Section 4.4. Variation of Parameters

Note. In this section we study a method which can be applied to a much larger class of functions than the method of undetermined coefficients.

Note. Consider the second-order DE:

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=F(x) .
$$

Suppose $y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is the complimentary function for this DE . We now try to find a particular integral of the form $y_{p}=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)$. We now need to find the parameters $v_{1}(x)$ and $v_{2}(x)$. This method is called variation of parameters. We have the one condition that y_{p} be a particular integral and we have the two functions with which to do this. We will take advantage of this to put a second restriction on $v_{1}(x)$ and $v_{2}(x)$. We have

$$
y_{p}^{\prime}=v_{1}(x) y_{1}^{\prime}(x)+v_{1}^{\prime}(x) y_{1}(x)+v_{2}(x) y_{2}^{\prime}(x)+v_{2}(x) y_{2}(x) .
$$

We now make the second restriction

$$
\begin{equation*}
v_{1}^{\prime}(x) y_{1}(x)+v_{2}^{\prime}(x) y_{2}(x)=0 . \tag{*}
\end{equation*}
$$

Then

$$
y_{p}^{\prime}=v_{1}(x) y_{1}^{\prime}(x)+v_{2}(x) y_{2}^{\prime}(x)
$$

and

$$
y_{p}^{\prime \prime}=v_{1}(x) y_{1}^{\prime \prime}(x)+v_{1}^{\prime}(x) y_{1}^{\prime}(x)+v_{2}(x) y_{2}^{\prime \prime}(x)+v_{2}^{\prime}(x) y_{2}^{\prime}(x) .
$$

Substituting into the DE we get:

$$
a_{0}(x)\left[v_{1}(x) y_{1}^{\prime \prime}(x)+v_{1}^{\prime}(x) y_{1}^{\prime}(x)+v_{2}(x) y_{2}^{\prime \prime}(x)+v_{2}^{\prime}(x) y_{2}^{\prime}(x)\right]
$$

$$
+a_{1}(x)\left[v_{1}(x) y_{1}^{\prime}(x)+v_{2}(x) y_{2}^{\prime}(x)\right]+a_{2}(x)\left[v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)\right]=F(x) .
$$

Rearranging we have

$$
\begin{gathered}
v_{1}(x)\left[a_{0}(x) y_{1}^{\prime \prime}(x)+a_{1}(x) y_{1}^{\prime}(x)+a_{2}(x) y_{1}(x)\right]+v_{2}(x)\left[a_{0}(x) y_{2}^{\prime \prime}(x)+a_{1}(x) y_{2}^{\prime}(x)+a_{2}(x) y_{2}(x)\right] \\
+a_{0}(x)\left[v_{1}^{\prime}(x) y_{1}^{\prime}(x)+v_{2}^{\prime}(x) y_{2}^{\prime}(x)\right]=F(x),
\end{gathered}
$$

or, since the term in square brackets multiplied by $v_{1}(x)$ is 0 (because $y_{1}(x)$ is a solution to the DE) and the term in square brackets multiplied by $v_{2}(x)$ is 0 (because $y_{2}(x)$ is a solution to the DE), then this simplifies to:

$$
v_{1}^{\prime}(x) y_{1}^{\prime}(x)+v_{2}^{\prime}(x) y_{2}^{\prime}(x)=\frac{F(x)}{a_{0}(x)} . \quad(* *)
$$

The two equations $(*)$ and $(* *)$ form a system of two equations in two unknowns $v_{1}(x)$ and $v_{2}(x)$. Solving this system using Cramer's Rule we find:

$$
\begin{aligned}
v_{1}^{\prime}(x) & =\frac{\left|\begin{array}{cc}
0 & y_{2}(x) \\
F(x) / a_{0}(x) & y_{2}^{\prime}(x)
\end{array}\right|}{\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|}=-F(x) y_{2}(x) a_{0}(x) W\left[y_{1}(x), y_{2}(x)\right] \\
v_{2}^{\prime}(x) & =\frac{\left|\begin{array}{cc}
y_{1}(x) & 0 \\
y_{1}^{\prime}(x) & F(x) / a_{0}(x)
\end{array}\right|}{\left|\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|}=F(x) y_{1}(x) a_{0}(x) W\left[y_{1}(x), y_{2}(x)\right]
\end{aligned}
$$

(notice the denominators are not zero because $y_{1}(x)$ and $y_{2}(x)$ are linearly independent). We can integrate to get

$$
v_{1}(x)=-\int_{0}^{x} \frac{F(t) y_{2}(t)}{a_{0}(t) W\left[y_{1}(t), y_{2}(t)\right]} d t \text { and } v_{2}(x)=-\int_{0}^{x} \frac{F(t) y_{1}(t)}{a_{0}(t) W\left[y_{1}(t), y_{2}(t)\right]} d t .
$$

Example. Page 170 Number 6. Find the general solution of $y^{\prime \prime}+y=\tan x \sec x$.

