Chapter 4. Explicit Methods of Solving Higher-Order Linear Differential Equations

Section 4.1. Basic Theory of Linear Differential Equations

Note. In this section we in some detail solutions of nth order linear DEs. We could call this section "Linear Algebra Meets DEs!" We will use the y^{\prime} notation as opposed to $d y / d x$ for this chapter. We start by recalling the definition of a linear DE.

Definition/Note. A linear DE of order n in the dependent variable y and the independent variable x is an equation of the form:

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)
$$

where $a_{0}(x) \not \equiv 0$. We shall assume $a_{1}, a_{1}, \ldots, a_{n}$ and F are continuous on an interval $x \in[a, b]$ and $a_{0}(x) \neq 0$ for $x \in[a, b]$. The term $F(x)$ is called the nonhomogeneous term. If $F(x)=0$ then the DE is called homogeneous. (This is the same idea we had for homogeneous before, except that we were only dealing with first order DEs before, and they were not necessarily linear.)

Note. The following is an important theorem concerning IVPs.

Theorem 4.1. Consider

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n-1}(x) y^{\prime}+a_{n}(x) y=F(x)
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ and F are continuous for $x \in[a, b]$ and $a_{0}(x) \neq 0$ for $x \in[a, b]$. Let $x_{0} \in[a, b]$ and let $c_{0}, c_{1}, \ldots, c_{n-1}$ be any real constants. Then there exists a unique solution of the DE such that

$$
f\left(x_{0}\right)=c_{0}, f^{\prime}\left(x_{0}\right)=c_{x}, \ldots f^{(n-1)}\left(x_{0}\right)=c_{n-1}
$$

and the solution is defined over the entire interval $[a, b]$.

Corollary. If in the above theorem we have $c_{0}=c_{1}=\cdots=c_{n-1}=0$ then the unique solution is $f(x) \equiv 0$.

Note. An nth order homogeneous linear DE has an important property related to linear algebra. To discuss this, we first need a definition.

Definition. If $f_{1}, f_{2}, \ldots, f_{m}$ are functions and $c_{1}, c_{2}, \ldots, c_{m}$ are constants then

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{m} f_{m}
$$

is called a linear combination of the f_{i} 's.

Theorem 4.2. Basic Theorem on Linear Homogeneous Differential Equa-

 tions.If $f_{1}, f_{2}, \ldots, f_{m}$ are each solutions of a linear homogeneous DE , then any linear combination of these functions is also a solution.

Note. We are interested in finding solutions f_{i} mentioned in Theorem 4.2 and in how many of these f_{i} there are.

Definition. The n functions $f_{1}, f_{2}, \ldots, f_{n}$ are called linearly independent on $[a, b]$ if there are some constants $c_{1}, c_{2}, \ldots, c_{n}$ not all zero such that

$$
c_{1} f(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for all $x \in[a, b]$.

Definition. If a collection of functions is not linearly dependent, it is said to be linearly independent. In this case, if

$$
c_{1} f(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for all $x \in[a, b]$ then $c_{1}=c_{2}=\cdots=c_{n}=0$.

Note. We can now state one of the most important theorems concerning linear DEs.

Theorem 4.3. The nth order homogeneous linear DE

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=0
$$

always has n linearly independent solutions.

Definition. If $f_{1}, f_{2}, \ldots, f_{n}$ are n linearly independent solutions to an nth order homogeneous linear DE then these functions make up a fundamental set of solutions of the DE . The general solution is

$$
f(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)
$$

where the c_{i} 's are arbitrary constants.

Example. The 2nd order homogeneous linear DE $y^{\prime \prime}+y=0$ has as solutions the two linearly independent functions $f_{z}(x)=\sin x$ and $f_{2}(x)=\cos x$. So $\{\sin x, \cos x\}$ is a fundamental set of solutions and the general solution is

$$
f(x)=c_{1} \sin x+c_{2} \cos x
$$

where c_{1} and c_{2} are arbitrary.

Note. There is a convenient way to check for linear independence of several functions. We will use the following.

