VI.2. Schwarz's Lemma

Note. Schwarz's Lemma is an inequality concerning functions on the unit disk. As an inequality, I have used it in my research, and we will see some generalizations.

Lemma VI.2.1. Schwarz's Lemma.

Let $D=\{z| | z \mid<1\}$ and suppose f is analytic on D with
(a) $|f(z)| \leq 1$ for $z \in D$, and
(b) $f(0)=0$.

Then $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq|z|$ for all z in the disk D. Moreover if $\left|f^{\prime}(z)\right|=1$ of if $|f(z)|=|z|$ for some $z \neq 0$ then there is a constant $c \in \mathbb{C},|c|=1$, such that $f(w)=c w$ for all $w \in D$.

Note. A proof of the following version of Schwarz's Lemma is similar to the proof of Lemma VI.2.1. We leave the proof as Exercise 6.2.A.

Lemma VI.2.A. Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ for $|z| \leq R$. Suppose $f(0)=0$. Then

$$
|f(z)| \leq \frac{M|z|}{R} \text { for any }|q| \leq R .
$$

Note. We now classify conformal maps of the open unit disk D onto itself.

Definition. For $|a|<1$, define the Möbius transformation

$$
\varphi_{a}(z)=\frac{z-a}{1-\bar{a} z} .
$$

Note. φ_{1} is analytic for $|z|<1 /|\bar{a}|=1 /|a|$, and so φ_{a} is analytic on the unit disk D (since $1 /|a|>1)$. Also,

$$
\begin{gathered}
\varphi_{a}\left(\varphi_{-a}(z)\right)=\varphi_{a}\left(\frac{z+a}{1+\bar{a} z}\right)=\frac{(z+a) /(1+\bar{a} z)-a}{1-\bar{a}(z+a) /(1+\bar{a} z)} \\
=\frac{(z+a)-a(1+\bar{a} z)}{(1+\bar{a} z)-\bar{a}(z+a)}=\frac{z\left(1-|a|^{2}\right)}{a-|a|^{2}}=z,
\end{gathered}
$$

and similarly $\varphi_{-a}\left(\varphi_{a}(z)\right)=z$. This is valid for all $z \in D$, so φ_{a} is one to one on D.

Proposition VI.2.2. If $|a|<1$ then φ_{a} is a one to one map of the open unit disk D onto itself. The inverse of φ_{a} is φ_{-a}. Furthermore, φ_{a} maps ∂D onto ∂D, $\varphi_{a}(a)=0, \varphi_{a}^{\prime}(0)=1-|a|^{2}$, and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.

Lemma IV.2.A. Suppose f is analytic on $D=\{z| | z \mid<1\}$ and $|f(z)| \leq 1$ for $z \in D$. Let $z \in D$. Then

$$
\left|f^{\prime}(a)\right| \leq \frac{1-|f(a)|^{2}}{1-|a|^{2}}
$$

Moreover, equality holds exactly when $f(z)=\varphi_{\alpha}\left(c \varphi_{a}(z)\right)$, where $\alpha=f(a)$ for some $c \in \mathbb{C}$ where $|c|=1$.

Theorem VI.2.5. Let $f: D \rightarrow D$ be a one to one analytic map of D onto itself and suppose $f(a)=0$. Then there is a complex c where $|c|=1$ such that $f=c \varphi_{a}$.

Note. Proposition 2.2 and Theorem 2.5 combine to show that the one to one analytic maps of $D=\{z| | z \mid<1\}$ onto itself are precisely the functions of the form $f(z)=c\left(\frac{z-a}{1-\bar{a} z}\right)$ where $|z|=1$ and $|a|<1$. Notice that

$$
f^{\prime}(z)=v \frac{[1](1-\bar{a} z)-(z-a)[-\bar{a}]}{(1-\bar{a} z)^{2}}=c \frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}
$$

and so $f^{\prime}(z) \neq 0$ for $z \in D$ and by Theorem III.3.4 these mappings are all conformal on D.

Note. Schwarz's Lemma gives us a bound for $|f(z)|$ pointwise on $D=\{z\|z\|<1\}$; namely, $|f(z)| \leq|z|$. The hypotheses are $|f(z)| \leq 1$ for $z \in D$ and $f(0)=0$. The following is a slight generalization of this version of Schwarz's Lemma. It is stated on $\bar{D}=\{z| | z \mid \leq 1\}$. Conway's version of Schwarz's Lemma holds with D replaced by \bar{D}.

Generalized Schwarz's Lemma 1. If f is analytic on $\bar{D}\{z||z| \leq 1\}$, with
(a) $|f(z)| \leq M$ for $z \in \bar{D}$, and
(b) $f(a)=0$ where $|a|<1$.

Then for $z \in \bar{D}$:

$$
|f(z)| \leq M\left|\frac{z-a}{a-\bar{a} z}\right|=M\left|\varphi_{a}(z)\right| .
$$

Note. The above generalization of Schwarz's Lemma is really just a matter of book keeping. That is, we shifted the unique zero of f from 0 to a and modified the bound on $|f(z)|$ from 1 to the more general M. However, there is not really anything conceptually new in the result. The following generalization of the original version. It uses information about $f(0)$ (assumed to be 0 in the original version) and information about $f^{\prime}(0)$ (think of f as having a series representation and this result uses information about both the constant term and the z coefficient).

Generalized Schwarz's Lemma 2. (From N. K. Govil, Q. Rahman, and G. Schmeisser, On the Derivative of a Polynomial, Illinois Journal of Math, 23 (1979), 319-329.) If f is analytic on $\bar{D}=\{z| | z \mid \leq 1\}$ with
(a) $|f(z)| \leq 1$ for $z \in \bar{D}$,
(b) $f(0)=a$, and
(c) $f^{\prime}(0)=b$.

Then for $x \in \bar{D}$

$$
|f(z)| \leq \frac{(1-|a|)|z|^{2}+|b||z|+|a|(1-|a|)}{|a|(1-|a|)|z|^{2}+|b||z|+(1-|a|)} .
$$

This result is best possible ("sharp") and equality holds for

$$
f(z)=\frac{a+\left(b /(a+a) z-z^{2}\right.}{1-(b /(1+a)) z-a z^{2}} .
$$

