Section 2.3. Linear Equations and Bernoulli Equations

Note. We have already defined when a DE is linear. In this section, we consider first order linear DEs.

Definition. A first order ODE is linear if it is, or can be, written in the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Note. We now find an integrating factor for this type of DE. We have

$$
P(x) y-Q(x)+\frac{d y}{d x}=0 \text { or }(P(x) y-Q(x)) d x+d y=0 .
$$

Notice this is in the form of a first order linear DE $M(x, y) d x+N(x, y) d y=0$ where $M(x, y)=P(x) y-Q(x)$ and $N(x, y)=1$. Suppose $\mu(x)$ is an integrating factor (we'll see that we can find an integrating factor that depends only on x). Then

$$
[\mu(x) P(x) y-\mu(x) A(x)] d x+d y=0 .
$$

This is exact if

$$
\frac{\partial}{\partial y}[\mu(x) P(x) y-\mu(x) Q(x)]=\frac{\partial}{\partial x}[\mu(x)]
$$

or $\mu(x) P(x)=d \mu(x) / d x$ or $\mu(x) P(x)=d \mu / d x$ or $P(x) d x=d \mu / \mu(x)$ or $\ln |\mu(x)|=$ $\int P(x) d x$ or $|\mu(x)|=e^{\int P(x) d x}$. If we assume $\mu>0$ then we have $\mu(x)=e^{\int P(x) d x}$. Using this integrating factor, we get

$$
e^{\int P(x) d x} \frac{d y}{d x}+e^{\int P(x) d x} P(x) y=Q(x) e^{\int P(x) d x} \text { or } \frac{d}{d x}\left[e^{\int P(x) d x} y\right]=Q(x) e^{\int P(x) d x} .
$$

Integrating we get

$$
e^{\int P(x) d x} y=\int Q(x) e^{\int P(x) d x} d x+C \text { or } y=e^{-\int P(x) d x}\left\{\int Q(x) e^{\int P(x) d x} d x+C\right\}
$$

In conclusion, we have the following.

Theorem 2.4. The linear differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ has an integrating factor $e^{\int P(x) d x}$. A one parameter family of solutions is

$$
y=e^{-\int P(x) d x}\left\{\int Q(x) e^{\int P(x) d x} d x+C\right\}
$$

Example. Solve $x^{2} \frac{d y}{d x}+3 x y=\frac{1}{x} \cos x$.
Solution. We have $\frac{d y}{d x}+\frac{3 y}{x}=\frac{1}{x^{3}} \cos x$. Then $P(x)=3 / x$ and $\int P(x) d x=3 \ln |x|$ (I owe you a constant of integration...). So $e^{\int P(x) d x}=e^{3 \ln |x|}=|x|^{3}= \pm x^{3}$. Remember, we are assuming the integrating factor is positive. (of course, if the integrating factor is negative, which occurs when $x<0$, then we can use $-x^{3}$ as an integrating factor. However, since we multiply both sides of the DE by the factor, it does not matter.) So the DE becomes:

$$
x^{3} \frac{d y}{d x}+3 x^{2} y=\cos x
$$

or $\frac{d}{d x}\left[x^{3} y\right]=\cos x$ or $x^{3} y=\int \cos x d x$ or $x^{3} y=\sin x+C$ (there's your constant!). So $y=\frac{1}{x^{3}} \sin x+\frac{C}{x^{3}}$.

Definition. A DE of the form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

is called a Bernoulli differential equation.

Note. Notice that if $n=0$ or 1 , then a Bernoulli equation is actually a linear equation. In fact, we can transform a Bernoulli DE into a linear DE as follows.

Theorem. Suppose $n \neq 0$ and $n \neq 1$. Then the transformation $v=y^{1-n}$ reduces the Bernoulli DE $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ into a linear equation in v. (Notice that if $v=y^{1-n}$ then $\left.d v / d x=(1-n) y^{-n} d y / d x.\right)$

Example. Solve $x \frac{d y}{d x}+y=-2 x^{6} y^{4}$.
Solution. This is a Bernoulli DE. Let $v=y^{1-4}=y^{-3}$. Then $d v / d x=-3 y^{-4} d y / d x$. So the DE becomes:

$$
\begin{gathered}
x\left(\frac{y^{4}}{-3} \frac{d v}{d x}\right)+y=-2 x^{6} y^{4} \\
\text { or } \frac{x}{-3} \frac{d v}{d x}+y^{-3}=-2 x^{6} \text { or } \frac{x}{-3} \frac{d v}{d x}+v=-2 x^{6} \text { or } \frac{d v}{d x}-\frac{3}{x} v=6 x^{5} .
\end{gathered}
$$

This is a linear DE of the first order. So the integrating factor is $e^{\int P(x) d x}=$ $e^{-\int 3 / x d x}=x^{-3}$. Now, $x^{-3} \frac{d v}{d x}-3 x^{-4} v=6 x^{2}$ or $\frac{d}{d x}\left[x^{-3} v\right]=6 x^{2}$. So $x^{-3} v=$ $\int 6 x^{2} d x=2 x^{3}+C$ or $v=2 x^{6}+C x^{3}$ and $y^{-3}=2 x^{6}+C x^{3}$ or $y=\left(2 x^{6}+C x^{3}\right)^{-1 / 3}$.

