VII.3. Spaces of Meromorphic Functions

Note. Function f on region G is meromorphic if it is analytic on G except for poles. Isolated singularity z = a of f is a pole if $\lim_{z\to a} |f(z)| = \infty$. If we define $f(z) = \infty$ at each pole of meromorphic function f, then by Exercise V.3.4, $f : G \to \mathbb{C}_{\infty}$ is continuous where the metric d on \mathbb{C}_{∞} is as given in Section I.6. The Extended Plane and Its Spherical Representation:

$$d(z_1, z_2) = \frac{2|z_1 - z_2|}{\{(1 + |z_1|^2)(1 + |z_2|^2\}^{1/2}} \text{ for } z_1, z_2 \in \mathbb{C}$$

$$d(z, \infty) = \frac{2}{(1 + |z|^2)^{1/2}} \text{ for } z \in \mathbb{C}.$$

Note. In this section we consider M(G), the set of all meromorphic functions on region $G \subset \mathbb{C}$ and treat M(G) as a subset of $C(G, \mathbb{C}_{\infty})$. So the metric on M(G) is

$$\rho(f,g) = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n \frac{\rho_n(f,g)}{1 + \rho_n(f,g)}$$

where $G = \bigcup_{n=1}^{\infty} K_n$, each K_n is compact, $K_n \subset int(K_{n+1})$, and

$$\rho_n(f,g) = \sup\{d(f(z),g(z)) \mid z \in K_n\}.$$

Note. For nonzero $z_1, z_2 \in \mathbb{C}$, the metric in \mathbb{C}_{∞} satisfies

$$d\left(\frac{1}{z_1}, \frac{1}{z_2}\right) = \frac{2|1/z_1 - 1/z_2|}{\{(1+|1/z_1|^2)(1+|1/z_2|^2)\}^{1/2}} \times \frac{|z_1||z_2|}{|z_1||z_2|}$$
$$= \frac{2|z_1 - z_2|}{\{(1+|z_1|^2)(1+|z_2|^2)\|^{1/2}} = d(z_1, z_2).$$

For nonzero $z \in \mathbb{C}$,

$$d\left(\frac{1}{z},\infty\right) = \frac{2}{\{z+|1/z|^2\}^{1/2}} = \frac{2|z|^2}{\{1+|z|^2\}^{1/2}} = d(z,0).$$

Note. Exercise II.3.4 states: Let $a_n, z \in \mathbb{C}$ and let d be the metric on \mathbb{C}_{∞} . Then $|z_n - z| \to 0$ if and only if $d(z_n, z) \to 0$. Also, if $|z_n| \to \infty$ then $\{z_n\}$ is a Cauchy sequence in \mathbb{C}_{∞} .

Note. The following result compares the metric spaces \mathbb{C} under the normal metric on \mathbb{C} , and \mathbb{C}_{∞} under the metric d. We use the notation " $B_{\infty}(a;r)$ " to indicate a ball in \mathbb{C}_{∞} with center a and radius r. The proof is to be given in Exercise VII.3.1.

Proposition VII.3.3.

- (a) If $a \in \mathbb{C}$ and r > 0, then there is $\rho > 0$ such that $B_{\infty}(a; \rho) \subset B(a; r)$.
- (b) Conversely, if $\rho > 0$ is given and $a \in \mathbb{C}$ then there is a number r > 0 such that $B(a:r) \subset B_{\infty}(a;\rho).$
- (c) If $\rho > 0$ is given then there is a compact set $K \subset \mathbb{C}$ such that $\mathbb{C}_{\infty} \setminus K \subset B_{\infty}(\infty; \rho)$.
- (d) Conversely, if a compact set $K \subset \mathbb{C}$ is given, then there is $\rho > 0$ such that $B_{\infty}(\infty, \rho) \subset \mathbb{C}_{\infty} \setminus K$.

Note. It is easy to see that M(G) is not complete. Consider $\{f_n\}$ where $f_n(z) = n$. The sequence $\{f_n\}$ converges to the constant function $f(z) = \infty$. Notice that f is not meromorphic since it is not analytic on G except for (isolated) poles, but $f \in C(G, \mathbb{C}_{\infty})$. We will see below in Corollary VII.3.5 that $M(G) \cup \{f\}$, where $f(z) = \infty$ for all $z \in \mathbb{C}$ (denoted $f \equiv \infty$), is complete. We first prove a more general result. **Theorem VII.3.4.** Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Then either f is meromorphic or $f \equiv \infty$. If each f_n is analytic then either f is analytic or $f \equiv \infty$.

