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Chapter 2. First Order Equations for

which Exact Solutions are Obtainable

Note. In this chapter, we cover some methods to solve first order equations.

Section 2.1. Initial-Value Problems, Boundary-Value

Problems and Existence of Solutions

Note. In this section we define and solve exact DEs.

Note. Notice that the DE mentioned in the “Basic Existence and Uniqueness The-

orem”
dy

dx
= f(x, y) can be written in the differential form M(x, y) dx+N(x, y) dy =

0. Of course this process is reversible.

Definition. Let F be a function of two real variables such that F has continu-

ous first partial derivatives in an open connected set (or domain) D. The total

differential dF of the function F is defined as

dF (x, y) =
∂F (x, y)

∂x
dx +

∂F (x, y)

∂y
dy

for all (x, y) ∈ D.

Example. Find the total differential of F (x, y) = y2 cos x.
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Definition. The expression M(x, y) dx+N(x, y) dy is called an exact differential is

a domain D if there is a function F (x, y) such that dF (x, y) equals the expression for

all (x, y) ∈ D. If the expression is an exact differential, then the DE M(x, y) dx +

N(x, y) dy = 0 is called an exact differential equation.

Note. The function F (x, y) satisfies the conditions

∂F (x, y)

∂x
= M(x, y) and

∂F (x, y)

∂y
= N(x, y).

This observation gives an easy way to check if a DE is exact.

Theorem 2.1. Consider the DE M(x, y) dx + N(x, y) dy = 0 where M and N

have continuous first partial derivatives at all points in a rectangular domain D.

The DE is exact if and only if

∂M(x, y)

∂y
=

∂N(x, y)

∂x
for all (x, y) ∈ D.

Note. We see in the proof of Theorem 2.1 in the book that

F (x, y) =

∫

M(x, y) ∂x +

∫
[

N(x, y) −

∫

∂M(x, y)

∂y
∂x

]

dy.

However, we will not use this expression to solve equations.
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Example. Solve
dy

dx
=

3x(2 − xy)

x3 + 2y
.

Solution. Well,

(x3 + 2y) dy = 3x(2 − xy) dx or 3x(xy − 2) dx + (x3 + 2y) dy = 0.

So M(x, y) = 3x(xy − 2) and N(x, y) = x3 + 2y. Then

∂M(x, y)

∂y
= 3x2 =

∂N(x, y)

∂y
,

so the DE is exact. We need

∂F (x, y)

∂x
= M(x, y) = 3x2y − 6x and

∂F (x, y)

∂y
= N(x, y) = x3 + 2y.

So F (x, y) =

∫

(3x2y − 6x) ∂x = x3y − 3x2 + ϕ(y) where y is some function of y.

Also,
∂F (x, y)

∂y
= x3 + ϕ′(y) so we need x3 + ϕ′(y) = N(x, y) = x3 + 2y. Therefore

ϕ′(y) = 2y and ϕ(y) = y2+c0. Hence, F (x, y) = x3y−3x2+y2+c0. A one parameter

family of solutions is given by F (x, y) = c1. So the solution is x3y − 3x2 + y2 = c.

Note. We clarify the previous example with a theorem.

Theorem 2.2. Suppose that the DE M(x, y) dx + N(x, y) dy = 0 satisfies the

differentiability requirements of Theorem 2.1 and is exact in a rectangular domain

D. Then a one-parameter family of solutions is given by F (x, y) = c where F

satisfies
∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y)

for all (x, y) ∈ D and c is an arbitrary constant.
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Note. We might start with an equation that is not exact and multiply it by a

certain factor and “create” an exact DE. This is the idea of an integrating factor,

which we now define.

Definition. If the DE M(x, y) dx+N(x, y) dy = 0 is not exact in a domain D but

the DE

µ(x, y)M(x, y) dx + µ(x, y)N(x, y) dy = 0

is exact, then µ(x, y) is called an integrating factor of the original DE.

Note. Multiplying by integrating factors may (1) introduce new solutions, (2) loose

solutions of the original DE, or (3) both. This means that all solutions obtained in

this manner must be checked.

Example. Solve y dx+2x dy = 0 where x = 1 when y = 1. HINT: The integrating

factor is y.
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