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VII.5. The Weierstrass Factorization Theorem

Note. Conway motivates this section with the following question: “Given a se-

quence {ak} in G which has no limit point on G and a sequence of [positive]

integers {mk}, is there a function f which is analytic on G and such that the

only zeros of f are at the points ak, with the multiplicity of the zero at ak

equal to mk?” If the set {ak} is finite, we simply take f as the polynomial

f(z) = (z − a1)
m1(z − a2)

m2 · · · (z − an)
mn. If the set {ak} is infinite (such as

is the case for a sine function, for example), we need to discuss infinite products

of complex numbers. By the way, the answer to the question is yes, as seen in

Theorem VII.5.15.

Definition VII.5.1. If {zn} is a sequence of complex numbers and if z = lim
n→∞

(

n
∏

k=1

zk

)

exists, then z is the infinite product of the numbers zn and is denoted z =
∏∞

n=1 zn.

Note. If any zn = 0 then
∏∞

n=1 zn = 0.

Lemma VII.5.A. Let {zn} be a sequence of nonzero complex numbers. Suppose
∏∞

k=1 zk exists. If
∏∞

k=1 ak 6= 0 then limn→∞ zn = 1.

Note. Notice that for zn = a for n ∈ N where |a| < 1, we have limn→∞ zn = a 6= 0

yet
∏∞

k=1 zk = 0.
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Note. Since the logarithm of a product is the sum of the logarithms of the factors of

the product, we will often deal with the convergence of an infinite product in terms

of the convergence of the series of associated logarithms. Now with pn =
∏n

k=1 zk

we have log(pn) = log (
∏n

k=1 zk) =
∑n

k=1 log zk, provided “log” represents a branch

of the logarithm on which each zk is defined. If
∏∞

K=1 zk exists and is not zero then

by Lemma VII.5.A, limn→∞ zn = 1, so “eventually” Re(zn) > 0 and we can use the

principal branch of the logarithm. With sn = log pn =
∑n

k=1 log zk, we have for s =

limn→∞ sn that es = slimn→∞ sn since ez is continuous. Also exp(sn) = pn =
∏n

k=1 ak

so
∞
∏

k=1

ak = lim
n→∞

pn = lim
n→∞

exp(sn) = exp
(

lim
n→∞

sn

)

= es 6= 0.

So avoiding zero, we can say that
∏∞

n=1 zk converges if
∑∞

k=1 log zn converges. In

fact, the converse also holds, as follows.

Proposition VII.5.2. Let Re(z) > 0 for all n ∈ N. Then
∏∞

n=1 zn converges to a

nonzero complex number if and only if the series
∑∞

n=1 log zn converges.

Lemma VII.5.B. If |z| < 1/2 then 1
2
|z| ≤ | log(1 + z)| ≤ 3

2
|z|.

Proposition VII.5.4. Let Re(z) > −1. Then the series
∑∞

n=1 log(1+zn) converges

absolutely if and only if the series
∑∞

n=1 zn converges absolutely.
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Note. We cannot parallel the definition of absolute convergence of a series in

defining the absolute convergence of an infinite product. For example, if z1 =

(−1)n then
∏∞

n=1 |zn| = 1, but
∏∞

n=1 zn =
∏∞

n=1(−1)n is undefined. So we turn to

Proposition VII.5.2 for inspiration.

Definition VII.5.5. If Re(zn) > 0 for all n ∈ N, then the infinite product
∏∞

n=1 log zn converges absolutely.

Lemma VII.5.C. Let {zn} be a sequence of complex numbers with Re(zn) > 0

for all n ∈ N and suppose
∏∞

n=1 zn converges absolutely. Then

(a)
∏∞

n=1 zn converges; and

(b) any rearrangement of {zn}, say {zm} (where m = f(n) for some given one to

one and onto f : N → N) converges absolutely.

Corollary VII.5.6. If Re(zn) > 0 then the product
∏∞

n=1 zn converges absolutely

if and only if the series
∑∞

n=1(zn − 1) converges absolutely.

Note. In the following, we turn our attention to sequences of functions and uniform

convergence.
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Lemma VII.5.7. Let X be a set and let f, f1, f2, . . . be functions from X into C

such that fn(z) → f(z) uniformly for x ∈ X . If there is a constant a such that

Re(f(z)) ≤ a for all x ∈ X , then exp(fn(x)) → exp(f(x)) uniformly for x ∈ X .

