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V1.3. Convex Functions and

Hadamard’s Three Circles Theorem

Note. This section relates to “rates of growth” results and indicates how large a
function f(z) can get (in modulus) in terms of the real part of the input variable

z and in terms of the modulus of z.

Definition VI.3.1. If [a,b] C R, then a function f : [a,b] — R is convez if for any

r1, T2 € |a,b] we have

fltzg 4 (1 —t)oy) <tf(we) + (1 — 1) f(21)

for all t € [0,1]. A set A C Cis convex if whenever z,w € A thentz+ (1 —t)w € A
for all ¢ € [0, 1].

Note. f :[a,b] — R is convex if it is (in the verbiage of Calculus 1) “concave up”:
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It is common to call “concave down” functions “concave.” A set A C C is convex
if for all points z,w € A, the line segment [z, w] C A. Of course, we can relate the
concept of a convex subset of C to the concept of a convex subset of R? (and vice

versa). The following result relates convex functions and convex sets.

Proposition VI.3.2. A function f : [a,b] — R is convex if and only if the set
A={(z,y) |z € [a,b] and f(z) <y}

1S convex.

Note. The following follows from the definition of convex function and convex set

by using math induction.

Proposition VI.3.3.
(a) A function f : [a,b] — R is convex if and only if any points 1, z, ..., x, € |a, D]

and real numbers t1,ts,...,t, > 0 with Yk = 1"t;, = 1, we have

/ (Zthk) < Ztkf(xk)-

(b) A set A C C is convex if and only if any points 21, 29,...,2, € A and real

numbers t1,ta, ..., t, > 0 with > ¢t = 1, we have > ,_, tpz, € A.

Proposition VI1.3.4. A differentiable function f on [a,b] is convex if and only if

f! is increasing.
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Definition. Positive valued function f is logarithmically convex if log(f(x)) is

convex.

Note. If f is logarithmically convex, then it is convex, which is easy to see for

twice differentiable functions:

d? d
Talloe(r@) = 1 |

f’(ﬂ?)] S (@) f(x) — f'(@) ()
f ()

= f"(z) > (f]:((g;))) > 0 (since f(z) > 0).

So log(f(z)) is convex implies that f(x) is convex by Proposition 3.4.

Theorem VI1.3.7. Let a < b and let G be the vertical strip {z + iy | a < z < b}.
Suppose f : G~ — C is continuous and f is analytic in G. If we define M : [a, b] —
R by

M(z) = sup{| f(z + iy)| [ —oo <y < oo}
and | f(z)| < B for all z € G, then log M(x) is a convex function.

Note. We need a preliminary result before the proof of Theorem 3.7.

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that
|f(z)] < 1for z € OG. Then |f(2)| <1 for z € G.

Note. Now for the proof of Theorem 3.7.
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Corollary VI1.3.9. Let a < b and let G be the vertical strip {x 4+ iy | a < z < b}.
Let f: G~ — C be continuous and let f be analytic on G. Then for all z € G we

have

[f(2)] < sup{|f(2)| | z € 9G}.

Note. Corollary 3.9 shows how Theorem 3.7 is really a type of Maximum Modulus

Theorem.

Note. Consider the annulus A = ann(0; Ry, Rs) where 0 < R; < Ry < 00, and the
vertical strip G = {z + iy | log Ry < = < log R2}. Then the exponential function
maps G onto A and JG onto 0A (of course, because of the periodic nature of
the exponential function, the mapping is not one to one...it is “oco to 17). This

mapping is useful in proving the following.

Theorem VI1.3.13. Hadamard’s Three Circles Theorem.
Let 0 < Ry < Ry < oo and suppose f is analytic and not identically zero on

ann(0; Ry, Ry). If Ry <1 < Ry, define
M(r) = max{|f(rei9)| |0 <0< 2r}.

Then for Ry <1 <1 <ry < Ry and 1 # 19, we have

< logry —logr log r — log rq

log M(r)

log M (r3).

log M () +

~ logry — logr log ro — log
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Note. Comparing Hadamard’s Three Circles Theorem to equation (x) in the proof
of Theorem 3.7 (also, see line 7 of page 136), shows that Hadamard’s Three Circles

Theorem implies that log M(x) is a convex function of log .

Note. Of course the title “Three Circles Theorem” comes from the fact that
the result compares the logarithm of the maximum modulus of a function in three
circles of different radii (r1, 79, and ). Such results are common in classical complex

analysis and are sometimes called “rate of growth results.”
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