Solution. The complementary functions is $y_{c}=c_{1} \cos x+c_{2} \sin x$. Suppose that it has the particular integral $y_{p}=v_{1}(x) \cos x+v_{2}(x) \sin x$. Then $y_{p}^{\prime}=v_{1}(x) \cos x-$ $v_{1}(x) \sin x+v_{2}^{\prime}(x) \sin x+v_{2}(x) \cos x$. We impose the condition

$$
\begin{equation*}
v_{1}^{\prime}(x) \cos x+v_{2}^{\prime}(x) \sin x=0 . \tag{*}
\end{equation*}
$$

Then $y_{p}^{\prime}=-v_{1}(x) \sin x+v_{2}(x) \cos x$ and $y_{p}^{\prime \prime}=-v_{1}^{\prime}(x) \sin x-v_{1}(x) \cos x+v_{2}^{\prime}(x) \cos x-$ $v_{2}(x) \sin x$. From the given DE we then have

$$
\begin{gathered}
{\left[-v_{1}^{\prime}(x) \sin x-v_{1}(x) \cos x+v_{2}^{\prime}(x) \cos x-v_{2}(x) \sin x\right]} \\
+\left[v_{1}(x) \cos x+v_{2}(x) \sin x\right]=\tan x \sec x
\end{gathered}
$$

or

$$
\begin{equation*}
-v_{1}^{\prime}(x) \sin x+v_{2}^{\prime}(x) \cos x=\tan x \sec x . \tag{**}
\end{equation*}
$$

Combining ($*$) and ($* *$),

$$
v_{1}^{\prime}(x)=\frac{\left|\begin{array}{cc}
0 & \sin x \\
\sec x \tan x & \cos x
\end{array}\right|}{\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|}=-\tan ^{2} x
$$

$$
v_{2}^{\prime}(x)=\frac{\left|\begin{array}{cc}
\cos x & 0 \\
-\sin x & \sec x \tan x
\end{array}\right|}{\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|}=\tan x
$$

So

$$
\begin{gathered}
v_{1}(x)=-\int \tan ^{2} x d x=-\int\left(\sec ^{2} x-1\right) d x=-\tan x+x+c_{1} \\
v_{2}(x)=\int \tan x d x=\ln |\sec x|+c_{2}
\end{gathered}
$$

and $y_{p}=\left(-\tan x+x+c_{1}\right) \cos x+\left(\ln |\sec x|+c_{2}\right) \sin x$ and the general solution is

$$
y=k_{1} \cos x+k_{2} \sin x+(-\tan x+x) \cos x+\ln |\sec x| \sin x .
$$

Example. Page 170 Number 14. Find the general solution of

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{2 x}}
$$

Solution. The complementary functions is $y_{c}=c_{1} e^{-2 x}+c_{2} e^{-x}$. So we look for a particular integral of the form

$$
y_{p}=v_{1}(x) e^{-2 x}+v_{2}(x) e^{-x} .
$$

Then

$$
y_{p}^{\prime}=v_{1}^{\prime}(x) e^{-2 x}+2 v_{1}(x) e^{-2 x}+v_{2}^{\prime}(x) e^{-x}-v_{2}(x) e^{-x} .
$$

We impose the condition

$$
\begin{equation*}
v_{1}^{\prime}(x) e^{-2 n}+v_{2}^{\prime}(x) e^{-x}=0 \tag{*}
\end{equation*}
$$

Then $y_{p}=-2 v_{1}(x) e^{-2 x}-v_{2}(x) e^{-x}$. Also

$$
y_{p}^{\prime \prime}=-2 v_{1}^{\prime}(x) e^{-2 x}+4 v_{1}(x) e^{-2 x}-v_{2}^{\prime}(x) e^{-x}+v_{2}(x) e^{-x} .
$$

From the given DE we then have

$$
\left.v_{1}(x)\left[\left(4 e^{-2 x}\right)+3\left(-2 e^{-2 x}\right)+2 e^{-2 x}\right)\right]+v_{2}(x)\left[\left(e^{-x}+3\left(-e^{-x}\right)+2\left(e^{-x}\right)\right]\right.
$$

$$
+\left[v_{1}^{\prime}(x)\left(-2 x^{-2 x}\right)+v_{2}^{\prime}(x)\left(-e^{-x}\right)\right]=\frac{1}{1+e^{2 x}}
$$

or

$$
\begin{equation*}
v_{1}^{\prime}(x)\left(2 e^{-2 x}\right)+v_{2}^{\prime}(x) e^{-x}=\frac{-1}{1+e^{2 x}} . \tag{**}
\end{equation*}
$$

Combining ($*$) and ($* *$),

$$
\begin{aligned}
& v_{1}^{\prime}(x)=\frac{\left|\begin{array}{cc}
0 & e^{-x} \\
1 /\left(1+e^{2 x}\right) & e^{-x}
\end{array}\right|}{\left|\begin{array}{cc}
e^{-2 x} & e^{-x} \\
-2 e^{-2 x} & -e^{-x}
\end{array}\right|}=\frac{-e^{-x} /\left(1+e^{2 x}\right)}{e^{-3 x}}=\frac{-e^{2 x}}{1+e^{2 x}} \\
& v_{2}^{\prime}(x)=\frac{\left|\begin{array}{cc}
e^{-2 x} & 0 \\
-2 e^{-2 x} & 1 /\left(1+e^{2 x}\right)
\end{array}\right|}{\left|\begin{array}{cc}
e^{-2 x} & e^{-x} \\
-2 e^{-2 x} & -e^{-x}
\end{array}\right|}=\frac{e^{-2 x} /\left(1+e^{2 x}\right)}{e^{-3 x}}=\frac{e^{x}}{1+e^{2 x}} .
\end{aligned}
$$

So $v_{1}(x)=-\frac{1}{2} \ln \left(1+e^{2 x}\right)+c_{3}, v_{2}(x)=\tan ^{-1}\left(e^{x}\right)+c_{4}$, and

$$
y_{p}=e^{-2 x}\left(-\frac{1}{2} \ln \left(1+e^{2 x}\right)+c_{3}\right)+e^{-x}\left(\tan ^{-1}\left(e^{x}\right)+c_{4}\right) .
$$

Therefore the general solution is

$$
y=-\frac{1}{2} e^{-2 x} \ln \left(1+e^{2 x}\right)+e^{-x} \tan ^{-1}\left(e^{x}\right)+k_{1} e^{-2 x}+k_{2} e^{-x} .
$$