Lemma VII.5.8. Let (X, d) be a compact metric space and let {gn} be a sequence

of continuous functions from X to C such that
∑∞

n=1 gn(x) converges absolutely

and uniformly for x ∈ X . Then the product f(x) =
∏∞

n=1(1 + gn(x)) converges

absolutely and uniformly for x ∈ X . Also, there is n0 ∈ N such that f(z) = 0 if

and only if gn(x) = −1 for some n where 1 ≤ n ≤ n0.

Note. Lemmas VII.5.7 and VII.5.8 apply to functions from a set or metric space

to C. For the remainder of this section, we concentrate on analytic functions

f : G → C where G is a region in C.

Theorem VII.5.9. Let G be a region in C and let {fn} be a sequence in H(G) (i.e.,

a sequence of analytic functions) such that no fn is identically zero. If
∑∞

n=1(fn(z)−

1) converges absolutely and uniformly on compact subsets of G, then
∏∞

n=1 fn(z)

converges in H(G) to an analytic function f(z). If a is a zero of f then a is a zero

of only a finite number of the functions fn, and the multiplicity of the zero of f at

a is the sum of the multiplicities of the zeros of the function fn at a.
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Note. In terms of the original question stated at the beginning of this section,

to create an analytic function on G with zeros {an}, we try to create functions

gn analytic and nonzero on G such that
∏∞

n=1(z − an)gn(z) is analytic and has

zeros only at the points an (with multiplicity dealt with by repeating the zeros

in sequence {an} a required number of times). Theorem VII.5.9 implies that this

will work if
∑∞

n=1 |(z − an)gn(z) − 1| converges absolutely on compact subsets of

G. So the trick is to find the appropriate gn(z). This was first accomplished by

Weierstrass who introduced “elementary factors” which have a simple zero at a

given point and is nonzero elsewhere.

Definition VII.5.10. An elementary factor is a function Ep(z) for p = 0, 1, 2, . . .

as follows:

E0(z) = 1 − z,

Ep(z) = (1 − z) exp

(

z +
z2

2
+

z3

3
+ · · · +

zp

p

)

for p ≥ 1.

Note. The function Ep(z/a) has a simple zero at z = a and no other zero. To apply

Theorem VII.5.9 to a collection of elementary factors, we need the following lemma.

Also, notice that z +
z2

2
+

z3

3
+ · · · +

zp

p
is a partial sum for the power series for

− log(1−z): − log(1−z) =
∑∞

n=1
zn

n
for |z| < 1. So for p “large,” z+

z2

2
+

z3

3
+ · · ·+

zp

p
≈ − log(1− z) and exp

(

z +
z2

2
+

z3

3
+ · · · +

zp

p

)

≈ exp(− log(1− z)) =
1

1 − z
,

so Ep(z) ≈ 1 for p “large,” as expected.
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Lemma VII.5.11. If |z| ≤ 1 and p ≥ 0 then |1 − Ep(z)| ≤ |z|p+1.

Note. We first give a solutions to a simplified version of the original question.

Instead of considering a region G ⊂ C, we start with the case G = C.

Theorem VII.5.12. Let {an} be a sequence in C such that limn→∞ |zn| = ∞ and

az 6= 0 for all n ≥ 1. Suppose that no complex number is repeated in the sequence

an infinite number of times. If {pn} is any sequence of nonnegative integers such

that

∞
∑

n=1

(

r

|an|

)pn+1

< ∞ (5.13)

for all r > 0, then f(z) =
∏∞

n=1 Epn
(z/a) converges in H(C) (and so is analytic on

C). The function f is an entire function with zeros only at the points an If z0 occurs

in the sequence {an} exactly n times then f has a zero at z = z0 of multiplicity m.

Furthermore, if pn = n − 1 then (5.13) will be satisfied.

Note. We can potentially take liberties in the choices of {pn}. Conway says that

the smaller the pn the “more elementary” the elementary factor Epn
(z/an) (page

170).
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Theorem VII.5.14. The Weierstrass Factorization Theorem.

Let f be an entire function and let {an} be the nonzero zeros of f repeated according

to multiplicity. Suppose f has a zero at z = 0 of order m ≥ 0 (a zero of order

m = 0 at 0 means f(0) 6= 0). Then there is an entire function g and a sequence of

integers {pn} such that

f(z) = zmeg(z)
∏

∫

n=1
Epn

(

z

an

)

.

