6.2.A.

Lemma VI.2.A. Let
$$f(z) = \sum_{n=1}^{\infty} a_n z^n$$
 for $|z| \le R$. Suppose $f(0) = 0$. Then
 $|f(z)| \le \frac{M|z|}{R}$ for any $|q| \le R$.

Note. We now classify conformal maps of the open unit disk D onto itself.

Definition. For |a| < 1, define the Möbius transformation

$$\varphi_a(z) = \frac{z-a}{1-\overline{a}z}.$$

Note. φ_1 is analytic for $|z| < 1/|\overline{a}| = 1/|a|$, and so φ_a is analytic on the unit disk D (since 1/|a| > 1). Also,

$$\varphi_a(\varphi_{-a}(z)) = \varphi_a\left(\frac{z+a}{1+\overline{a}z}\right) = \frac{(z+a)/(1+\overline{a}z)-a}{1-\overline{a}(z+a)/(1+\overline{a}z)}$$
$$= \frac{(z+a)-a(1+\overline{a}z)}{(1+\overline{a}z)-\overline{a}(z+a)} = \frac{z(1-|a|^2)}{a-|a|^2} = z,$$

and similarly $\varphi_{-a}(\varphi_a(z)) = z$. This is valid for all $z \in D$, so φ_a is one to one on D.

Proposition VI.2.2. If |a| < 1 then φ_a is a one to one map of the open unit disk D onto itself. The inverse of φ_a is φ_{-a} . Furthermore, φ_a maps ∂D onto ∂D , $\varphi_a(a) = 0$, $\varphi_a'(0) = 1 - |a|^2$, and $\varphi_a'(a) = (1 - |a|^2)^{-1}$.

Lemma IV.2.A. Suppose f is analytic on $D = \{z \mid |z| < 1\}$ and $|f(z)| \le 1$ for $z \in D$. Let $z \in D$. Then

$$|f'(a)| \le \frac{1 - |f(a)|^2}{1 - |a|^2}$$

Moreover, equality holds exactly when $f(z) = \varphi_{\alpha}(c\varphi_a(z))$, where $\alpha = f(a)$ for some $c \in \mathbb{C}$ where |c| = 1.

Theorem VI.2.5. Let $f: D \to D$ be a one to one analytic map of D onto itself and suppose f(a) = 0. Then there is a complex c where |c| = 1 such that $f = c\varphi_a$. Note. Proposition 2.2 and Theorem 2.5 combine to show that the one to one analytic maps of $D = \{z \mid |z| < 1\}$ onto itself are precisely the functions of the form $f(z) = c\left(\frac{z-a}{1-\overline{a}z}\right)$ where |z| = 1 and |a| < 1. Notice that $f'(z) = v\frac{[1](1-\overline{a}z) - (z-a)[-\overline{a}]}{(1-\overline{a}z)^2} = c\frac{1-|a|^2}{(1-\overline{a}z)^2}$

and so $f'(z) \neq 0$ for $z \in D$ and by Theorem III.3.4 these mappings are all conformal on D.

Note. Schwarz's Lemma gives us a bound for |f(z)| pointwise on $D = \{z ||z|| < 1\}$; namely, $|f(z)| \le |z|$. The hypotheses are $|f(z)| \le 1$ for $z \in D$ and f(0) = 0. The following is a slight generalization of this version of Schwarz's Lemma. It is stated on $\overline{D} = \{z \mid |z| \le 1\}$. Conway's version of Schwarz's Lemma holds with D replaced by \overline{D} .

Generalized Schwarz's Lemma 1. If f is analytic on $\overline{D}\{z \mid |z| \le 1\}$, with (a) $|f(z)| \le M$ for $z \in \overline{D}$, and (b) f(a) = 0 where |a| < 1. Then for $z \in \overline{D}$: $|f(z)| \le M \left| \frac{z-a}{a-\overline{a}z} \right| = M |\varphi_a(z)|.$ Note. The above generalization of Schwarz's Lemma is really just a matter of book keeping. That is, we shifted the unique zero of f from 0 to a and modified the bound on |f(z)| from 1 to the more general M. However, there is not really anything conceptually new in the result. The following generalization of the original version. It uses information about f(0) (assumed to be 0 in the original version) and information about f'(0) (think of f as having a series representation and this result uses information about both the constant term and the z coefficient).

Generalized Schwarz's Lemma 2. (From N. K. Govil, Q. Rahman, and G. Schmeisser, On the Derivative of a Polynomial, *Illinois Journal of Math*, 23 (1979), 319–329.) If f is analytic on $\overline{D} = \{z \mid |z| \leq 1\}$ with

(a) $|f(z)| \le 1$ for $z \in \overline{D}$, (b) f(0) = a, and (c) f'(0) = b. Then for $x \in \overline{D}$

$$|f(z)| \le \frac{(1-|a|)|z|^2 + |b||z| + |a|(1-|a|)}{|a|(1-|a|)|z|^2 + |b||z| + (1-|a|)}$$

This result is best possible ("sharp") and equality holds for

$$f(z) = \frac{a + (b/(a+a)z - z^2)}{1 - (b/(1+a))z - az^2}$$

Revised: 10/25/2021