VI.3. Convex Functions and

Hadamard's Three Circles Theorem

Note. This section relates to "rates of growth" results and indicates how large a function $f(z)$ can get (in modulus) in terms of the real part of the input variable z and in terms of the modulus of z.

Definition VI.3.1. If $[a, b] \subset \mathbb{R}$, then a function $f:[a, b] \rightarrow \mathbb{R}$ is convex if for any $x_{1}, x_{2} \in[a, b]$ we have

$$
f\left(t x_{2}+(1-t) x_{1}\right) \leq t f\left(x_{2}\right)+(1-t) f\left(x_{1}\right)
$$

for all $t \in[0,1]$. A set $A \subset \mathbb{C}$ is convex if whenever $z, w \in A$ then $t z+(1-t) w \in A$ for all $t \in[0,1]$.

Note. $f:[a, b] \rightarrow \mathbb{R}$ is convex if it is (in the verbiage of Calculus 1) "concave up":

It is common to call "concave down" functions "concave." A set $A \subset \mathbb{C}$ is convex if for all points $z, w \in A$, the line segment $[z, w] \subset A$. Of course, we can relate the concept of a convex subset of \mathbb{C} to the concept of a convex subset of \mathbb{R}^{2} (and vice versa). The following result relates convex functions and convex sets.

Proposition VI.3.2. A function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if the set

$$
A=\{(x, y) \mid x \in[a, b] \text { and } f(x) \leq y\}
$$

is convex.

Note. The following follows from the definition of convex function and convex set by using math induction.

Proposition VI.3.3.

(a) A function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if any points $x_{1}, x_{2}, \ldots, x_{n} \in[a, b]$ and real numbers $t_{1}, t_{2}, \ldots, t_{n} \geq 0$ with $\sum k=1^{n} t_{k}=1$, we have

$$
f\left(\sum_{k=1}^{n} t_{k} x_{k}\right) \leq \sum_{k=1}^{n} t_{k} f\left(x_{k}\right)
$$

(b) A set $A \subset \mathbb{C}$ is convex if and only if any points $z_{1}, z_{2}, \ldots, z_{n} \in A$ and real numbers $t_{1}, t_{2}, \ldots, t_{n} \geq 0$ with $\sum_{k=1}^{n} t_{k}=1$, we have $\sum_{k=1}^{n} t_{k} z_{k} \in A$.

Proposition VI.3.4. A differentiable function f on $[a, b]$ is convex if and only if f^{\prime} is increasing.

Definition. Positive valued function f is logarithmically convex if $\log (f(x))$ is convex.

Note. If f is logarithmically convex, then it is convex, which is easy to see for twice differentiable functions:

$$
\begin{gathered}
\frac{d^{2}}{d x^{2}}\left[\log (f(x)]=\frac{d}{d x}\left[\frac{f^{\prime}(x)}{f(x)}\right]=\frac{f^{\prime \prime}(x) f(x)-f^{\prime}(x) f^{\prime}(x)}{(f(x))^{2}} \geq 0\right. \\
\Rightarrow f^{\prime \prime}(x) \geq \frac{\left(f^{\prime}(x)\right)^{2}}{f(x)} \geq 0(\text { since } f(x)>0)
\end{gathered}
$$

So $\log (f(x))$ is convex implies that $f(x)$ is convex by Proposition 3.4.

Theorem VI.3.7. Let $a<b$ and let G be the vertical strip $\{x+i y \mid a<x<b\}$. Suppose $f: G^{-} \rightarrow \mathbb{C}$ is continuous and f is analytic in G. If we define $M:[a, b] \rightarrow$ \mathbb{R} by

$$
M(x)=\sup \{|f(x+i y)| \mid-\infty<y<\infty\}
$$

and $|f(z)|<B$ for all $z \in G$, then $\log M(x)$ is a convex function.

Note. We need a preliminary result before the proof of Theorem 3.7.

Lemma VI.3.10. Let f and G be as Theorem 3.7 and further suppose that $|f(z)| \leq 1$ for $z \in \partial G$. Then $|f(z)| \leq 1$ for $z \in G$.

Note. Now for the proof of Theorem 3.7.

Corollary VI.3.9. Let $a<b$ and let G be the vertical strip $\{x+i y \mid a<x<b\}$. Let $f: G^{-} \rightarrow \mathbb{C}$ be continuous and let f be analytic on G. Then for all $z \in G$ we have

$$
|f(z)|<\sup \{|f(z)| \mid z \in \partial G\}
$$

Note. Corollary 3.9 shows how Theorem 3.7 is really a type of Maximum Modulus Theorem.

Note. Consider the annulus $A=\operatorname{ann}\left(0 ; R_{1}, R_{2}\right)$ where $0<R_{1}<R_{2}<\infty$, and the vertical strip $G=\left\{x+i y \mid \log R_{1}<x<\log R_{2}\right\}$. Then the exponential function maps G onto A and ∂G onto ∂A (of course, because of the periodic nature of the exponential function, the mapping is not one to one...it is " ∞ to 1 "). This mapping is useful in proving the following.

Theorem VI.3.13. Hadamard's Three Circles Theorem.

Let $0<R_{1}<R_{2}<\infty$ and suppose f is analytic and not identically zero on $\operatorname{ann}\left(0 ; R_{1}, R_{2}\right)$. If $R_{1}<r<R_{2}$, define

$$
M(r)=\max \left\{\left|f\left(r e^{i \theta}\right)\right| \mid 0 \leq \theta \leq 2 \pi\right\} .
$$

Then for $R_{1}<r_{1} \leq r \leq r_{2}<R_{2}$ and $r_{1} \neq r_{2}$, we have

$$
\log M(r) \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} \log M\left(r_{1}\right)+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} \log M\left(r_{2}\right)
$$

Note. Comparing Hadamard's Three Circles Theorem to equation (*) in the proof of Theorem 3.7 (also, see line 7 of page 136), shows that Hadamard's Three Circles Theorem implies that $\log M(x)$ is a convex function of $\log x$.

Note. Of course the title "Three Circles Theorem" comes from the fact that the result compares the logarithm of the maximum modulus of a function in three circles of different radii (r_{1}, r_{2}, and r). Such results are common in classical complex analysis and are sometimes called "rate of growth results."

