Section 4.3. The Method of Undetermined Coefficients

Note. In this section we deal with the nonhomogeneous linear DE with constant coefficients:

$$
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=F(x)
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real constants and $F(x)$ is a function of x.

Example. Find the general solution of $y^{\prime \prime}-2 y^{\prime}-3 y=2 e^{4 x}$.

Solution. The associated homogeneous DE is $y^{\prime \prime}-2 y^{\prime}-3 y=0$. The general solution of this homogeneous DE is $y_{c}=c_{1} e^{-x}+c_{2} e^{3 x}$. Recall that this is the complementary function of the original DE. For a particular solution of the original nonhomogeneous DE, lets try $y=A e^{4 x}$. Substituting in to the original DE we find that $A=2 / 5$ works so that $y_{p}=\frac{2}{5} e^{4 x}$ is a particular integral. So the general solution of the DE is

$$
y=\frac{2}{5} e^{4 x}+c_{1} e^{-x}+c_{2} e^{3 x}
$$

Example. Find the general solution of the DE: $y^{\prime \prime}-2 y^{\prime}-3 y=2 e^{3 x}$.

Solution. The complementary function is (as above) $y=c_{1} e^{-x}+c_{2} e^{3 x}$. If we try for a particular solution of the nonhomogeneous DE of the form $y=A e^{3 x}$. It doesn't work!!! We need more knowledge.

Definition. A function is a $U C$ function if it is either one of the following:

1. x^{n} where n is a nonnegative integer,
2. $e^{a x}$ where $a \neq 0$,
3. $\sin (b x+c)$ where $b \neq 0$,
4. $\cos (b x+c)$ where $b \neq 0$,
or a finite product of two or more functions of these four types.

Definition. Consider a UC function f. The set of functions consisting of f itself and all linearly independent UC functions, of which the successive derivatives of f are either constant multiples or linear combinations, will be called the $U C$ set of f (or the differential family of f).

Example. Page 151 Example 4.33. Consider $f(x)=x^{2} \sin x$. Function f is a product of two UC functions and so is itself a UC function. We now find the UC set of f. We have

$$
\begin{aligned}
f^{\prime}(x) & =2 x \sin x+x^{2} \cos x \\
f^{\prime \prime}(x) & =2 \sin x+4 x \cos x-x^{2} \sin x \\
f^{\prime \prime \prime}(x) & =6 \cos x-6 x \sin x-x^{2} \cos x
\end{aligned}
$$

and we see that the UC set of f is $S=\left\{x^{2} \sin x, x^{2} \cos x, x \sin x, x \cos x, \sin x, \cos x\right\}$. Notice that the UC set of $f_{1}(x)=x^{2}$ is $S_{1}=\left\{x^{2}, x, 1\right\}$ and the UC set of $f_{2}(x)=$
$\sin x$ is $S_{2}=\{\sin x, \cos x\}$. In fact, any element of S is a product of an element of S_{1} and an element of S_{2}. This foreshadows the following.

Theorem. Suppose h is a UC function defined as the product $f g$ of two basic UC functions f and g (that is, f and g are of the four types described above). Then the UC set of h is the set of all products obtained by multiplying the various members of the UC set of f by the various members of the UC set of g.

Example. We can easily find the UC set of $f(x)=x^{3} e^{x}$. The UC set for x^{3} is $S_{1}=\left\{x^{3}, x^{2}, x, 1\right\}$ and the UC set for e^{x} is $S_{2}=\left\{e^{x}\right\}$. So by the previous theorem, the UC set of f is $S=\left\{x^{3} e^{x}, x^{2} e^{x}, x e^{x}, e^{x}\right\}$.

Note. We now give an outline of the Method of Undetermined Coefficients and then illustrate it with several examples.

Note. The Method of Undetermined Coefficients is as follows. Consider the DE

$$
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=F(x)
$$

where $F(x)$ is a finite linear combination $F=A_{1} u_{1}+A_{2} u_{2}+\cdots+A_{m} u_{m}$ of UC functions $u_{1}, u_{2}, \ldots, u_{m}$. Suppose that y_{c} is the complementary solution of the DE.

1. For each UC function $u_{1}, u_{2}, \ldots, u_{m}$, form the corresponding UC sets $S_{1}, S_{2}, \ldots, S_{m}$.
2. Suppose that $S_{j} \subset S_{k}$. Then omit S_{j} from the collection of S 's.
3. Suppose that S_{ℓ} includes one or more members which is a solution to the corresponding homogeneous DE . Then multiply each member of S_{ℓ} by the lowest (positive integer) power of x which produces in S_{ℓ} a new collection of functions none of which are a solution to the associated homogeneous DE.
4. Form a linear combination with all of the members of the S 's. We now need to determine the coefficients of this linear combination.
5. Determine the coefficients by substituting into the original DE and equating similar terms.

Example. Lets now return to $y^{\prime \prime}-2 y^{\prime}-3 y=2 e^{3 x}$. The nonhomogeneous term $2 e^{3 x}$ is a linear combination of the UC function $e^{3 x}$. So let $S=\left\{e^{3 x}\right\}$. However, by Step 3, $e^{3 x}$ is a solution to the associated homogeneous DE. So by Step 3, replace $e^{3 x}$ with $x e^{3 x}$. And so $S=\left\{x e^{3 x}\right.$. Notice this is not a solution of the associated homogeneous DE. So let $y_{p}=A x e^{3 x}$. The $y^{\prime}=A e^{3 x}+3 A x e^{3 x}$ and $y^{\prime \prime}=$ $3 A e^{3 x}+3 A e^{3 x}+9 A x e^{3 x}=6 A e^{3 x}+9 A x e^{3 x}$, so we substitute into the nonhomogeneous DE to get $\left(6 A e^{3 x}+9 A x e^{3 x}\right)-2\left(A e^{3 x}+3 A x e^{3 x}\right)-3\left(A x e^{3 x}\right)=4 A e^{3 x}=2 e^{3 x}$ so that $A=1 / 2$ and $y_{p}=\frac{1}{2} e^{3 x}$. So the general solution to the nonhomogeneous DE is

$$
y=\frac{1}{2} e^{3 x}+c_{1} e^{-x}+c_{2} e^{3 x} .
$$

Example. Page 160 Number 11. Find the general solution of $y^{\prime \prime}+4 y=4 \sin (2 x)+$ $8 \cos (2 x)$.

Solution. The associated homogeneous DE is $y^{\prime \prime}+4 y=0$ and has general solution $y_{c}=c_{1} \sin (2 x)+c_{2} \sin (2 x)$. The nonhomogeneous term is $F(x)=4 \sin (2 x)+$ $8 \cos (2 x)$. So $F(x)$ is a linear combination of the UC functions $\sin (2 x)$ and $\cos (2 x)$. Each has the UC set $S=\{\sin (2 x), \cos (2 x)\}$. From Step 3, $\sin (2 x)$ and $\cos (2 x)$ are both solutions of the associated DE so replace these with $S=\{x \sin (2 x), x \cos (2 x)\}$. From Step 4, suppose $y_{p}=A x \sin (2 x)+B x \cos (2 x)$. Substituting into the nonhomogeneous DE we find that $A=2$ and $B=-1$, so $y_{p}=2 x \sin (2 x)-x \cos (2 x)$. Then the general solution is

$$
y=y_{p}+y_{c}=2 x \sin (2 x)-x \cos (2 x)+c_{1} \sin (2 x)+c_{2} \cos (2 x) .
$$