Note. By Proposition VII.1.12, $C(G, \Omega)$ is complete where G is an open subset of \mathbb{C} and (Ω, d) is a complete metric space. So any Cauchy sequence $\{f_n\} \subset C(G, \mathbb{C}_{\infty})$ is convergent in $C(G, \mathbb{C}_{\infty})$. So if $\{f_n\}$ is a Cauchy sequence in $M(G) \subset C(G, \mathbb{C})$ then $f_n \to f$ for some $f \in C(G, \mathbb{C}_{\infty})$ and by Theorem VII.3.4 we have that either $f \in M(G)$ or $f \equiv \infty$. This gives the following.

Corollary VII.3.5. Let G be a region in \mathbb{C} (i.e., an open connected subset in \mathbb{C}). Then the meromorphic functions on G combined with $f \equiv \infty$ on G, $M(G) \cup \{\infty\}$, is a complete metric space under metric ρ .

Note. If $\{f_n\}$ is a convergent sequence in $H(G) \subset C(G, \mathbb{C}_{\infty})$ then by Theorem VII.1.12, $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. By the second claim in Theorem VII.3.4, either $f \equiv \infty$ or f is analytic. this gives the following.

Corollary VII.3.6. Let G be a region in \mathbb{C} . Then the analytic functions on G combined with $f \equiv \infty$, $H(G) \cup \{\infty\}$, is a closed subset of $C(G, \mathbb{C}_{\infty})$.

Note. We already know that H(G) is complete by Corollary VII.2.3. We now concentrate on M(G) and its normal subsets. Recall that a set \mathcal{F} (in $C(G, \Omega)$) is normal if each sequence in \mathcal{F} has a subsequence which converges.

Note. Recall that $\mathcal{F} \subset C(F, \Omega)$ is normal if and only if its closure is compact (Proposition VII.1.15). Montel's Theorem states that $\mathcal{F} \subset H(G)$ is normal if and only if \mathcal{F} is locally bounded. To explore normality in M(G), we need to consider the quantity $2|f'(z)|/(1+|f(z)|^2)$, as we'll see in Theorem VII.3.8. However, this quantity is not defined where f has a pole since the derivative is undefined there. So we'll define the quantity at poles of f using limits. Recall that if f has an isolated pole of order $m \geq 1$ at z = a then

$$f(z) = g(z) + \frac{A_m}{(z-a)^m} + \frac{A_{m-1}}{(z-a)^{m-1}} + \dots + \frac{A_1}{z-a}$$

for z in some disk about a and g analytic in the disk (see Section V.1; equation (V.1.7) in the text). So for $z \neq 1$,

$$f'(z) = g(z) - \left[\frac{mA_m}{(z-a)^{m+1}} + \frac{(m-1)A_{m-1}}{(z-a)^m} + \dots + \frac{A_1}{(z-a)^2}\right].$$

Thus,

$$\frac{2|f'(z)|}{1+|f(z)|^2} = \frac{2\left|\frac{mA_m}{(z-a)^{m+1}} + \frac{(m-1)A_{m-1}}{(z-a)^m} + \dots + \frac{A_1}{(z-a)^2} - g'(z)\right|}{1+\left|\frac{A_m}{(z-a)^m} + \frac{A_{m-1}}{(z-a)^{m-1}} + \dots + \frac{A_1}{(z-a)} + g'(z)\right|^2}$$
$$= \frac{2|z-a|^{m-1}\left|mA_m + (m-1)A_{m-1}(z-a) + \dots + A_1(z-a)^{m-1} - g'(z)(z-a)^{m+1}\right|}{|a-z|^{2m} + |A_m + A_{m-1}(z-a) + \dots + A_1(z-a)^{m-1} + g(z)(z-a)^m|^2}$$
(multiplying by $|z-a|^{2m}/|z-a|^{2m}$). So if $m \ge 2$ then $\lim \frac{2|f'(z)|}{2|f'(z)|} = 0$ and if

(multiplying by $|z - a|^{2m}/|z - a|^{2m}$). So if $m \ge 2$ then $\lim_{z \to a} \frac{2|f(z)|}{1 + |f(z)|^2} = 0$ and if m = 1 then

$$\lim_{z \to a} \frac{2|f'(z)|}{1+|f(z)|^2} = \frac{2m|A_m|}{|A_m|^2} = \frac{2}{|A_1|}$$

