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VI1I.3. Spaces of Meromorphic Functions

Note. Function f on region G is meromorphic if it is analytic on G except for poles.
Isolated singularity z = a of f is a pole if lim,_, | f(2)| = oco. If we define f(2) = oo
at each pole of meromorphic function f, then by Exercise V.3.4, f : G — CL is
continuous where the metric d on Cy is as given in Section [.6. The Extended

Plane and Its Spherical Representation:
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Note. In this section we consider M (G), the set of all meromorphic functions on
region G C C and treat M(G) as a subset of C(G,Cy). So the metric on M(G) is
— (1\" _pulf9)
h- 35 (2) 2t
>9) ; 2) 1+ palf.9)

where G = U2, K,,, each K, is compact, K,, C int(K,1), and

pu(f9) = sup{d(f(2), 9(2)) | z € K}

Note. For nonzero z1, 29 € C, the metric in C,, satisfies

g <l l) B 2|1/21 — 1/2 . 2l
2 zm) {0+ 1z +1/2)}2 0 |z]|z]
2|Zl —22’

T H{OF [P+ [P d(z1, z9).

For nonzero z € C,
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https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
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Note. Exercise 11.3.4 states: Let a,,z € C and let d be the metric on C,,. Then
|z, — 2| — 0 if and only if d(z,,2) — 0. Also, if |2,| — oo then {z,} is a Cauchy

sequence in C.,.

Note. The following result compares the metric spaces C under the normal metric
on C, and C,, under the metric d. We use the notation “By(a;r)” to indicate a

ball in C,, with center a and radius r. The proof is to be given in Exercise VII.3.1.

Proposition VII.3.3.
(a) If a € C and r > 0, then there is p > 0 such that By (a;p) C B(a;r).

(b) Conversely, if p > 0 is given and a € C then there is a number r > 0 such that
B(a :r) C Bxo(a; p).

(c) If p > 0 is given then there is a compact set K C C such that C \ K C

Boo (005 p).

(d) Conversely, if a compact set K C C is given, then there is p > 0 such that
Boo(00,p) C Cp \ K.

Note. It is easy to see that M (G) is not complete. Consider { f,,} where f,(z) = n.
The sequence {f,} converges to the constant function f(z) = oo. Notice that f
is not meromorphic since it is not analytic on G except for (isolated) poles, but
f € C(G,Cy). We will see below in Corollary VII.3.5 that M (G) U {f}, where
f(z) = oo for all z € C (denoted f = o), is complete. We first prove a more

general result.
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Theorem VII.3.4. Let {f,} be a sequence in M(G) and suppose f, — f in
C(G,Cy). Then either f is meromorphic or f = oco. If each f, is analytic then

either f is analytic or f = oc.

Note. By Proposition VII.1.12, C(G, ) is complete where G is an open subset of
C and (€2, d) is a complete metric space. So any Cauchy sequence { f,} C C(G,Cy)
is convergent in C(G,Cy). So if {f,} is a Cauchy sequence in M(G) C C(G,C)
then f, — f for some f € C(G,Cy) and by Theorem VII.3.4 we have that either
f € M(G) or f =o0. This gives the following.

Corollary VIIL.3.5. Let G be a region in C (i.e., an open connected subset in C).
Then the meromorphic functions on G combined with f = co on G, M(G) U {oc},

is a complete metric space under metric p.

Note. If {f,} is a convergent sequence in H(G) C C(G,Cy) then by Theorem
VIL.1.12, f, — f in C(G,C4). By the second claim in Theorem VII.3.4, either

f = o0 or f is analytic. this gives the following.

Corollary VII.3.6. Let G be a region in C. Then the analytic functions on G
combined with f = oo, H(G) U {oo}, is a closed subset of C(G,Cy).



VII.3. Spaces of Meromorphic Functions 4

Note. We already know that H(G) is complete by Corollary VII.2.3. We now
concentrate on M (G) and its normal subsets. Recall that a set F (in C(G,(?)) is

normal if each sequence in F has a subsequence which converges.

Note. Recall that F C C(F,€) is normal if and only if its closure is compact
(Proposition VII.1.15). Montel’s Theorem states that F C H(G) is normal if and
only if F is locally bounded. To explore normality in M (G), we need to consider
the quantity 2|f'(2)|/(1 + |f(2)[*), as we'll see in Theorem VII.3.8. However, this
quantity is not defined where f has a pole since the derivative is undefined there.
So we’ll define the quantity at poles of f using limits. Recall that if f has an

isolated pole of order m > 1 at z = a then

A, Am—1 Ay

f(z)=g(z)+(z_a)m+( + -t

for z in some disk about @ and g analytic in the disk (see Section V.1; equation

(V.1.7) in the text). So for z # 1,
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multiplying by |z — a|*™/|z — a*™). So if m > 2 then lim —~—*— = 0 and if
( 2 — af/]z — af2") fim
m = 1 then
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Definition. If f is a meromorphic function on the region G then define u(f) :

G~ Rby ulf)(z) = i

for z not a pole of f and

0 it m > 2

2/|A)| ifm =1

p(f)a) = p(f)(a) =

when a is a pole of f of order m (where A; is as defined in the above note).

Note. u(f): G — R defined above is continuous on G (clearly at nonpoles and by
definition at poles) so u(f) € C(G,R).

Note. Recall that F C H(G) is normal if and only it it is locally bounded and
“locally bounded” means that for each compact set K C G there is a constant M
such that |f(z)] < M for all f € F and z € K. So we see, at least in H(G), that
normality is related to a type of uniform boundedness. Conway informally inspires
the introduction of p(f) as follows. If f : G — C4 is meromorphic then for z

“close” to 2’ (not poles of f) we have

) =)
WD = IR + P

e A~ FEW = 2=
TGP FEPE T e Rk
So if p(f) is bounded, say u(f) < M, then d(f(2), f(2')) < M|z — 2/| and so f is

Lipschitz. So if for set F C M(G), p(f) is uniformly bounded on F, then F is a

“uniformly Lipschitz” set of functions. In Exercise VII.2.4, an alternative proof of

Montel’s Theorem is outlined in which it is shown that for F C H(G):

locally bounded = locally Lipschitz = equicontinuous.
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The Arzela-Ascoli Theorem (Theorem VII.1.23) then gives normality. So here (in
M(G)), we will use local boundedness of u(f) on F to get locally Lipschitz on F

and equicontinuity, in the following.

Theorem VII.3.8. A family 7 C M(G) is normal in C'(G,Cy) if and only if
w(F) ={u(f) | f € F} is locally bounded.

Note. Theorem VIL.3.8. refers to F C M(G) as being normal in C(G,Cy),
not in M(G)! This is because M(G) is not complete (but M(G) U {0} is, by
Corollary VII.3.5). For example, with f,(2) = nz, n € N, then F = {f,} is

normal in C(G,Cy) since f, — f = oo (and so every subsequence converges

. 2n
n O(G, Coo). Also, plfa)2) = 5

boundedness concerns a given compact subset of G). But F is not normal in M (G)

is locally bounded (recall that local

since {f,} and any subsequence of {f,} converges to f = oo, but f =00 & M(G).

Note. We will get a classification of meromorphic functions on G in Section VII.5
(The Factorization Theorem). If f € M(G), then there are g,h € H(G) such that
f = g/h on G (Corollary VII.5.20); that is, meromorphic functions are quotients

of analytic functions).
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