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Chapter VII. Compactness and

Convergence in the Space

of Analytic Functions

Note. In this chapter we form a metric space out of the set of all analytic functions

on a given region G. We prove the Riemann Mapping Theorem and introduce both

the Gamma Function and the Riemann Zeta Function.

VII.1. The Space of Continuous Functions C(G, Ω)

Note. In this section, we start with a metric space (Ω, d) and an open set G ⊂ C.

We then consider the set of all continuous functions from G to Ω and show that

this set forms a complete metric space. Other topological and analytic topics are

explored.

Definition VII.1.1. If G is an open set in C and (Ω, d) is a complete metric space

then denote by C(G,Ω) the set of all continuous functions from G to Ω.

Note. C(G,Ω) is nonempty since it contains the constant functions. We are

primarily interested in the cases where the metric space (Ω, d) is either (C, | · |) or

(C∞, d) where d is as defined on page 9 of the text. Of course C(G, C) contains all

analytic functions on G. Also, C(G, C∞) contains all meromorphic functions on G

(as shown by Exercise V.3.4).
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Theorem VII.1.2. If G is open in C then there is a sequence {Kn} of compact

subsets of G such that G = ∪∞
n=1Kn. moreover, the sets Kn can be chosen to satisfy

the following conditions:

(a) Kn ⊂ int(Kn+1);

(b) K ⊂ G and K compact imply K ⊂ Kn for some n;

(c) Every component of C∞ \ Kn contains a component of C∞ \ G.

Definition. For G open in C, G = ∪∞
n=1Kn for compact Kn and Kn ⊂ int(Kn+1)

as given in Proposition 1.2, define

ρn(f, g) = sup{d(f(z), g(z)) | z ∈ Kn}

for all f, g ∈ C(G,Ω). Also define

ρ(f, g) =
∞

∑

n=1

(

1

2

)n
ρn(f, g)

1 + ρn(f, g)
.

(We will see below in Corollary VII.1.11 that the topological properties determined

by ρ are independent of the choice of the compact sets Kn.)

Note. The series given in ρ(f, g) is a positive term series dominated by the ge-

ometric series with ration 1/2, so the series converges (by the Direct Comparison

Test) and so ρ(f, g) is defined for all f, g ∈ C(G,Ω). We now show that ρ is a

metric on C(G,Ω).
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Lemma VII.1.5. If (S, d) is a metric space then

µ(s, t) =
d(s, t)

1 + d(s, t)

is also a metric on S. A set is open in (S, d) if and only if it is open in (S, µ); a

sequence is a Cauchy sequence in (S, d) if and only if it is a Cauchy sequence in

(S, µ).

Proof. This is done in Exercise VII.1.1.

Proposition VII.1.6. (C(G,Ω), ρ) is a metric space.

Note. The following three results relate open sets and compact sets in metric

space (C(G,Ω), ρ). Conway states: “These who know the appropriate definition

will recognize that [the following] lemma says that two uniformities are equivalent.”

Lemma VII.1.7. Let the metric ρ be defined as above:

ρ(f, g) =

∞
∑

n=1

(

1

2

)n
ρn(f, g)

1 + ρn(f, g)

for f, g ∈ C(G,Ω) where G = ∪∞
n=1Kn for compact Kn with Kn ⊂ int(Kn+1) and

ρn(f, g) = sup{d(f(z), g(z)) | z ∈ Kn}. If ε > 0 is given then there is δ > 0 and a

compact set K ⊂ G such that for f, g ∈ C(G,Ω),

sup{d(f(z), g(z)) | z ∈ K} < δ =⇒ ρ(f, g) < ε.

Conversely, if δ > 0 and a compact set K are given then there is ε > 0 such that

for f, g ∈ C(G,Ω),

ρ(f, g) < ε =⇒ sup{d(f(z), g(z)) | z ∈ K} < δ.
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Proposition VII.1.10.

(a) A set O ⊂ (C(G,Ω), ρ) is open if and only if for each f ∈ O there is a compact

set K and a δ > 0 such that O ⊃ {g | d(f(z), g(z)) < δ for z ∈ K}.

(b) A sequence {fn} in (C(G,Ω), ρ) converges to f if and only if {fn} converges

to f uniformly on all compact subsets of G.

Corollary VII.1.11. The collection of open sets is independent of the choice of the

sets {Kn}. That is, if G = ∪∞
n=1K

′
n

where each K ′
n

is compact and K ′
n
⊂ int(Kn+1)

and if µ is the metric defined by the sets {K ′
n
} then a set is open in (C(G,Ω), µ)

if and only if it is open in (C(G,Ω), ρ).

Proof. This follows from Proposition 1.10 in which open sets in (C(G,Ω), ρ) are

classified in terms of compact sets, but with no specific appeal to the {Kn} or

{K ′
n
}.

