Section 5.2. Free, Undamped Motion

Note. In this section we continue studying vibrations of a mass on a spring, but we consider undamped motion (i.e., $a=0$) which is free in the sense that there is no external forces, i.e. $F(t)=0$. This will lead us to simple harmonic motion.

Note. The DE governing this type of motion is $m x^{\prime \prime}+\lambda x=0$. If we let $k / m=\lambda^{2}$ then this becomes $x^{\prime \prime}+\lambda^{2} x=0$ which has auxiliary equation $M^{2}+\lambda^{2}=0$, and $M= \pm \lambda i$. So the general solution is

$$
x=c_{1} \sin \lambda t+c_{2} \cos \lambda t .
$$

Now if we let $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$, then we get

$$
x=\frac{v_{0}}{\lambda} \sin \lambda t+x_{0} \cos \lambda t .
$$

Note. We now introduce parameter φ as follows:

Then $\sin \varphi=\frac{-v_{0} / \lambda}{c}$ and $\cos \varphi=x_{0} / c$. So we can write

$$
x=c\left(\frac{v_{0} / \lambda}{c} \sin \lambda t+\frac{x_{0}}{c} \cos \lambda t\right)=c(\cos \varphi \cos \lambda t-\sin \varphi \sin \lambda r)
$$

$$
=c \cos (\lambda t+\varphi)=c \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right) .
$$

So, for free undamped motion, we have

$$
x=c \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right) \text { where } c=\sqrt{\left(\frac{v_{0}}{\lambda}\right)^{2}+x_{0}^{2}}
$$

Definition. The motion described here is simple harmonic motion. The parameter c is the amplitude of this motion and the period is $t=\frac{2 \pi}{\sqrt{k / m}}=\frac{2 \pi}{\lambda}$. The frequency is $\frac{\lambda}{2 \pi}$. Parameter φ is the phase angle. (Notice that for $t=0, x_{0}=c \cos \varphi$.)

Note. The graph of simple harmonic motions is:

Example. Page 197 Number 2(a). A 16-lb weight is placed upon the lower end of a coil spring suspended vertically from a fixed support. The weight comes to rest in its equilibrium position, thereby stretching the spring 6 in. Determine the resulting displacement as a function of time if the weight is then pulled down 4 in . below its equilibrium position and released at $t=0$ with an initial velocity of 2 $\mathrm{ft} / \mathrm{sec}$, directed downward.

Solution. We have $m g=16 \mathrm{lb}$, so that $m=16 / g=16 / 32 \mathrm{lb} \mathrm{sec}^{2} / \mathrm{ft}=1 / 2$ slug. For the spring constant, with $\ell=6 \mathrm{in}=1 / 2 \mathrm{ft}$ we have $m g=k \ell$ or $16 \mathrm{lb}=$ $k(1 / 2 \mathrm{ft})$ or $k=32 \mathrm{lb} / \mathrm{ft}$. We are given the initial conditions $x_{0}=1 / 3 \mathrm{ft}$ and $v_{0}=2 \mathrm{ft} / \mathrm{sec}$. Also,

$$
\begin{gathered}
\lambda=\sqrt{\frac{k}{m}}=\sqrt{\frac{32 \mathrm{lb} / \mathrm{ft}}{1 / 2 \mathrm{lb} \mathrm{sec}^{2} / \mathrm{ft}}}=8 / \mathrm{sec} \\
c=\sqrt{\left(\frac{v_{0}}{\lambda}\right)^{2}+x_{0}^{2}}=\sqrt{\left(\frac{2 \mathrm{ft} / \mathrm{sec}}{8 / \mathrm{sec}}\right)^{2}+\left(\frac{1}{3} \mathrm{ft}\right)^{2}}=\sqrt{\frac{1}{16}+\frac{1}{9}} \mathrm{ft}=\sqrt{\frac{25}{144}} \mathrm{ft}=\frac{5}{12} \mathrm{ft},
\end{gathered}
$$

and

$$
\varphi=\cos ^{-1}\left(\frac{x_{0}}{c}\right)=\frac{1 / 3}{5 / 12}=\frac{4}{5} .
$$

Therefore,

$$
x=c \cos (\lambda t+\varphi)=\frac{5}{12} \cos \left(8 t+\cos ^{-1}\left(\frac{4}{5}\right)\right)
$$

where t is in seconds.