Definition. Let $f_{1}, f_{2}, \ldots, f_{n}$ be n real functions each of which has an $(n-1)$ th derivative on the interval $[a, b]$. The determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n)} & f_{2}^{(n)} & \cdots & f_{n}^{(n)}
\end{array}\right|
$$

is called the Wronskian of the n functions. Notice that the Wronskian is itself a function of x.

Theorem 4.4, 4.5. The Wronskian of the n functions $f_{1}, f-2, \ldots, f_{n}$ above is either identically zero on $[a, b]$ or else is never zero on $[a, b]$. The functions are linearly independent if and only if the determinant is nonzero.

Note. Recall that determinants can be calculated for 2×2 and 3×3 matrices as follows:

$$
\begin{gathered}
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21} \\
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
\end{gathered}
$$

Note. We can use the Wronskian to show that, in fact, $\sin x$ and $\cos x$ are linearly independent:
$\left|\begin{array}{cc}\sin x & \cos x \\ \cos x & -\sin x\end{array}\right|=(\sin x)(-\sin x)-(\cos x)(\cos x)=-\left(\sin ^{2} x+\cos ^{2} x\right)=-1 \neq 0$.

Note. Much like knowing a certain zero of a polynomial allows you to factor the polynomial into a linear factor and a new polynomial of degree one less than the original polynomial, if we know one solution of an nth order linear homogeneous linear DE then we can reduce the order of the DE to an $(n-1)$ order DE .

Theorem 4.6. Let f be a nontrivial solution of the nth order homogeneous linear DE

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=0
$$

then the transformation $y=f(x) v$ reduces the DE to an $(n-1)$ order homogeneous linear DE in the dependent variable $x=d v / d w$.

Example. We illustrate Theorem 4.6 for $n=2$. Suppose f is a known solution of

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0 .
$$

Let $y=f(x) v$. Then $y^{\prime}=f(x) v^{\prime}+f^{\prime}(x) v$ and $y^{\prime \prime}=f(x) v^{\prime \prime}+2 f^{\prime}(x) v^{\prime}+f^{\prime}(x) v$. So the DE becomes

$$
a_{0}(x)\left(f(x) v^{\prime \prime}+2 f^{\prime}(x) v^{\prime}+f^{\prime}(x) v\right)+a_{1}(x)\left(f(x) v^{\prime}+f^{\prime}(x) v\right)+a_{2}(x) f(x)=0
$$

or
$a_{0}(x) f(x) v^{\prime \prime}+\left[2 a_{0}(x) f^{\prime}(x)+a_{1}(x) f(x)\right] v^{\prime}+\left[a_{0}(x) f^{\prime \prime}(x)+a_{1}(x) f^{\prime}(x)+a_{2}(x) f(x)\right] v=0$ or $a_{0}(x) f(x) v^{\prime \prime}+\left[2 a_{0}(x) f^{\prime}(x)+a_{1}(x) f(x)\right] v^{\prime}=0$. Letting $w=v^{\prime}$ gives $d w / d x=v^{\prime \prime}$ and

$$
a_{0}(x) f(x) \frac{d w}{d x}+\left[2 a_{0}(x) f^{\prime}(x)+a_{1}(x) f(x)\right] w=0
$$

This is a homogeneous linear DE of the first order. It is also separable. Solving, we get

$$
w=\frac{c \exp \left[-\int a_{1}(x) / a_{0}(x) d x\right]}{[f(x)]^{2}}
$$

and

$$
v=\int \frac{c \exp \left[-\int a_{1}(x) / a_{0}(x) d x\right]}{[f(x)]^{2}} d x
$$

so

$$
y=f(x) \int \frac{c \exp \left[-\int a_{1}(x) / a_{0}(x) d x\right]}{[f(x)]^{2}} d x=g(x) .
$$

We can show (see page 126) that $g(x)$ and $f(x)$ are linearly independent. So the general solution of the above DE is $c_{1} f(x)+c_{2} g(x)$. We summarize this in the following theorem.