Note. Corollary VII.1.11 tells us that the topology on C(G,Ω) is the same regard-

less of how the compact sets Kn are chosen. In a normed linear space, two norms are

said to be “equivalent” when they induce the same topologies (see my online notes

for Fundamentals of Functional Analysis [MATH 5740] on the Section “Comparison

of Norms”: http://faculty.etsu.edu/gardnerr/Func/notes/2-6.pdf). This

would inspire us to call any two metrics on C(G,Ω) produced by a sequence of

compact sets as described above as “equivalent” (though this does not mean that

the metrics give the distances between corresponding points).
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Note. Conway claims that the above results of this section still hold even when

we drop the condition Kn ⊂ int(Kn+1) (see page 145). However, to establish this

requires “some extra effort” such as the Baire Category Theorem. This result deals

with subsets of a metric space. A subset E of a metric space X is of the first

category if E is the union of a countable collection of nowhere dense subsets of X .

A set that is not of the first category is of the second category. The Baire Category

Theorem states that an open subset of a complete metric space is of the second

category. See page 214 of Royden and Fitzpatrick’s Real Analysis, 4th Edition

(Prentice Hall, 2010) for these definitions.

Note. We have not yet addressed completeness. Throughout the rest of this

section we assume that metric space (Ω, d) is complete. This implies that C(G,Ω)

is complete, as we now see.

Proposition VII.1.12. If metric space (Ω, d) is complete, then metric space

C(G,Ω) is complete.

Note. The remainder of this section is not needed for the rest of this chap-

ter. “The next definition is derived from the classical origins of the subject”

(Conway, page 146). We use the definition in the statement and proof of the

Arzela-Ascoli Theorem which “is a deep result which has proved extremely useful

in many areas of analysis” (Conway, page 146). Much of the rest of this sec-

tion is in Ahlfor’s Complex Analysis, Third Edition (McGraw-Hill, 1979) in Sec-
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tion 5.5. The Arzela-Ascoli Theorem is covered in Section 10.1 of Royden and

Fitzpatrick’s Real Analysis in a chapter on metric spaces. It is in Section 9.2 of

Promislow’s A First Course in Functional Analysis (Wiley & Sons, 2008)—this

is the text used in our Introduction to Functional Analysis class (MATH 5740).

See http://faculty.etsu.edu/gardnerr/Func/notes.htm for more details on

the functional analysis material.

Definition VII.1.14. A set F ⊂ C(G,Ω) is normal is each sequence in F has a

subsequence which converges to a function f in C(G,Ω).

Note. The following result makes the structure of normal sets a little more tangi-

ble. The proof of the result is “left to the reader.”

Proposition VII.1.15. A set F ⊂ C(G,Ω) is normal if and only if its closure is

compact.

Proposition VII.1.16. A set F ⊂ C(G,Ω) is normal if and only if for every

compact set K ⊂ G and every δ > 0, there are functions f1, f2, . . . fn ∈ F such

that for f ∈ F there is at least one k, 1 ≤ k ≤ n, with

sup{d(f(z), fk(z)) | z ∈ K} < δ.
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Definition. Let (Xn, dn) be the metric space for each n ∈ N and let X =
∏∞

n=1
Xn

(the Cartesian product). For ξ = {xn} and η = {yn} in X (so xn ∈ Xn and

yn ∈ Xn) define

d(ξ, η) =
∞

∑

n=1

(

1

2

)n
dn(xn, yn)

1 + dn(xn, yn)
.

Proposition VII.1.18. The space (
∏∞

n=1
Xn, d) of the previous definition is a

metric space. If ξk = {xk
n}

∞
n=1 is in X =

∏∞
n=1

Xn then ξk → ξ = {xn} if and only

if xk

n
→ x − n for all n ∈ N. also, if each (Xn, d) is compact then X is compact.

Note. The following definition “plays a central role in the Arzela-Ascoli Theorem.”

Definition VII.1.21. A set F ⊂ C(G,Ω) is equicontinuous at a point z0 ∈ G if

for every ε > 0 there is a δ > 0 such that for |z − z0| < δ, d(f(z), f(z0)) < ε for

every f ∈ F . Set F is equicontinuous over a set E ⊂ G if for every ε > 0 there is

a δ > 0 such that for z, z′ ∈ E and |z − z′| < δ we have d(f(z), f(z′)) < ε for all

f ∈ F .

Note. If F = {f} then “F is equicontinuous at z0” simply means that f is

continuous at z0. In this case, “F is equicontinuous on set E” means that f is

uniformly continuous on E. For larger sets F , Conway describes equicontinuity on

a set as “ uniform uniform continuity.”
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Proposition VII.1.22. Suppose F ⊂ C(G,Ω) is equicontinuous at each point of

G. Then F is equicontinuous over each compact subset of G.

Note. Now for the Arzela-Ascoli Theorem which classifies normal sets F ⊂

C(G,Ω) and relates normality to equicontinuity.

Theorem VII.1.23. Arzela-Ascoli Theorem

A set F ⊂ C(G,Ω) is normal if and only if the following two conditions are satisfied:

(a) For each z ∈ G, we have that {f(z) | f ∈ F} has compact closure in Ω;

(b) F is equicontinuous at each point of G.
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