Note. We are now ready to answer the question posed at the beginning of this

section.

Theorem VII.5.15. Let G be a region and let {aj} be a sequence of distinct

points in G with no limit points in G. Let {mj} be a sequence of nonnegative

integers. Then there is an analytic function f defined on G whose only zeros are

at the points aj . Furthermore, aj is a zero of f of multiplicity mj .

Note. Theorem VII.5.15 allows us to classify meromorphic function on G in terms

of quotients of analytic functions on G.

Corollary VII.5.20. If f is a meromorphic function on an open set G then there

are analytic functions g and h on G such that f = g/h.
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Note. When meromorphic f on G is written as f = g/h where g and h are analytic

on G, then f and g have the same zeros, and the poles of f correspond to the zeros

of h (notice that g and h so not share any zeros).

Note. Conway state (page 173) that “M(G) is the quotient field [he should use the

term “field fo quotients” here] of the integral domain H(G).” Let’s dissect this alge-

braic language. We refer to class notes for Introduction to Modern Algebra 1 and 2

(MATH 4127/5127, 4137/5137); see http://faculty.etsu.edu/gardnerr/4127/

notes.htm and http://faculty.etsu.edu/gardnerr/4127/notes2.htm.

Definition. A ring 〈R,+, ·〉 is a set R together with two binary operations + and

·, called addition and multiplication, respectively, defined on R such that:

R1: 〈R,+〉 is an abelian group.

R2: Multiplication · is associative: (a · b) · c = a · (b · c) for all a, b, c ∈ R.

R3: For all a, b, c ∈ R, the left distribution law a · (b + c) = (a · b) + (a · c) and the

right distribution law (a + b) · c = (a · c) + (b · c) hold.

Definition. If a and b are two nonzero elements of ring R such that ab = 0, then

either a and b are divisors of 0. An integral domain D is a commutative ring with

unity 1 6= 0 (that is, 1 is the multiplicative identity) and containing no divisors of

0.



VII.5. The Weierstrass Factorization Theorem 9

Example. Consider Z6 = {0, 1, 2, 3, 4, 5}, the integers modulo 6 (technically, the

elements of Z6 are equivalence classes of integers. . . ). Then 〈Z6,+, ·〉 is a ring.

Elements 2, 3 ∈ Z6 are divisors of 0 since 2 · 3 = 0.

Note. We claim that the space of analytic function on region G, H(G), is an

integral domain. Clearly, H(G) is a ring. Also, for f, g ∈ H(G), we do not have

fg ≡ 0 (that is, fg is the function which is identically 0 on G) unless either f ≡ 0

or g ≡ 0. So H(G) has no zero divisors and is an integral domain.

Definition. A ring is which multiplication is commutative is a commutative ring.

An element of a ring with unity is a unit if the element has a multiplicative inverse

in the ring. If every nonzero element of a ring is a unit, then the ring is a division

ring. A field is a commutative division ring.

Note. We claim that the meromorphic functions on region G, M(G), is a field.

Clearly M(G) is a ring (Corollary VII.5.20 is useful in proving closure). Similarly

to the case for H(G), M(G) contains no zero divisors (and so M(G) is also an

integral domain). For any f ∈ M(G), where f 6≡ 0, we have that 1/f ∈ M(G) (the

roots of f correspond to the poles of 1/f and the poles of f correspond to the roots

of 1/f). So M(G) is a division ring. Of course multiplication is commutative, and

so H(G) is a field.
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Note. Of course H(G) is not a division ring, since f(z) = 1/(z − a) where a ∈ G

has no multiplicative inverse in H(G). We can say that H(G) is a commutative

integral domain, though.

Note. We need a theorem from modern algebra:

Theorem IV.21.5. Any integral domain D can be enlarged to (or

embedded in) a field F such that every element of f can be experssed

as a quotient of two elements of D. Such a field F is a field of quotients

of D.

See page 194 of Fraleigh’s A First Course in Abstract Algebra, 7th edition (Addison-

Wesley, 2003) and http://faculty.etsu.edu/gardnerr/4127/notes/IV-21.pdf.

Note. Corollary VII.5.20 shows that every f ∈ M(G) satisfies f = g/h for some

g, h ∈ H(G). Therefore, M(G) is a field of quotients of integral domain H(G).
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