XI.3. Hadamard's Factorization Theorem.

Note. In this section we give a converse of Corollary XI.2.6. That is, we prove that a function of finite order is of finite genus. We know that a function of finite genus can be factored as $z^{n} e^{g(z)} \prod_{n=1}^{\infty} E_{\mu}\left(z / a_{n}\right)$ where g is a polynomial of degree at most μ. This is why the result is called a "factorization theorem."

Lemma XI.3.1. Let f be a nonconstant entire function of order λ with $f(0) \neq 0$ and let $\left\{a_{1}, a_{2}, \ldots\right\}$ be the zeros of f repeated according to multiplicity and arranged so that $\left|a_{1}\right| \leq\left|a_{2}\right| \leq \cdots$. If p is an integer such that $p>\lambda-1$ then

$$
\frac{d^{p}}{d z^{p}}\left[\frac{f^{\prime}(z)}{f(z)}\right]=-p!\sum_{n=1}^{\infty} \frac{1}{\left(a_{n}-z\right)^{p+1}}
$$

for $z \in\left\{a_{1}, a_{2}, \ldots\right\}$.

Note. The proof of Lemma XI.3.1 assumes that f has infintely many zeros, but also holds if f only has finitely many zeros.

Theorem XI.3.4. Hadamard's Factorization Theorem.

If f is an entire function of finite order λ then f has finite genus $\mu \leq \lambda$. Therefore, f can be factored as $f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{\mu}\left(z / a_{n}\right)$ where g is a polynomial of degree at most μ.

Note. Picard's Theorems, to be seen in Sections XII. 2 and XII.4, concern the range of analytic functions. We can use Hadamard's Factorization Theorem to prove a special case of Picard's Theorem.

Theorem XI.3.6. If f is an entire function of finite order, then f assumes each complex number with one possible exception.

Note. The exponential function $f(z)=e^{z}$ assumes every value except 0 (see Lemma III.2.A(b)), since a branch of the logarithm can be defined on some region containing any given nonzero complex number. In fact, since e^{z} is periodic with period $2 \pi i$, it assumes each nonzero value an infinite number of times. The following theorem and corollary shows that a similar result holds for certain entire functions of finite order.

Theorem XI.3.7. Let f be an entire function of finite order λ where λ is not an integer. Then f has infinitely many zeros.

Note. If $\alpha \in \mathbb{C}$, then applying Theorem XI.3.7 to $f(z)-\alpha$ we see that f assumes the value α an infinite number of times. This is summarized in the following.

Corollary XI.3.8. If f is an entire function of order λ and λ is not an integer then f assumes each complex value an infinite number of times.

