VII.6. Factorization of the Sine Function

Note. In this brief section, we use the Weierstrass Factorization Theorem to write $\sin \pi z$ as an infinite product using the fact that its zeros are precisely the integers. Since we treat $z=0$ differently from the other zeros of a function (because $E_{0}(z)$ is of a different form than the other $E_{p}(z)$), when summing or taking a product over the integers (the zeros of $\sin \pi z$), we pull $n=0$ out and denote a sum or product over $\mathbb{Z} \backslash\{0\}$ with a prime: $\sum_{n=-\infty}^{\infty}{ }^{\prime} a_{n}-\sum_{n=1}^{\infty} a_{-n}+\sum_{n=1}^{\infty} a_{n}$ and $\prod_{n=-\infty}^{\infty}{ }^{\prime} a_{n}=\prod_{n=1}^{\infty} a_{-n} \prod_{n=1}^{\infty} a_{n}$ (we'll have the necessary absolute convergence to rearrange).

Theorem VII.6.A. For all $z \in \mathbb{C}$,

$$
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

and the convergence is uniform over compact subset of \mathbb{C}.

Note. In Exercise VII.6.1, it is shown that

$$
\cos \pi z=\prod_{n=1}^{\infty}\left(1-\frac{4 z^{2}}{(2 n-1)^{2}}\right)
$$