Definition. If f is a meromorphic function on the region G then define $\mu(f)$: $G \to \mathbb{R}$ by $\mu(f)(z) = \frac{2|f'(z)|}{1+|f(z)|^2}$ for z not a pole of f and $\mu(f)(a) = \mu(f)(a) = \begin{cases} 0 & \text{if } m > 2\\ 2/|A_1| & \text{if } m = 1 \end{cases}$

when a is a pole of f of order m (where A_1 is as defined in the above note).

Note. $\mu(f): G \to \mathbb{R}$ defined above is continuous on G (clearly at nonpoles and by definition at poles) so $\mu(f) \in C(G, \mathbb{R})$.

Note. Recall that $\mathcal{F} \subset H(G)$ is normal if and only it it is locally bounded and "locally bounded" means that for each compact set $K \subset G$ there is a constant Msuch that $|f(z)| \leq M$ for all $f \in \mathcal{F}$ and $z \in K$. So we see, at least in H(G), that normality is related to a type of uniform boundedness. Conway informally inspires the introduction of $\mu(f)$ as follows. If $f : G \to \mathbb{C}_{\infty}$ is meromorphic then for z"close" to z' (not poles of f) we have

$$d(f(z), f(z')) = \frac{2|f(z) = f(z')|}{\{(1 + |f(z)|^2)(z + |f(z')|^2)\}^{1/2}}$$
$$= \frac{2|z - z'||f(z) - f(z')|/|z - z'|}{\{(1 + |f(z)|^2)(1 + |f(z')|^2)\}^{1/2}} \approx \frac{2|z - z'||f'(z)|}{1 + |f(z)|^2} = \mu(f)(z)|z - z'|.$$

If $\mu(f)$ is bounded, say $\mu(f) \le M$, then $d(f(z), f(z')) \le M|z - z'|$ and so f is

So if $\mu(f)$ is bounded, say $\mu(f) \leq M$, then $d(f(z), f(z')) \leq M|z - z'|$ and so f is Lipschitz. So if for set $\mathcal{F} \subset M(G)$, $\mu(f)$ is uniformly bounded on \mathcal{F} , then \mathcal{F} is a "uniformly Lipschitz" set of functions. In Exercise VII.2.4, an alternative proof of Montel's Theorem is outlined in which it is shown that for $\mathcal{F} \subset H(G)$:

locally bounded \implies locally Lipschitz \implies equicontinuous.

The Arzela-Ascoli Theorem (Theorem VII.1.23) then gives normality. So here (in M(G)), we will use local boundedness of $\mu(f)$ on \mathcal{F} to get locally Lipschitz on \mathcal{F} and equicontinuity, in the following.

Theorem VII.3.8. A family $\mathcal{F} \subset M(G)$ is normal in $C(G, \mathbb{C}_{\infty})$ if and only if $\mu(\mathcal{F}) = \{\mu(f) \mid f \in \mathcal{F}\}$ is locally bounded.

Note. Theorem VII.3.8. refers to $\mathcal{F} \subset M(G)$ as being normal in $C(G, \mathbb{C}_{\infty})$, not in M(G)! This is because M(G) is not complete (but $M(G) \cup \{\infty\}$ is, by Corollary VII.3.5). For example, with $f_n(z) = nz$, $n \in \mathbb{N}$, then $\mathcal{F} = \{f_n\}$ is normal in $C(G, \mathbb{C}_{\infty})$ since $f_n \to f \equiv \infty$ (and so every subsequence converges in $C(G, \mathbb{C}_{\infty})$. Also, $\mu(f_n)(z) = \frac{2n}{1+n^2|z|^2}$ is locally bounded (recall that local boundedness concerns a given compact subset of G). But \mathcal{F} is not normal in M(G)since $\{f_n\}$ and any subsequence of $\{f_n\}$ converges to $f \equiv \infty$, but $f \equiv \infty \notin M(G)$.

Note. We will get a classification of meromorphic functions on G in Section VII.5 (The Factorization Theorem). If $f \in M(G)$, then there are $g, h \in H(G)$ such that f = g/h on G (Corollary VII.5.20); that is, meromorphic functions are quotients of analytic functions).

Revised: 9/3/2023