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XII.2. The Little Picard Theorem.

Note. Recall that Theorem XI.3.6 states that an entire function of finite order

assumes every complex number with one possible exception. In this section we

weaken the hypotheses of Theorem XI.3.6 significantly to show in the Little Picard

Theorem that every nonconstant entire function (regardless of order) assumes every

complex number with one possible exception. Of course, f(z) = ez is an example

of such a function with a range omitting one complex number. The proofs in this

section require one result from the previous section, namely Corollary XII.1.11. We

also need two lemmas which we now present.

Lemma XII.2.1. Let G be a simply connected region and suppose that f is an

analytic function on G that does not assume the values 0 or 1. Then there is an

analytic function g on G such that f(z) = − exp(iπ cosh(2g(z)) for all z ∈ G.

Lemma XII.2.2. Let G be a simply connected region and suppose that f is an

analytic function on G that does not assume the values 0 or 1. Let g be analytic

on G where f(z) = − exp(i pi cosh(2g(z))) for all z ∈ G (such g exists by Lemma

XII.2.2). Then g(G) contains no disk of radius 1.

Note. With Lemmas XII.2.1 and XII.2.2, along with Corollary XII.1.11, we are

equipped to prove the Little Picard Theorem.
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Theorem XII.2.3. The Little Picard Theorem.

If f is an entire function that omits two values then f is constant. That is, if f

is a nonconstant entire function then it assumes every complex number with one

possible exception.

Note. The Great Picard Theorem (Theorem XII.4.2) addresses the behavior of an

analytic function in the deleted neighborhood of an essential singularity. It claims

that the function assumes every complex number, with one possible exception, an

infinite number of times.

Note. The Little Picard Theorem allows us to give yet another proof of the

Fundamental Theorem of Algebra.

Theorem XII.2.A. Fundamental Theorem of Algebra.

If p is a nonconstant polynomial then there is a complex number a with p(a) = 0.

Proof. Let p(z) =
∑

n

n=0
anz

n. Then

lim
z→∞

|p(z)| = lim
z→∞

|zn(an + an−1z + · · · |z0z
−n)|

= lim
z→∞

|z|n lim
z→∞

|zn + zn−1z
−1 + · · · + a0z

−n| = ∞.

So there exists R > 0 such that for all z with |z| > R we have |p(z)| > 1.

ASSUME p(z) 6= 0 for all z ∈ C. Then by the Little Picard Theorem (Theorem

XII.2.3), p must assume every nonzero value in C. Consider the set S = {1/k |

k ∈ N}. Then f must attain each value in set S and S ⊂ p(B(0, R)). Since

f is continuous and B(0, R) is compact by the Heine-Borel Theorem (Theorem

II.4.10), then p(B(0, R)) is compact by Theorem II.5.8(a). So p(B(0, R)) is closed
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by Proposition II.4.3 and hence includes its limit points. But S ⊂ p(B(0, R)) and

0 is a limit point of S, so 0 is a limit point of p(B(0, R)). So 0 ∈ p(B(0, R)) and

p(a) = 0 for some a ∈ B(0, R) ⊂ C, a CONTRADICTION to the assumption that

p is never 0. So the assumption is false and the claim follows.

Note. The Little Picard Theorem (and the Great Picard Theorem) is named from

Charles Émile Picard (July 24, 1856 to December 11, 1941). At age 23 in 1879 he

published the Little Picard Theorem in Sur une propriété des fonctions entières,

Comptes rendus de l’Académie des Sciences, Paris 88 (1879), 1024–1027.

Picard made his most important contributions in the fields of analysis, func-

tion theory, differential equations, and analytic geometry. He used methods of

iteration to show the existence of solutions of ordinary differential equations in

what is today known as the method of Picard iterates. He made contributions

to algebraic geometry, building on the work of Abel and Riemann. He also ap-

plies his work to problems in elasticity, heat, and electricity. (This note is based

on the “MacTutor History of Mathematics archive” biography of Émile Picard at

http://www-history.mcs.st-and.ac.uk/Biographies/Picard Emile.html.)
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