Theorem 4.7. Let f be a nontrivial solution of the second order homogeneous linear DE

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x)=0 .
$$

Then the transformation $y=f(x) v$ reduces this DE to the first order linear homogeneous DE

$$
a_{0}(x) f(x) \frac{d w}{d x}+\left[2 a_{0}(x) f^{\prime}(x)+a_{1}(x) f(x)\right] w=0
$$

in the dependent variable w, where $w=v^{\prime}$, which has the solution

$$
w=\frac{e^{-\int a_{1}(x) / a_{0}(x) d x}}{[f(x)]^{2}}
$$

So the other solution to the original DE is

$$
g(x)=f(x) v(x)=f(x) \int w d x=f(x) \int \frac{e^{-\int a_{1}(x) / a_{0}(x) d x}}{[f(x)]^{2}} d x
$$

The general solution to the original DE is $c_{1} f(x)+c_{2} g(x)$ where c_{1} and c_{2} are arbitrary constants.

Example. Use the fact that $f(x)=x$ is a solution of $2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ to find the general solution.

Solution. Let $y=x v$. Then $y^{\prime}=x v^{\prime}+v$ and $y^{\prime \prime}=x v^{\prime \prime}+2 v^{\prime}$. So the DE becomes

$$
2 x^{2}\left(x v^{\prime \prime}+2 v^{\prime}\right)+x\left(x v^{\prime}+v\right)-(x v)=0
$$

or $\left(2 x^{3}\right) v^{\prime \prime}+\left(5 x^{2}\right) v^{\prime}=0$. Let $w=v^{\prime}$ then we have $\left(2 x^{2}\right) w^{\prime}+\left(5 x^{2}\right) w=0$ or

$$
2 x^{3} \frac{d w}{d x}+\left(5 x^{2}\right) w=0 \text { or } \frac{1}{w} d w+\frac{5}{2 x} d x=0 \text { or } \ln |w|+\frac{5}{2} \ln |x|=c_{0}
$$

so $|w||x|^{5 / 2}=e^{c_{0}}$ or $|w|=e^{c_{0}}|x|^{-5 / 2}$ or $w=c_{1} x^{-5 / 2}$. Then $v=\int w d x=$ $\int c_{1} x^{-5 / 2} d x=c_{2} x^{-3 / 2}+c_{3}$. Then $g(x)=v x=c_{2} x^{-1 / 2}+c_{3} x$. Notice that we
could take all the above constants to be 0 (or anything convenient). The general solution is

$$
k_{1} f(x)+k_{2} g(x)=k_{1} x+k_{2} x^{-1 / 2}
$$

Note. We now consider ways to apply the methods of solving homogeneous DEs to nonhomogeneous DEs.

Theorem 4.8. Let v be any solution of the nonhomogeneous DE

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=F(x)
$$

and let u be any solution of the nonhomogeneous DE

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=0 .
$$

Then $u+v$ is also a solution of the above nonhomogeneous DE.

Note. This result allows us to talk about the general solution of an nth order nonhomogeneous linear DE.

Theorem 4.9. Let y_{p} be a particular solution to

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=F(x)
$$

Let y_{c} be a general solution of

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=0 .
$$

Then every solution of the nonhomogeneous DE is of the form $y_{p}+y_{c}$ for arbitrary constants $c_{1}, c_{2}, \ldots, c_{n}$ is y_{c}.

Definition. For the DE

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=F(x)
$$

the general solution y_{c} of the associated homogeneous DE

$$
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=0
$$

is called the complementary function of the nonhomogeneous DE. Any particular solution of the nonhomogeneous DE is called a particular integral of this DE . The solution $y_{c}+y_{p}$ is the general solution of the nonhomogeneous DE .

Example. Given that $y=e^{x}$ is a particular integral of $y^{\prime \prime}+y=2 e^{x}$, find the general solution.

Solution. Recall that the general solution of $y^{\prime \prime}+y=0$ is $y_{c}=c_{2} \sin x+c_{2} \cos x$. So this is the complementary function of the given nonhomogeneous DE. So the general solution of the nonhomogeneous DE is

$$
\varphi(x)=c_{1} \sin x+c_{2} \cos x+e^{x} .
$$

