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VII.3. Spaces of Meromorphic Functions

Note. Function f on region G is meromorphic if it is analytic on G except for poles.

Isolated singularity z = a of f is a pole if limz→a |f(z)| = ∞. If we define f(z) = ∞

at each pole of meromorphic function f , then by Exercise V.3.4, f : G → C∞ is

continuous where the metric d on C∞ is as given in Section I.6. The Extended

Plane and Its Spherical Representation:

d(z1, z2) =
2|z1 − z2|

{(1 + |z1|2)(1 + |z2|2}1/2 for z1, z2 ∈ C

d(z,∞) =
2

(1 + |z|2)1/2 for z ∈ C.

Note. In this section we consider M(G), the set of all meromorphic functions on

region G ⊂ C and treat M(G) as a subset of C(G, C∞). So the metric on M(G) is

ρ(f, g) =
∞∑

n=1

(
1

2

)n
ρn(f, g)

1 + ρn(f, g)

where G = ∪∞n=1Kn, each Kn is compact, Kn ⊂ int(Kn+1), and

ρn(f, g) = sup{d(f(z), g(z)) | z ∈ Kn}.

Note. For nonzero z1, z2 ∈ C, the metric in C∞ satisfies

d

(
1

z1
,

1

z2

)
=

2|1/z1 − 1/z2|
{(1 + |1/z1|2)(1 + |1/z2|2)}1/2 ×

|z1||z2|
|z1||z2|

=
2|z1 − z2|

{(1 + |z1|2)(1 + |z2|2)‖1/2 = d(z1, z2).

For nonzero z ∈ C,

d

(
1

z
,∞

)
=

2

{z + |1/z|2}1/2 =
2|z|2

{1 + |z|2}1/2 = d(z, 0).

https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
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Note. Exercise II.3.4 states: Let an, z ∈ C and let d be the metric on C∞. Then

|zn − z| → 0 if and only if d(zn, z) → 0. Also, if |zn| → ∞ then {zn} is a Cauchy

sequence in C∞.

Note. The following result compares the metric spaces C under the normal metric

on C, and C∞ under the metric d. We use the notation “B∞(a; r)” to indicate a

ball in C∞ with center a and radius r. The proof is to be given in Exercise VII.3.1.

Proposition VII.3.3.

(a) If a ∈ C and r > 0, then there is ρ > 0 such that B∞(a; ρ) ⊂ B(a; r).

(b) Conversely, if ρ > 0 is given and a ∈ C then there is a number r > 0 such that

B(a : r) ⊂ B∞(a; ρ).

(c) If ρ > 0 is given then there is a compact set K ⊂ C such that C∞ \ K ⊂

B∞(∞; ρ).

(d) Conversely, if a compact set K ⊂ C is given, then there is ρ > 0 such that

B∞(∞, ρ) ⊂ C∞ \K.

Note. It is easy to see that M(G) is not complete. Consider {fn} where fn(z) = n.

The sequence {fn} converges to the constant function f(z) = ∞. Notice that f

is not meromorphic since it is not analytic on G except for (isolated) poles, but

f ∈ C(G, C∞). We will see below in Corollary VII.3.5 that M(G) ∪ {f}, where

f(z) = ∞ for all z ∈ C (denoted f ≡ ∞), is complete. We first prove a more

general result.
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Theorem VII.3.4. Let {fn} be a sequence in M(G) and suppose fn → f in

C(G, C∞). Then either f is meromorphic or f ≡ ∞. If each fn is analytic then

either f is analytic or f ≡ ∞.

Note. By Proposition VII.1.12, C(G, Ω) is complete where G is an open subset of

C and (Ω, d) is a complete metric space. So any Cauchy sequence {fn} ⊂ C(G, C∞)

is convergent in C(G, C∞). So if {fn} is a Cauchy sequence in M(G) ⊂ C(G, C)

then fn → f for some f ∈ C(G, C∞) and by Theorem VII.3.4 we have that either

f ∈ M(G) or f ≡ ∞. This gives the following.

Corollary VII.3.5. Let G be a region in C (i.e., an open connected subset in C).

Then the meromorphic functions on G combined with f ≡ ∞ on G, M(G)∪ {∞},

is a complete metric space under metric ρ.

Note. If {fn} is a convergent sequence in H(G) ⊂ C(G, C∞) then by Theorem

VII.1.12, fn → f in C(G, C∞). By the second claim in Theorem VII.3.4, either

f ≡ ∞ or f is analytic. this gives the following.

Corollary VII.3.6. Let G be a region in C. Then the analytic functions on G

combined with f ≡ ∞, H(G) ∪ {∞}, is a closed subset of C(G, C∞).
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Note. We already know that H(G) is complete by Corollary VII.2.3. We now

concentrate on M(G) and its normal subsets. Recall that a set F (in C(G, Ω)) is

normal if each sequence in F has a subsequence which converges.

