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Chapter 4. Explicit Methods of Solving

Higher-Order Linear Differential

Equations

Section 4.1. Basic Theory of Linear Differential Equations

Note. In this section we in some detail solutions of nth order linear DEs. We

could call this section “Linear Algebra Meets DEs!” We will use the y′ notation as

opposed to dy/dx for this chapter. We start by recalling the definition of a linear

DE.

Definition/Note. A linear DE of order n in the dependent variable y and the

independent variable x is an equation of the form:

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = F (x)

where a0(x) 6≡ 0. We shall assume a1, a1, . . . , an and F are continuous on an interval

x ∈ [a, b] and a0(x) 6= 0 for x ∈ [a, b]. The term F (x) is called the nonhomogeneous

term. If F (x) = 0 then the DE is called homogeneous. (This is the same idea we

had for homogeneous before, except that we were only dealing with first order DEs

before, and they were not necessarily linear.)

Note. The following is an important theorem concerning IVPs.
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Theorem 4.1. Consider

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = F (x)

where a0, a1, . . . , an and F are continuous for x ∈ [a, b] and a0(x) 6= 0 for x ∈ [a, b].

Let x0 ∈ [a, b] and let c0, c1, . . . , cn−1 be any real constants. Then there exists a

unique solution of the DE such that

f(x0) = c0, f
′(x0) = cx, . . . f

(n−1)(x0) = cn−1

and the solution is defined over the entire interval [a, b].

Corollary. If in the above theorem we have c0 = c1 = · · · = cn−1 = 0 then the

unique solution is f(x) ≡ 0.

Note. An nth order homogeneous linear DE has an important property related to

linear algebra. To discuss this, we first need a definition.

Definition. If f1, f2, . . . , fm are functions and c1, c2, . . . , cm are constants then

c1f1 + c2f2 + · · · + cmfm

is called a linear combination of the fi’s.
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Theorem 4.2. Basic Theorem on Linear Homogeneous Differential Equa-

tions.

If f1, f2, . . . , fm are each solutions of a linear homogeneous DE, then any linear

combination of these functions is also a solution.

Note. We are interested in finding solutions fi mentioned in Theorem 4.2 and in

how many of these fi there are.

Definition. The n functions f1, f2, . . . , fn are called linearly independent on [a, b]

if there are some constants c1, c2, . . . , cn not all zero such that

c1f(x) + c2f2(x) + · · · + cnfn(x) = 0

for all x ∈ [a, b].

Definition. If a collection of functions is not linearly dependent, it is said to be

linearly independent. In this case, if

c1f(x) + c2f2(x) + · · · + cnfn(x) = 0

for all x ∈ [a, b] then c1 = c2 = · · · = cn = 0.

Note. We can now state one of the most important theorems concerning linear

DEs.
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Theorem 4.3. The nth order homogeneous linear DE

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = 0

always has n linearly independent solutions.

Definition. If f1, f2, . . . , fn are n linearly independent solutions to an nth order

homogeneous linear DE then these functions make up a fundamental set of solutions

of the DE. The general solution is

f(x) = c1f1(x) + c2f2(x) + · · · + cnfn(x)

where the ci’s are arbitrary constants.

Example. The 2nd order homogeneous linear DE y′′ + y = 0 has as solutions the

two linearly independent functions fz(x) = sin x and f2(x) = cos x. So {sin x, cos x}

is a fundamental set of solutions and the general solution is

f(x) = c1 sin x + c2 cos x

where c1 and c2 are arbitrary.

Note. There is a convenient way to check for linear independence of several func-

tions. We will use the following.
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Definition. Let f1, f2, . . . , fn be n real functions each of which has an (n − 1)th

derivative on the interval [a, b]. The determinant

W (f1, f2, . . . , fn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 · · · fn

f ′
1 f ′

2 · · · f ′
n

...
... . . . ...

f
(n)
1 f

(n)
2 · · · f

(n)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is called the Wronskian of the n functions. Notice that the Wronskian is itself a

function of x.

Theorem 4.4, 4.5. The Wronskian of the n functions f1, f − 2, . . . , fn above is

either identically zero on [a, b] or else is never zero on [a, b]. The functions are

linearly independent if and only if the determinant is nonzero.

Note. Recall that determinants can be calculated for 2 × 2 and 3 × 3 matrices as

follows:
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Note. We can use the Wronskian to show that, in fact, sin x and cos x are linearly

independent:
∣

∣
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sin x cos x

cos x − sin x
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= (sin x)(− sin x) − (cos x)(cos x) = −(sin2 x + cos2 x) = −1 6= 0.

Note. Much like knowing a certain zero of a polynomial allows you to factor the

polynomial into a linear factor and a new polynomial of degree one less than the

original polynomial, if we know one solution of an nth order linear homogeneous

linear DE then we can reduce the order of the DE to an (n − 1) order DE.

Theorem 4.6. Let f be a nontrivial solution of the nth order homogeneous linear

DE

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = 0

then the transformation y = f(x)v reduces the DE to an (n−1) order homogeneous

linear DE in the dependent variable x = dv/dw.
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Example. We illustrate Theorem 4.6 for n = 2. Suppose f is a known solution of

a0(x)y′′ + a1(x)y′ + a2(x)y = 0.

Let y = f(x)v. Then y′ = f(x)v′ + f ′(x)v and y′′ = f(x)v′′ + 2f ′(x)v′ + f ′(x)v. So

the DE becomes

a0(x)(f(x)v′′ + 2f ′(x)v′ + f ′(x)v) + a1(x)(f(x)v′ + f ′(x)v) + a2(x)f(x) = 0

or

a0(x)f(x)v′′+[2a0(x)f ′(x)+a1(x)f(x)]v′+[a0(x)f ′′(x)+a1(x)f ′(x)+a2(x)f(x)]v = 0

or a0(x)f(x)v′′ + [2a0(x)f ′(x) + a1(x)f(x)]v′ = 0. Letting w = v′ gives dw/dx = v′′

and

a0(x)f(x)
dw

dx
+ [2a0(x)f ′(x) + a1(x)f(x)]w = 0.

This is a homogeneous linear DE of the first order. It is also separable. Solving,

we get

w =
c exp

[

−
∫

a1(x)/a0(x) dx
]

[f(x)]2

and

v =

∫

c exp
[

−
∫

a1(x)/a0(x) dx
]

[f(x)]2
dx

so

y = f(x)

∫

c exp
[

−
∫

a1(x)/a0(x) dx
]

[f(x)]2
dx = g(x).

We can show (see page 126) that g(x) and f(x) are linearly independent. So the

general solution of the above DE is c1f(x) + c2g(x). We summarize this in the

following theorem.
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Theorem 4.7. Let f be a nontrivial solution of the second order homogeneous

linear DE

a0(x)y′′ + a1(x)y′ + a2(x) = 0.

Then the transformation y = f(x)v reduces this DE to the first order linear homo-

geneous DE

a0(x)f(x)
dw

dx
+ [2a0(x)f ′(x) + a1(x)f(x)]w = 0

in the dependent variable w, where w = v′, which has the solution

w =
e−

∫

a1(x)/a0(x) dx

[f(x)]2
.

So the other solution to the original DE is

g(x) = f(x)v(x) = f(x)

∫

w dx = f(x)

∫

e−
∫

a1(x)/a0(x) dx

[f(x)]2
dx.

The general solution to the original DE is c1f(x) + c2g(x) where c1 and c2 are

arbitrary constants.

Example. Use the fact that f(x) = x is a solution of 2x2y′′ + xy′ − y = 0 to find

the general solution.

Solution. Let y = xv. Then y′ = xv′ + v and y′′ = xv′′ + 2v′. So the DE becomes

2x2(xv′′ + 2v′) + x(xv′ + v) − (xv) = 0

or (2x3)v′′ + (5x2)v′ = 0. Let w = v′ then we have (2x2)w′ + (5x2)w = 0 or

2x3dw

dx
+ (5x2)w = 0 or

1

w
dw +

5

2x
dx = 0 or ln |w| +

5

2
ln |x| = c0,

so |w||x|5/2 = ec0 or |w| = ec0|x|−5/2 or w = c1x
−5/2. Then v =

∫

w dx =
∫

c1x
−5/2 dx = c2x

−3/2 + c3. Then g(x) = vx = c2x
−1/2 + c3x. Notice that we
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could take all the above constants to be 0 (or anything convenient). The general

solution is

k1f(x) + k2g(x) = k1x + k2x
−1/2.

Note. We now consider ways to apply the methods of solving homogeneous DEs

to nonhomogeneous DEs.

Theorem 4.8. Let v be any solution of the nonhomogeneous DE

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = F (x)

and let u be any solution of the nonhomogeneous DE

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = 0.

Then u + v is also a solution of the above nonhomogeneous DE.

Note. This result allows us to talk about the general solution of an nth order

nonhomogeneous linear DE.

Theorem 4.9. Let yp be a particular solution to

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = F (x).

Let yc be a general solution of

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = 0.

Then every solution of the nonhomogeneous DE is of the form yp + yc for arbitrary

constants c1, c2, . . . , cn is yc.
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Definition. For the DE

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = F (x)

the general solution yc of the associated homogeneous DE

a0(x)y(n) + a1(x)y(n−1) + · · · + an(x)y = 0

is called the complementary function of the nonhomogeneous DE. Any particular

solution of the nonhomogeneous DE is called a particular integral of this DE. The

solution yc + yp is the general solution of the nonhomogeneous DE.

Example. Given that y = ex is a particular integral of y′′ + y = 2ex, find the

general solution.

Solution. Recall that the general solution of y′′ + y = 0 is yc = c2 sinx + c2 cos x.

So this is the complementary function of the given nonhomogeneous DE. So the

general solution of the nonhomogeneous DE is

ϕ(x) = c1 sin x + c2 cos x + ex.
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