Note. Recall that F ⊂ C(F, Ω) is normal if and only if its closure is compact

(Proposition VII.1.15). Montel’s Theorem states that F ⊂ H(G) is normal if and

only if F is locally bounded. To explore normality in M(G), we need to consider

the quantity 2|f ′(z)|/(1 + |f(z)|2), as we’ll see in Theorem VII.3.8. However, this

quantity is not defined where f has a pole since the derivative is undefined there.

So we’ll define the quantity at poles of f using limits. Recall that if f has an

isolated pole of order m ≥ 1 at z = a then

f(z) = g(z) +
Am

(z − a)m
+

Am−1

(z − a)m−1 + · · ·+ A1

z − a

for z in some disk about a and g analytic in the disk (see Section V.1; equation

(V.1.7) in the text). So for z 6= 1,

f ′(z) = g(z)−
[

mAm

(z − a)m+1 +
(m− 1)Am−1

(z − a)m
+ · · ·+ A1

(z − a)2

]
.

Thus,

2|f ′(z)|
1 + |f(z)|2

=
2
∣∣∣ mAm

(z−a)m+1 + (m−1)Am−1

(z−a)m + · · ·+ A1

(z−a)2 − g′(z)
∣∣∣

1 +
∣∣∣ Am

(z−a)m + Am−1

(z−a)m−1 + · · ·+ A1

(z−a) + g′(z)
∣∣∣2

=
2|z − a|m−1

∣∣mAm + (m− 1)Am−1(z − a) + · · ·+ A1(z − a)m−1 − g′(z)(z − a)m+1
∣∣

|a− z|2m + |Am + Am−1(z − a) + · · ·+ A1(z − a)m−1 + g(z)(z − a)m|2

(multiplying by |z − a|2m/|z − a|2m). So if m ≥ 2 then lim
z→a

2|f ′(z)|
1 + |f(z)|2

= 0 and if

m = 1 then

lim
z→a

2|f ′(z)|
1 + |f(z)|2

=
2m|Am|
|Am|2

=
2

|A1|
.
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Definition. If f is a meromorphic function on the region G then define µ(f) :

G → R by µ(f)(z) =
2|f ′(z)|

1 + |f(z)|2
for z not a pole of f and

µ(f)(a) = µ(f)(a) =

 0 if m > 2

2/|A1| if m = 1

when a is a pole of f of order m (where A1 is as defined in the above note).

Note. µ(f) : G → R defined above is continuous on G (clearly at nonpoles and by

definition at poles) so µ(f) ∈ C(G, R).

Note. Recall that F ⊂ H(G) is normal if and only it it is locally bounded and

“locally bounded” means that for each compact set K ⊂ G there is a constant M

such that |f(z)| ≤ M for all f ∈ F and z ∈ K. So we see, at least in H(G), that

normality is related to a type of uniform boundedness. Conway informally inspires

the introduction of µ(f) as follows. If f : G → C∞ is meromorphic then for z

“close” to z′ (not poles of f) we have

d(f(z), f(z′)) =
2|f(z) = f(z′)|

{(1 + |f(z)|2)(z + |f(z′)|2)}1/2

=
2|z − z′||f(z)− f(z′)|/|z − z′|
{(1 + |f(z)|2)(1 + |f(z′)|2)}1/2 ≈

2|z − z′||f ′(z)|
1 + |f(z)|2

= µ(f)(z)|z − z′|.

So if µ(f) is bounded, say µ(f) ≤ M , then d(f(z), f(z′)) ≤ M |z − z′| and so f is

Lipschitz. So if for set F ⊂ M(G), µ(f) is uniformly bounded on F , then F is a

“uniformly Lipschitz” set of functions. In Exercise VII.2.4, an alternative proof of

Montel’s Theorem is outlined in which it is shown that for F ⊂ H(G):

locally bounded =⇒ locally Lipschitz =⇒ equicontinuous.
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The Arzela-Ascoli Theorem (Theorem VII.1.23) then gives normality. So here (in

M(G)), we will use local boundedness of µ(f) on F to get locally Lipschitz on F

and equicontinuity, in the following.

Theorem VII.3.8. A family F ⊂ M(G) is normal in C(G, C∞) if and only if

µ(F) = {µ(f) | f ∈ F} is locally bounded.

Note. Theorem VII.3.8. refers to F ⊂ M(G) as being normal in C(G, C∞),

not in M(G)! This is because M(G) is not complete (but M(G) ∪ {∞} is, by

Corollary VII.3.5). For example, with fn(z) = nz, n ∈ N, then F = {fn} is

normal in C(G, C∞) since fn → f ≡ ∞ (and so every subsequence converges

in C(G, C∞). Also, µ(fn)(z) =
2n

1 + n2|z|2
is locally bounded (recall that local

boundedness concerns a given compact subset of G). But F is not normal in M(G)

since {fn} and any subsequence of {fn} converges to f ≡ ∞, but f ≡ ∞ 6∈ M(G).

Note. We will get a classification of meromorphic functions on G in Section VII.5

(The Factorization Theorem). If f ∈ M(G), then there are g, h ∈ H(G) such that

f = g/h on G (Corollary VII.5.20); that is, meromorphic functions are quotients

of analytic functions).
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